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Abstract

StarLogo is a computer modeling tool that empowers students to understand the world
through the design and creation of complex systems models.!StarLogo enables students to
program software creatures to interact with one another and their environment, and study
the emergent patterns from these interactions. Building an easy-to-understand, yet
powerful tool for students required a great deal of thought about the design of the
programming language, environment, and its implementation. The salient features are
StarLogo’s great degree of transparency (the capability to see how a simulation is built),
its support to let students create their own models (not just use models built by others), its
efficient implementation (supporting simulations with thousands of independently
executing creatures on desktop computers), and its flexible and simple user interface
(which enables students to interact dynamically with their simulation during model
testing and validation). The resulting platform provides a uniquely accessible tool that
enables students to become full-fledged practitioners of modeling. In addition, we
describe the powerful insights and deep scientific understanding that students have
developed through the use of StarLogo.

1.  Background

In the past 20 years a paradigm shift has been taking place in scientific research.  A

new approach to scientific inquiry has emerged that seeks to understand the intricacies of
complex adaptive systems (CAS) by transcending separate disciplines and augmenting

traditional experimental methods with the use of sophisticated tools for computer
modeling.  A growing group of scientists is adopting this approach to understand a range

of such systems as varied as the human immune system and the global economy.

Scientists now have more powerful theories and tools for explaining and predicting
the behavior of self-organizing, emergent systems, ranging from natural selection and

adaptation in local ecologies (e.g., Salthe, 1993) to economic supply chains (e.g., Roy,

1998).  These and many other subjects studied by complexity scientists are introduced to
students in middle and high schools.  Teachers do not typically teach these subjects as
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complex systems, but rather as systems that behave more mechanistically.  Consequently,

students frequently have difficulty understanding the complex dynamics of such systems.
For example, most teachers present the topic of ideal gases in physics class as a set of

equations to be memorized.  Instead, a teacher could present ideal gases as a particular
example of a complex system and study it from the point of view of the interactions

between gas molecules.  Additionally, students tend to hold persistent misconceptions of

how complex, adaptive systems work and develop incomplete models of these systems
(Wilensky & Resnick, 1999).  Moreover, students rarely have the opportunity to

understand how to link multiple models together to construct and test alternative
representations of situations, something scientists typically do when using models

(Frederiksen & White, 2000).

Using simulations in the classroom can have many advantages.  Not only do they
allow students to explore systems as coherent bodies of knowledge instead of a disjoint

collection of facts, but simulations allow them to explore systems at temporal and spatial

scales that are not normally accessible to them in the classroom.  Students can examine
topics from molecular interactions to the evolution of new species which are difficult or

impossible to explore experimentally without the aid of computers.  Computer
simulations in the classroom can be a pervasive glue that brings together experimental

experiences to allow students to construct their own understandings of systems.

In this paper, we describe an approach to modeling, implemented using the
StarLogo development environment, that makes it possible for students to study,

hypothesize, construct, test, and evaluate their own models of complex systems. First, we
show how StarLogo’s approach to modeling is different than more traditional modeling

environments. Then, we propose criteria that we believe to be important in designing

such a modeling environment for students. Next, we introduce the StarLogo platform by
way of an example model, and describe StarLogo’s major actors: the turtles, the patches,

and the observer. Viewed from a purely technological perspective, StarLogo has evolved
over the past ten years from its origins running on a massively parallel supercomputer to

one that runs on desktop computers of the kind found commonly in schools today. We

describe, in a slightly more technical fashion, how StarLogo is structured internally as
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Figure 1  A model built in Model-It that shows the
impact of disease, pollution and radiation on a the
numbers of rabbits in a population (courtesy of
Model-It).

well as discuss key design decisions that distinguish StarLogo from a professional

modeling environment to one that is especially suited for students learning to model. We
then talk about our approach to bring StarLogo to schools through workshops utilizing

our new book, Adventures in Modeling. Finally, we tell some anecdotal stories about our
students and their models from past workshops we have given, and then conclude.

