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Abstract

XML, as “the next generation ASCII”, can play
several roles in a distributed object system; one of the
more exciting ones is as the basis for serialized data
representations.  This is exciting because XML-encoded
data can be more self-describing than data encoded in
many more traditional ways, which facilitates the kind of
decentralized protocol evolution seen in Internet-scale
development: XML’s explicit “tagging and bagging”
helps keep multiple extensions straight.  However, today’s
common distributed object systems have type systems that
are not flexible enough to describe such data.  We suggest
a way to make more flexible data types; this improves
distributed object systems in general, and is critical to
realizing XML’s full potential. This approach has: (1)
typing judgements based on type structure instead of type
identity, (2) extensible record types with optional fields,
(3) coarse record types, for which extension is compatible
with subtyping, and (4) non-ignorable fields in record
values.

1 Introduction

The following figure shows six data objects and
descriptions that illustrate various roles for data and data
descriptions in distributed object systems.
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Many distributed object systems (such as CORBA
[CORBA], DCOM [DCOM], and Java RMI [JavaRMI])
have an interface language, in which various data types
can be defined.  These systems then have standard

mappings from the interface language to a serialized data
representation “on the wire” and into various
programming languages.  The data architecture depicted
above has the virtue that the interface data and types form
a “wasp waist” that can join various data representations
on the left with various programming language
presentations on the right without a multiplicative
explosion of complexity.  This relationship has much
more to offer than this other common vision:

XML instance SAX/DOM application

… which is often extolled for its simplicity but is also
limited by that simplicity.

As suggested by the first figure, XML can be involved
in multiple ways:

1. the serialized data representation can be based on
XML;

2. an interface data type might be mappable to an XML
data type in some XML schema language(s); and

3. the interface language might be based on XML or an
XML schema language.

The interface data types and XML data types can be
connected in various ways.  They all take the vertical arcs
as fixed, but vary on the treatment of the angled arcs.  In
the simplest treatment, the way interface data are encoded
into XML is fixed.  That is, there is a generic (i.e.,
independent of the particular interface at hand) set of tags
for marking up data such as records, arrays, numbers, and
so on.  In a more sophisticated treatment, the tags are
specific to individual interface data types, but the
encoding technique is still fixed.  In a very sophisticated
treatment, it would be possible for the interface author to
exercise some choices in the way the data are encoded
into XML.  In general, the mapping between the interface
data types and the XML data types may not have full
fidelity, so there may be a need for two independent
documents or one combined document.

The first role is generating a lot of excitement, because
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it promises better support of decentralized evolution
through XML’s self-descriptive powers.  However, the
type system of the interface language must be unusually
flexible in order for XML’s promise for data
representation to be realized.  This paper illustrates the
problem and shows how to make sufficiently flexible type
systems.

Protocols deployed on a wide scale (such as the
Internet) evolve in a particularly challenging way.  In
contrast with smaller deployments, the evolution of
widely deployed protocols is not managed by a single
engineering organization. Rather, many independent
shops develop evolutionary changes to the protocol, and
then incrementally deploy these changes into the existing
system.  Evolutionary changes may be either “optional”,
offering some degree of forward/backward compatibility,
or “mandatory”, meaning both sides of a conversation
must support the change.  Incremental deployment of
independent evolutionary changes poses interoperability
problems, both singly and in combination.  The
incremental deployment of a single evolutionary change
presents the challenge of not only enabling new clients to
work with new servers but also (at least in the cases
where that makes semantic sense) enabling old clients to
work with new servers and/or new clients to work with
old servers.  The kinds of data typing seen in existing
distributed object systems such as CORBA, DCOM, and
Java RMI have technicalities that make them unable to
say much about data that follow an evolutionary pattern;
an extended example appears in the next section.  Worse
yet, for popular and important protocols (such as the
World Wide Web's HTTP [HTTP/0.9, HTTP/1.1]), at any
given time there are several independently developed
evolutionary changes in the process of being
incrementally deployed.  This presents a further
interoperability challenge.  In general, a given client and
sever that wish to interact each support a different set of
extensions, and it is desirable for their interaction to use
the intersection of those sets.  Using existing data type
systems to do the necessary ad hoc negotiations makes for
messy application code, and possibly additional latency;
the example in the next section also illustrates these
problems.

This paper shows an approach to creating more
flexible data types for use in application-level network
interface definitions.  Using these more flexible data and
types, developers can usefully describe their data and the
degrees of forward/backward compatibility desired.
These ideas could be applied in future versions of existing
network interface definition languages.