2. Approaches to Modeling

Science has long relied on the use

of scientific models based on ordinary
differential equations (ODE) that can be

solved (in simple cases) without

computers. These models describe how
aggregate quantities change in a system,

where a variable in the model might be
the size of a population or the proportion

of individuals infected by a disease. The

mathematics required for these models is
advanced, but several commonly used

modeling programs like Model-It
(Soloway et al., 1997), Stella (Roberts,

Anderson, Deal, Garet, & Shaffer,

1983), and MatLab (The MathWorks,
1994) have graphical interfaces that

make them easy to construct. These programs have become very popular in the classroom
as well as the laboratory. The user places a block on the screen for each quantity, and

draws arrows between the blocks to represent changes in those quantities. While this

interface does not remove the need for the user to learn math, it lowers the barrier for
entry.  However, the abstraction required to model these systems at an aggregate level is

a difficult process for many people, which often limits the utility of this modeling
approach.
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Additionally, many of the systems that are studied in the classroom are more

amenable to simulation using agent-based modeling. Rather than tracking aggregate
properties like population size, agent-based models track individual organisms, each of

which can have its own traits. For instance, to simulate how birds flock, one might make
a number of birds and have each bird modify its flight behavior based on its position

relative to the other birds. A simple rule for the individual’s behavior (stay a certain

distance away from the nearest neighbor) might lead to a complex aggregate behavior
(flocking) without the aggregate behavior being explicitly specified anywhere in the

model.  These emergent phenomena, where complex macro-behaviors arise from the
interactions of simple micro-behaviors, are prevalent in many systems and are often

difficult to understand without special tools.

3. Additional Design Criteria

In designing an appropriate modeling tool for use in the K-12 classroom we needed

to consider several design criteria.  One criterion is the foundation on agent-based as
opposed to aggregate-based modeling.  This approach is not only more amenable to the

kinds of models that we would like to study in the classroom, but it is also readily
adopted by novice modelers.

The next criterion is to create a modeling environment that is a “transparent box.”

Many of the simulations that have been used in classrooms to date are purchased for the
purpose of exploring a specific topic such as Mendelian genetics or ideal gases.

Modeling software has been shown to be particularly successful in supporting learning

around sophisticated concepts often thought to be too difficult for students to grasp
(Roschelle & Kaput, 1996; White, 1993). This software allows students to explore

systems, but they are “black box” models that do not allow the students to see the
underlying models.  The process of creating models—as opposed to simply using models

built by someone else—not only fosters model-building skills but also helps develop a

greater understanding of the concepts embedded in the model (Resnick, Bruckman, &
Martin, 1996; Roschelle, 1996; White, 1993).  When learners build their own models,

they can decide what topic they want to study and how they want to study it.  As learners’
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investigations proceed, they can determine the aspects of the system on which they want

to focus, and refine their models as their understanding of the system grows.  Perhaps
most importantly, building models helps learners develop a sound understanding of both

how a system works and why it works that way.  For example, to build a model of a cart
rolling down an inclined plane in the population Interactive Physics program, a student

could drag a cart and a board onto the screen and indicate the forces that act about each

object.  In doing so, the student assumes the existence of an unseen model that
incorporates mass, friction, gravity, etc. that calculates acceleration of the cart.  It would

be a much different experience to allow the student to construct the underlying model
herself and have that act on the objects that she created.

We also considered the level of detail that we felt would be appropriate in student-

built models.  All too often, students want to create extremely intricate models that
exhaustively describe systems.  But it is difficult to learn from these “systems models”

(Roughgarden 1996).  It is more valuable for students to design and create more

generalized “idea models” that abstract away as much about a system as possible and boil
it down to the most salient element.  The ability to make these abstractions and generalize

scientific principles is central to the idea of modeling.  For example, a group of students
might want to create a model of a stream behind their school, showing each species of

insect, fish and plant in the stream.  Building such a model is not only an extremely large

and intricate task, but the resulting model would be extremely sensitive to the vast
number of parameters.  Instead, the students should be encouraged to build a model of a

more generalized system that includes perhaps one animal and one plant species.  The
right software should support the building of such “idea models.”

Based on these criteria and our approach to modeling, we created a computer

modeling environment, named StarLogo, that we describe in the next section.

4. The StarLogo Platform

To enable students to build their own CAS models, we developed StarLogo, a
programming language and environment specifically designed to support simulation

design, construction and testing (Resnick, 1994). While there have been several versions
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of StarLogo on different platforms through the years (detailed below), they have each

strived to meet the design goals described above and provide a program language and
development platform that is accessible to students of a broad age range.  Each version of

StarLogo has shared many common language features and an underlying metaphor that
describes the StarLogo world in terms of three entities – turtles, patches and an observer.

“Turtles” is our term for all entities that move.  On other platforms these might be called

“agents.”  But StarLogo’s lineage brings with it the turtles that defined Logo, along with
much of that language as well.  While we call them “turtles” generically, they might be

rabbits, atoms, or cars in any particular model.

The turtles walk around on top of a grid that is

composed of patches.  If you think of the grid as a

large checkerboard, each square on the checkerboard
is a patch (and the turtles would be the checkers

moving over the board).  The turtles can interact with

the patches by responding to their features, or even
modifying their features.  One way for turtles to

modify the patches is by using the pen that each turtle
carries to draw on the patches.  The patches are also

able to run their own instructions, through which they

can modify themselves or the turtles that are standing on them.

Finally, there is a single observer that watches over the entire grid. Continuing with

the checkers metaphor, the observer might be thought of as a person playing (solitaire)
checkers on this checkerboard filled with the turtles and patches. The observer takes care

of certain operations like clearing the whole board, creating new turtles, and keeping

track of time that either cannot be done by individual turtles, or are easier to conduct
through the observer.

4.1. Termites Example

To familiarize readers with StarLogo, we present a small StarLogo project about

termites. This project is inspired by the behavior of termites gathering wood chips into

Figure 2 Turtles move
around on a grid of patches.
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piles. The termites follow a set of simple rules. Each termite wanders randomly. If it

bumps into a wood chip, it picks the chip up, and continues to wander around. When it
bumps into another wood chip, it finds a nearby empty space and puts its wood chip

down. We show a run of this simulation in Figure 3.

(a) (e)(d)(c)(b)

Figure 3 This figure shows the time evolution of the termites project. At the beginning
(a), all termites and wood chips are randomly scattered over the patches. As the termites
pick up and drop the wood chips (b), the number of piles begins to decrease (c). Small
piles shrink (d) and eventually disappear (e). If we run this further, all of the wood chips
will end up in one pile.

We look at the StarLogo source code to get a feel for what the language feels like.

The following is the setup procedure for termites.

to setup
clearall
if (random 100) > 80 [setpatchcolor yellow]
create-turtles 200
ask-turtles [
  setcolor red
  setxy random (screen-edge * 2)
        random (screen-edge * 2)
]

end

To begin, we kill all of the turtles and set the patch colors to black. Then, on each

patch, we throw a random 100-sided die. If it exceeds a threshold, we set the patch’s
color to yellow (i.e. we give it a wood chip). We then create 200 turtles (termites), ask

them to color themselves red, and scatter them around the screen.

to go
search-for-chip
find-new-pile
find-empty-spot
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end

The go procedure is the main loop. First, a termite looks for a wood chip and picks

it up. Then it wanders until it finds another wood chip in a pile and finds a place to put it
down.

to search-for-chip
if patchcolor = yellow
  [stamp black jump 20 stop]
wiggle
search-for-chip

end

In search-for-chip, a termite wanders around, wiggling, until it is standing on a

yellow patch. That means there is a wood chip there. It picks up the wood chip and jumps
20 turtle steps away.

to wiggle
forward 1
right random 50
left random 50

end

A termite wiggles by moving forward one turtle step, then turning right and left a
random number of degrees.

to find-new-pile
if patchcolor = yellow [stop]
wiggle
find-new-pile

end

The termite then wiggles around until it finds a pile to put down the wood chip.

to find-empty-spot
if patchcolor = black

[stamp yellow get-away stop]
setheading random 360
forward 1
find-empty-spot

end

A termite does not want to put a wood chip down on top of another one, so it

moves forward in a random direction until it finds an empty patch. Once it finds that spot,
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it stamps the patch to make it yellow (giving it the wood chip), and then jumps away to

look for new wood chips.

to get-away
setheading random 360
jump 20
if patchcolor = black [stop]
get-away

end

To get away, a termite keeps jumping 20 steps in random directions until it lands

on a spot without any wood chips. Then it starts the cycle over again, looking for another

wood chip to pick up.