The flexible data types that we show how to create are

useful in more architectural contexts than the one
suggested by "network interface".  In particular, this
flexibility is valuable when the producer and consumer
are separated by time or access control and thus unable to
negotiate (which rules out certain alternative solutions). 
This flexibility is also valuable when there isn't a single
consumer for a given datum, for which negotiation-based
solutions are (at best) problematic.  Common examples
include event distribution systems and database systems.

This paper is organized as follows.  In section 2 we
examine the subtyping-based technique for decentralized
evolution and note that it doesn't scale well.  In section 3
we outline our approach to making data types more
flexible.  We conclude with some brief remarks on related
and future work in section 4.

2 Evolution by Subtyping

Let us consider what happens if we try to use
subtyping to facilitate protocol evolution.  Suppose a
system starts out using the following type for its
distributed objects:

O1 = {m: {a:A} → {x:X} }

An optional extension that adds an argument and a
result makes a new type like this:

O2 = { m: {a:A} → {x:X},
n: {a:A, b:B} → {x:X, y:Y} }

The new type O2 is a subtype of the original type O1; for
this we write

O2 <:s O1

Old and new servers and clients have the following
types:

old_server: O1
new_server: O2
old_client: O1 → T
new_client: O2 → T

There are four possible ways to combine these servers
and clients.

old_clnt(old_srvr); //works
new_clnt(new_srvr); //works
old_clnt(new_srvr); //works too!
new_clnt(old_srvr); //doesn't work!

The last combination doesn’t work because
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old_srvr doesn’t have the type required by
new_clnt.  So we have to write clients in a more
complicated style.  Here's the new client in that style (in
C syntax):

T new_client(O1 server)
{
if (has_type(server, O2))
  ... narrowto_O2(server)...;
else
  ...server...;
}

In addition to the scaling problems to be seen below,
this type introspection may require round trips between
client and server before useful work can be done.  This
adds latency that some other techniques do not have.

Suppose an independent extension such as this:

O3 = { m: {a:A} → {x:X},
o: {a:A, c:C} → {x:X, z:Z} }

When a developer wants to use both extensions, she
might create a type like this:

O4 = { m: {a:A} → {x:X},
n: {a:A, b:B} → {x:X, y:Y},
o: {a:A, c:C} → {x:X, z:Z},
p: {a:A, b:B, c:C} → {x:X, y:Y, z:Z} }

... and here's what a client cognizant of that combination
would have to do:

T client(O1 server)
{
if (has_type(server, O4))
  ...narrowto_O4(server)...;

else if (has_type(server, O3))
  ...narrowto_O3(server)...;

else if (has_type(server, O2))
  ...narrowto_O2(server)...;

else
  ...server...;
}

In general, a client or server that understands N
extensions has source code of size 2^N, or even greater.
In many current distributed object technologies (including
CORBA, DCOM, and Java RMI), types have identities as
well as structure.  If another developer were to
independently write down a type with the same structure
as O4, it would still be a different type; this developer’s

clients and servers would not fully interoperate with O4
clients and servers, because they would not recognize
each other’s combined types.  To get full interoperability,
the two developers would have to go to a global
engineering body, such as the W3C, IETF, ISO, or ITU,
for a single global declaration of the combination.  This
imposes a significant additional delay in both
development and deployment projects, simply to satisfy
certain technicalities of the object system.

Mandatory extensions do not suffer the exponential
blow-up of code complexity due to all the possible
combinations, but they do still suffer (in current systems)
from the problem of agreeing on the identity of each
combination.  For example, if both of the above
extensions were “mandatory”, their combination would
create a type like

O4’ = { p: {a:A, b:B, c:C} → {x:X, y:Y, z:Z} }

… and the client code would also be simpler:

T client(O4’ server) {…}

But in systems where types have identities, there would
still be a need for a global agreement on an identity for
the O4’ structure.

Evolvable data can be described using existing
interface languages — just not very precisely.
Specifically, the extensible data can be described as tree
structured “property lists” (also called “association lists”
or “attribute lists”).  As this is close to XML’s
information set, it is unsurprising to see excitement about
using XML for representing evolvable data.

3 New Solution

To overcome the difficulties just explored, we use a
more flexible data and type system.  This system is
unusual in four ways.

1. Type relations are judged on structure, not identity.

2. Each field of a record type has a “mode” flag that
indicates whether the field must be present in
corresponding record values.