One interesting thing to notice about this model – over time, the number of piles of

woodchips decreases. Why? There’s certainly nothing obviously programmed into the
model to make this happen. But, inevitably, when the simulation is finished, the termites

will be left with one pile. How does this happen? First, ask yourself how a pile can

disappear. A pile disappears when termites carry away all of the chips. Can a new pile be
formed? No, there is no way to start a new pile by a deliberate termite action, since

termites only put their wood chips next to other wood chips. This behavior will only

increase an existing pile’s size; it will not create a new separate pile. In fact, the only way
to create a “new” pile is to take away enough woodchips to split an existing pile into two.

However, this is quite rare except when a pile gets very small. So, overall, the number of
piles must decrease until there is only one left. This is known as an emergent property of

the model – an aggregate behavior that is unexpected given the simple rules programmed

into the model.

Next, we will begin the discussion of how StarLogo works internally. This

discussion will be more technical than the rest of this article, but will reveal some
interesting design tradeoffs that are visible directly to the user and affect the fidelity of

the models that can be built.
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5. StarLogo Design Through the Ages

Building an agent-based modeling environment like StarLogo is not a trivial task. It

involves balancing the pedagogical needs of students with the efficiency requirements of

running thousands of agents at the same time. In this section, we will give a little flavor
of what actually runs under the hood to make StarLogo go.

There are three main pieces of work: the design of the StarLogo virtual machine
(which has changed over time as the technology has improved), the process scheduler

which determines the order in which turtle, patch and observer operations run, and the

turtle, patch and observer data structures (which form the core data of the StarLogo
runtime system).

5.1. The StarLogo Virtual Machine

StarLogo has more going on in parallel than most other computer environments.

Several thousand turtles move about on a grid of over ten thousand patches, each one
independently executing code. Our first implementation of this system was on an actual

parallel computer called the Connection Machine. With 16,384 physical processors, each

running at 8 MHz, we could devote one processor to each turtle and have plenty to spare.
This gave us plenty of parallelism, but the machine’s bulk and extreme cost made it all

but inaccessible to school children.

To solve this problem, we brought StarLogo to the Apple Macintosh in 1994. The

challenge now was to bring our parallel environment to the moderately under-powered,

single processor, desktop computers that were common in schools at the time (our target
platform at the time was a Mac IIfx, with only a single 25 MHz processor and 16 MB of

RAM). A single processor would have to be made to emulate thousands of “virtual

processors,” something that we recognized would be a challenge.

How does a computer run more than one thing at a time? Instead of trying to run all

programs at the same time (which is impossible on a computer with only one processor),
we run each one by itself for a short amount of time, and then switch to the next one.

Each program is deceived into thinking it is the only program running on the processor.

Most operating systems such as Windows or MacOS are designed to run tens or hundreds
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of these processes at a time, each one getting one little slice of the processor’s time

(usually around 16 milliseconds per slice). Since they are switching so fast, the user
perceives everything on the computer as running in parallel. StarLogo’s needs require

that a processor be able to switch between tens of thousands of processes at a time, which
is beyond the capabilities supported by any operating system.

To achieve the desired performance, we created a virtual machine – a simulation of

one computer within another – to run the StarLogo programming language. To this very
basic machine (written in extremely low-level machine language for speed), we added a

large number of turtle, patch, and observer commands, and created an extremely
lightweight multi-processing system to run it all.

The StarLogo virtual machine is very similar to the one developed for the Cricket

(Mikhak, Berg, Martin, Resnick & Silverman, 2000), another project hosted in our
research group at the MIT Media Laboratory. A Cricket is a tiny computer, powered by a

9 volt battery, that can control two motors and receive information from two sensors.

Crickets are equipped with an infrared communication system that allows them to
communicate with each other. Powered by a Microchip PIC processor, the virtual

machine in Cricket Logo holds about 1000 words of instruction memory and only a few
dozen words of RAM. Even though a modern desktop computer is much more powerful

than a PIC microcontroller, there is some good justification to use a similar virtual

machine for both the Cricket and StarLogo. Even though the desktop computer is much
faster than the PIC, the PIC only has to run one process, while the desktop computer has

to run thousands. Similar memory constraints hold as well.

For some years after the initial Macintosh version of StarLogo, we received

requests by an increasing number of users who wished to see StarLogo on a Windows

PC. Around this time (1995), the Java programming language was introduced by Sun
Microsystems, Inc., so we decided to take the opportunity and rewrite StarLogo in this

new cross-platform language. Designing it in the same way as our Macintosh version, we
were able to directly port over all of the code for StarLogo’s virtual machine into Java

fairly quickly, and within three days of programming, had a first implementation of a

turtle world running. Gradually, over a period of a few years, we recreated the rest of the
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StarLogo experience in the Java realm. This is the version now available at our website:

http://www.media.mit.edu/starlogo.

5.2. The Anatomy of a Virtual Machine

What exactly is found within a virtual machine? A virtual machine is a computer
program that simulates the behavior of a physical processor. An example of a commercial

virtual machine is Virtual PC for MacOS, which simulates an Intel Pentium processor on
a Macintosh computer. Simulations of commercial processors make up a small number of

the kinds of virtual machines available, however. Designers take advantage of the

inherent flexibility of software programming to create virtual machines that simulate
processors never before found in nature. The StarLogo virtual machine is this kind of

virtual machine; it simulates a Logo processor.

Logo is a programming language invented in the 1960s by Wallace Feurzig and

Seymour Papert. A variant of the Lisp programming language, Logo was designed to be

easy to learn and use by children. It also tends to be easy to implement using a virtual
Logo processor (a piece of software that our group at MIT has created numerous times

for almost every project we undertake). StarLogo’s Logo processor contains two types of
commands: Logo language operations, and StarLogo primitive commands. There are ten

commands used for implementing Logo; these handle procedure invocation and returns

and manage data and instruction lists. The other 300 primitives provide support for
moving the turtle around on the screen, communicating between the turtles, patches, and

observer, observing and modifying the turtle’s environment, reading and writing turtle,

patch and observer state and user variables, and executing mathematics and control
functions.

All modern machines (including simulated processors, like the one we built)
execute in similar fashion. A user begins by starting a program (often by double-clicking

on an icon). The operating system loads the program’s code into memory, creates a new

process to store the program’s execution state, and jumps to the program’s starting point.
The processor loads the program’s instructions, one by one, into its execution unit. After

each instruction runs, the processor increments its instruction pointer (which points to the
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next instruction to be executed) and continues. After some amount of time, a timer goes

off and signals to the processor that the current process has been running for too long.
The process scheduler captures the runtime state of the current process, stores it, finds

another process that is ready to execute and swaps it in. This swap is known as a context-

switch. The process scheduler is responsible for performing context-switches, as well as

determining the order of the processes that get to execute.

The StarLogo virtual machine adds three more pieces to this generic processor: the
turtles, the patches, and the observer. Each of these entities is an object in memory.

Turtles are made up of turtle state (the coordinates of the turtle on the screen, its id
number, its color, heading, breed, shape, pen state (up or down), visibility (shown or

hidden), and a timer), bookkeeping data (a pointer to the patch the turtle is currently

standing on, a set of “underme” and “overme” pointers to keep track of turtles stack on
top of one another, a pointer to the partner turtle used when this turtle is communicating

with another one, and a true-false variable that indicates when this turtle is alive (useful

for generating proper error conditions)), and a collection of user-defined variables (in
StarLogo terminology, turtles-own variables).