3. There are some unusually coarse types, to cover
evolutionary changes that would not otherwise create
subtypes.

4. Each field of a record value is marked either
‘ignorable’ or ‘non-ignorable’.
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We will examine each of these three features in turn.
In the course of doing so, we will note three relations
among types: the familiar subtyping relation (<:s), the
new extension relation (<:e), and the new refinement
relation (<:r).  Extension is for evolutionary changes that
are co-variant at procedure types (as opposed to the usual
contra-variance for subtyping).  Refinement is the
transitive closure of the union of subtyping and extension.

As discussed above, we judge type relations based on
structure rather than identity, so that developers do not
need a global standardization body to produce
interoperable clients and servers of combined extensions.

The next unusual feature is optional fields.  These
correspond to optional subelements in an XML element
content model, to optional headers in HTTP, and so on.
Using this feature, we can describe the first example
extension like this (for succinctness, we suppose that the
“optionality flag” defaults to “non-optional” when not
explicitly written):

O2 = {m: {a:A, b:optional:B}
→ {x:X, y:optional:Y} }

An XML content model for an XML representation of
m’s request messages might be “A, B?”.

This can be formalized as follows.  A general record
type looks like this:

{l1:m1:T1, … ln:mn:Tn}

where each li is a label (i.e., field name), mi is a Boolean
indicating whether the field is optional, and Ti is the type
of the field.  A general record value is also a set of triples:

〈l1:ig1:v1, … ln:ign:vm〉

where each li is a label, each igi is an “ignorable” bit (see
below), and each vi is a field’s value. A given label may
not appear twice in a given record type or record value.

Every record type is implicitly extensible; a given
record value (of the form above) has a given record type
(of the form above) when:

• for all 1 �� i ��Q� ��mi ∨ the record value has a field
labelled li; and

• whenever l:ig:v appears in the record value and l:m:T
appears in the record type, v has type T.

While many other type systems allow construction of
what users may think of as “optional types” (e.g.,

“datatype OFoo = present of Foo | absent” in ML), by
putting recognition of the concept of optionality into the
type system we get additional flexibility.  For example, a
record value of the form “〈a:v〉” can have type “{a:A,
b:optional:Foo}”, whereas it can’t have a type of the form
“{a:A, b:OFoo}”.

The rules for subtyping and extension are as follows.
Record type

R2 = {l1:m’1:T’1, … ln+k:m’n+k:T’ n+k}

is a subtype of record type

R1 = {l1:m1:T1, … ln:mn:Tn}

when

T’i <:s T i for all 1 ��i ��Q��DQG
m’ i ⇒ m i for all 1 ��i ��Q�

The rule for extension is analogous: R2 <:e R1 when

T’i <:e T i for all 1 ��i ��Q��DQG
m’ i ⇒ m i for all 1 ��i ��Q�

It is at procedure types that extension and subtyping
differ:

(T’→U’) <: s (T→U)
when

(T <: s T’) ∧ (U’ <: s U)

and

(T’→U’) <: e (T→U)
when

(T’ <: e T) ∧ (U’ <: e U)

As usual, subtyping is reflexive and transitive; extension
and refinement are too.

Thus, the request record type of O2.m is both a
subtype and an extension of the request type of O1.m; the
same is true of the response record types.  As this is co-
variant, O2.m’s type (a procedure type) is an extension,
but not a subtype, of O1.m’s.  Consequently, O2 is an
extension, but not a subtype, of O1.

Since extension does not necessarily imply subtyping,
we would have a very awkward type system if we
stopped here.  A client of type “O1 → T” could not be
applied to a server of type O2!  To solve this problem, we
introduce “coarse types”.  Each coarse type is associated
with an “ordinary”, or fine, type; we write “[T]” for the
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coarse type associated with fine type T.  A coarse type
[T] is the (untagged) union of all the refinements of T.
That is, every value of every type U that is a refinement
of T is also a value of [T].  In terms of type relations, this
means that whenever

T’ <:r T

we also have

[T’] <: s [T] ∧ T’ <: s [T]

In the example above, O2 is a refinement of O1, so
O1, O2, and [O2] are all subtypes of [O1], and thus a
client of type [O1]→T is applicable to a server of type
O2.

In effect, coarsening a type removes some information.
For a coarse record type R = [{a: A, …}], what is known
about its “a” field is only that it has the coarse type [A].
For a coarse procedure type [A→B], what is known is
only that the domain is some refinement of A and the
range is some refinement of B --- an invocation with a
general A value (1) might fail due to a mismatch with the
actual domain of the procedure value, and (2) might
return a value that does not have type B.  For example, if
we constructed the following mandatory extension of O1

O2’ = {m: {a:A, b:B} → {x:X, y:Y} }

we could statically pass the value 〈a:anA〉 to an
invocation of the m method of an object of coarse type
[O1] --- but the invocation would fail at runtime if the
object had type O2’.