A patch is like a turtle in structure, but contains less information. Patch state
consists of the patch’s coordinates on the screen, a patch color, and a pointer to the first

turtle standing on the patch. Patches contain less bookkeeping data as well, only requiring

a pointer to a partner turtle used when the patch is communicating with a turtle. Finally,
patches also contain a collection of user-defined variables called patches-own variables.

The observer contains only a collection user-defined variables called globals.

5.3. The Process Scheduler and Its Processes

An important part of the design of StarLogo is the process scheduler. As we
discussed above, the scheduler controls the order of execution of the processes that are

running. It also controls how long a process gets to run before being swapped out for

another. Both of these tasks are controlled by a carefully chosen policy. We will discuss
the rationale for our particular choices below.
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Recall that StarLogo is supposed to run the turtle and patch processes fast enough

to appear to be running in parallel. In order to maintain the fiction of parallelism with a
single physical processor, we must context-switch rapidly among all the processes that all

turtles, patches and the observer are executing. There are two forms of context-switching
that we could choose from. We could support preemptive multi-processing, in which a

timer goes off every few milliseconds and causes the virtual machine to context-switch,

or we could choose cooperative multi-processing, and only context-switch at carefully
chosen points in the program.

We chose the latter for several reasons, but will only explain the most important
one here.  Under preemptive multi-processing, synchronization issues would become

exposed to the user. For instance, the following common StarLogo idiom would not work

as expected:

if count-turtles-here > 1
[mate-with one-of-turtles-here]

A turtle is looking for another to mate with. It looks on the current patch to see if
there is any other turtle there. If there is, it mates with it by asking for its turtle id and

calling a user-defined procedure mate-with. Under preemptive multi-processing, it is
possible to context switch between the condition count-turtles-here > 1 and the

consequent of the if statement, mate-with one-of-turtles-here; if this happens,

in one glance, the first turtle might see the other one on its patch, but in the next, the other

turtle may have moved before the first turtle has had to a chance to mate with it!

To avoid this kind of problem, we only allow context switches at “safe” times such
as the end of each command. A command, in Logo, is what we call a primitive operation
or user function that does not return a value (e.g., setcolor blue, forward 10). In

contrast, a reporter is a primitive or user function that does return a value (e.g., 3, 5 + 7,

color-of 5). In our cooperatively multi-processing virtual machine, we elect to

context-switch between commands, but not after reporters. This gives the if statement
above a guarantee of atomicity (meaning that the two statements must execute together

without any context-switching in between). The reporter in the predicate is guaranteed to
still be true when the first command in the consequent executes. This policy also enables
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the fairly common idiom of fetch and update (e.g. setfoo foo + 1) to work without

user-supplied synchronization, as well.

There are several primitives that interact with context-switches. One in particular is

the forward command. When a turtle wants to move in the direction of its current

heading, it calls forward with a number of turtle steps. If we implemented this by context
switching after each turtle went forward the full number of turtle steps, we would see (if

we slowed the computer down) individual turtles scooting, one by one, to their final

locations. We wish to maintain an illusion of realistic-looking parallelism, so we want to
see all of the turtles move forward one step at a time. To do this, we context switch in the

middle of the forward primitive after the turtle has taken one step. We jump back to the
middle of the forward primitive when the turtle is rescheduled. Context switching on this

granularity gives us the nice-looking parallel behavior we want.

StarLogo has two scheduling policies that can be selected by the user. The
scheduling policies influence the order of process execution during each once-through. A

once-through is one complete iteration of all of the processes – a unit of execution in our
scheduler, where we are sure that we have given each process one unit of time to execute.

Between consecutive once-through’s, the particular scheduling policy chosen may have

affect the order of process execution without accidentally starving any particular
processes of a chance to run. The first scheduling policy executes each process in-order

as it appears in the scheduler. This policy gives reasonable user-visible behavior in many
cases, however it sometimes introduces artifacts into a user’s program.

For example, consider a rope made up of individual turtles spread across the screen.

If we jiggle one of the turtles, it should exert a spring force on its two neighbors. If we
force the leftmost turtle to move up and down in a sine wave, it will send a sine wave

down the right side of the rope. To make this happen, each turtle computes its change in
velocity as a function of its distance from its two neighbors, and then moves. If we run

this spring force process for each turtle, and the turtles execute it from left to right across

the screen, the first turtle to move is the one directly to the right of the sine wave turtle.
This turtle’s motion propagates to the right and the sine wave appears to travel to the

right across the turtles. Consider what would happen if the spring force process instead
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executed from right to left. The rightmost turtle will not move, because its left neighbor

has not moved. Its left neighbor will not move either. In fact, no turtle will move until we
execute the spring force function for the turtle directly to the right of the sine wave turtle.

The next iteration repeats this non-motion except where the wave has propagated to the
right by one turtle. This kind of artifact can be completely unexpected but occurs because

the turtle processes are executing in series, rather than in parallel.

To eliminate this artifact, we support a randomized scheduling policy. Before each
once-through, we randomize the order of all processes in the scheduler. This produces

somewhat more disconcerting appearing behavior (a more jaggy motion when you see a
line of turtles do something), but it removes order-dependent artifacts, and more

accurately simulates parallelism in most models.

5.4. The StarLogo Interface

The implementation of the StarLogo virtual machine is critical to its operation.

But to most users, these details are transparent, allowing them to take on the modeling
challenge at hand.  Instead, what most users experience is a user-friendly graphical

environment that simultaneously facilitates the creation of models and an accompanying

user interface.  A user of a model is presented with a screen that displays the running
model along with the interface elements that control it (Figure 4).
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Figure 4 The StarLogo 2.0 user interface for the Termites project. There are two user-
created buttons: setup runs the user’s setup procedure, and go is a forever button that
execute the main loop of the model. There are two sliders which enable a user of the
model to control the initial number of termites created as well as the density of the
woodchips in the environment.

All user interface elements are placed on the screen merely by clicking on the

appropriate tool and then on a blank space in the StarLogo window.  The creator of the

model can then specify the instructions or values associated with that user interface
element.  There are several types of user interface elements in StarLogo including tools

for input, output, and help.  The primary user interface elements in StarLogo are buttons
and sliders.

Buttons control the execution of procedures.  For example, in the termites model

there is a button that controls the setup procedures, which creates the initial distribution
of termites and wood. (A button behaves similarly to an icon in Windows or MacOS.

When it is pushed, StarLogo creates one process for every turtle that exists and starts to
execute the instructions in the virtual machine.) The termites model also contains a go

button that executes the instructions for the termites to move around and pick up wood.
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This button is different than the setup button in that once it is pressed down it stays down

until it is pressed again.  This kind of button, known as a forever button and represented
by the two looping arrows, causes the turtles to continuously follow the prescribed

instructions, until the user pops the button using the mouse. (When the user pops a
button, it causes the StarLogo process scheduler to find the processes associated with the

button, and remove them from the running process list.)

Sliders allow the user to control global variables in the model.  The sliders might
affect the model at setup time (e.g. by controlling the initial distribution of termites and

wood) or dynamically at run time (e.g. by changing the probability that a termite picks up
wood when it sees it).  The slider values are changed by clicking and dragging on the

slider to manipulate the designated variable.  For example, in the termites model the user

can specify the number of initial termites or the density of wood.

The ability to design and implement a simple user interface makes the StarLogo

modeling experience highly interactive.  In addition to buttons and sliders modelers can

place monitors that provide continuously updated numeric output, labels and legends that
assist in the operation and interpretation of the model, and graphs that give visual

feedback from the models,  Together these tools allow developers to rapidly create useful
models.

6. Learning to Model Through Adventures in Modeling

Using computer simulations of complex adaptive systems as a platform, we have

crafted an introduction to scientific modeling (Klopfer & Colella, 1999; Klopfer &

Colella, 2000).  We have found that these tools can enable students to become full-
fledged practitioners of modeling (Colella, 2001).  Students design scientific models and

then go on to investigate and explore those same models.  The use of these tools allows
non-experts to act as scientists, creating and exploring models of phenomena in the world

around them, evaluating and critiquing those models, refining and validating their own

mental models, and improving their understandings (Colella, 2001).