The final unusual feature, which supports “mandatory”
extensions, is that each field of a record value is marked
either as “ignorable” or as “non-ignorable”. For example,
in an XML encoding, we might suppose that each record
field would be a distinct XML element and define a
standard attribute (say, “xmlignorable”) to carry the
“ignorable” bit.  If the first extension above were
mandatory and the second optional, we might find a
request message like this:

<O2.m.request>
<A xmlignorable=”false”>…</A>
<B xmlignorable=”false”>…</B>
<C xmlignorable=”true”>…</C>

</O2.m.request>

The “ignorable bit” need not explicitly appear in every
element: it could have a default value, or it’s value could
be implied by the schema for the particular message at

hand.

When a record value field is marked “non-ignorable”,
this means it must ultimately be “understood” --- to at
least some degree --- by the receiver.  A complication is
that we should allow the receiver to delegate partial or
complete responsibility for this understanding (e.g., as a
WWW proxy would).  Thus, rather than build in a fixed
policy for testing understanding (e.g., into the parameter
passing mechanism), we make it the application’s
responsibility to eventually test that it understood each
piece of input, and this testing responsibility can be
delegated along with the understanding responsibility.
We suppose there is an understanding testing primitive
available, which tests a record value (the input whose
understanding requirements are to be tested) against a
record type (listing all the fields understood) to see if
every non-ignorable field in the value is mentioned in the
type.  For example, a server that implements the first
extension directly, and delegates nothing, would test its
input against O2; a proxy that delegates all understanding
would not test any understanding at all.

As an example of how non-ignorable fields can be
used, consider how to extend the proxy-ignorant protocol
of O1 with proxying functionality (as in the WWW).

Req = {a:A, pi:optional:ProxyInstructions}

ProxyInstructions = {origin:[O1]}

P = {m: Req → {x:X} }

A server of type P is willing to either serve a request
directly (if no ProxyInstructions appear in it) or act as a
proxy for some other server (pi.origin).  A proxying-
aware client can pass either an unextented request
〈a:false:anA〉 or an extended request 〈a:false:anA,
pi:false:〈origin:false:q〉〉 to a server of type [O1].  Without
the “ignorable” bit mechanism, a client making a
proxying request would have no assurance that the
request will be properly interpreted: a plain old O1 server
would simply ignore the unrecognized “pi” field and
process the request itself.  With the added mechanism, the
client is assured that the server will return an error if it
does not recognize the fact that it  is being asked to proxy.

Note that this example can correctly encompass the
hop-by-hop vs. end-to-end distinction.  Hop-by-hop
extensions can be added to the ProxyInstructions, which
the proxy removes from the record before forwarding; the
end-to-end extensions can go anywhere else in the
request.  A similar structure could be established for the
response record type.
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4 Related and Future Work

Extensible records are common in the literature of
programming language design [Mitchell, ch 10].  They
are involved in several hard problems that do not appear
here.  One of those is type inference, which is clearly not
relevant.  Another is efficient compilation; the practical
problem for an interface language is rather mapping into
various programming languages of interest.  Another hard
problem is how to explain implementation inheritance in
object-oriented languages; again, that is not important for
interface languages.  In fact, it has long been recognized
that interface inheritance and implementation inheritance
are two separate things [Cook]; this has even been
realized to a degree in Java.

The marking of extension fields with a “non-
ignorable” bit is widely known; for example, it has been
suggested for HTTP [HTTP-ext].

The OMG has recently adopted a limited form of
extensible records, known as “objects by value” or simply
“value types”, into CORBA; the limitation is that only
single inheritance is allowed.

The W3C’s XML Schema Working Group [XML-
Activity] is working on producing a new schema
language for XML.  However, they have not adopted any
requirement for an XML Schema to also be able to serve
as, or contain, a data type declaration in a higher-level
interface language.

Several things remain to be done.  One item of high
importance is to work out good mappings into various
programming languages of practical interest; another is to
fully work this approach out in a fully fleshed-out type
system.  In particular, it would be good to actually
integrate it into the type system(s) of CORBA, DCOM,
and/or HTTP-NG [HTTP-NG].

Another important task is to incorporate ordering
information among the fields in an extensible record.  In
so doing, we make this approach usable not only for sets
of orthogonal extensions, but also for sets that
semantically interfere to the degree that can be untangled
by simply specifying an ordering for the extension
usages.  Experience with HTTP shows that this would be
a useful enhancement.

It would be interesting to try to formulate this paper’s
approach using the “mix-in style” of inheritance [Bono].
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