The StarLogo Workshops are designed to introduce participants to the

computational and cognitive aspects of modeling complex, dynamic systems.  During
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these Workshops, participants work together to design, build, and analyze agent-based

computer models.  Participants engage in an iterative process of model creation and
scientific investigation as they explore important scientific principles and processes.  We

design the Workshops to foster a playful, cooperative, creative spirit, while at the same
time providing adequate structure for learning how to build models.  To accomplish this

balance between structure and exploration, we organize the Workshops around a set of

open-ended StarLogo design Challenges on the computer and a series of off-computer
Activities in which participants enact and analyze a simulation.

Each Challenge is a problem statement that is meant to guide participant’s
explorations and get their creative juices flowing.  For example, one Challenge asks

participants to build a model in which creatures change their environment and

subsequently react to those changes.  In response to this Challenge one might create a
model of a beaver altering its environment by cutting down trees to build a dam, or

termites chewing on a log to create passageways.  Every Challenge includes sample

projects, which teachers are encouraged to explore.  The Challenges and accompanying
sample projects facilitate model design and construction, build familiarity with the

StarLogo environment, and introduce the principles of complex systems.

Though “on-screen” computer modeling is one focus of our workshops, “off-

screen” Activities provide another way to connect abstract notions of scientific systems to

personal experience (Colella 2001).  These Activities allow participants to think about
concepts like exponential growth, local versus global information, and group decision-

making from a personal perspective.  For instance, in one Activity, participants “fly”
around a parking lot trying to form cohesive “bird flocks” without the assistance of a

leader.

Recently, we have captured the essentials of our workshops in a book entitled,
“Adventures in Modeling: Exploring Complex, Dynamic Systems with StarLogo” (Colella

et al. 2001) published by Teachers College Press.  This book brings the Design
Challenges and supporting Activities to students and educators everywhere.  Adventures

in Modeling includes a series of ten StarLogo Design Challenges, and a complementary

set of ten participatory Activities.  Additionally, we provide guidelines for educators in
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facilitating the Challenges and Activities, for integrating them into a variety of classes,

and for mapping them to state curriculum standards.  As a package, it provides a flexible
but well defined pathway for teachers to follow.

8. Lessons Learned

It is difficult to appreciate the many ways that people use and learn from StarLogo

without seeing it in action.  In the following section we relate several stories of how we

have observed people use and learn from StarLogo.  Each of the stories highlights aspects
of our software and our approach to modeling that we have found to be unique

enlightening.

8.1. Fire

Often science classes dictate the explorations that students undertake during their
laboratories.  Typically these “experiments” follow a prescribed set of instructions

outlined in a cookbook fashion.  These experiences leave little room for the students to

inject any of their own personal interests or fascinations into the experiments.  Not
surprisingly, students often lose interest in these experiments and lose sight of the real

scientific method as they search for the “right” answer to the experiment.

One of the powers of StarLogo is that it allows students to conduct explorations of
systems that are interesting to them.  Students can explore systems that are personally

interesting.  This brings the flexibility of a science fair to the classroom, but removes the
constraints of the size, location, timescale or cost of the system that the student wants to

explore.  A student could easily explore the interactions of protons and electrons in an

atom, or the evolution of a trait over hundreds of generations— systems that could not
normally be explored in a classroom.
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Figure 5 A student-generated model of a forest fire.
The different color trees have variable flammability.
The red areas are burning, and the brown areas are
already burned.

During the summer of 2000 forest

fires raged across New Mexico, causing
extensive damage across thousands of

acres and making national news
headlines.  At that time a student

summer school was taking place in

Santa Fe, New Mexico.  One group of
three ninth-grade girls was intrigued by

the forest fires that summer.  There were
often small forest fires in that area at

that time of year, but what made them so

bad this time?  They decided to create a
model of forest fires to explore this

phenomenon.

The model that they created initially included many factors.  After some
exploration they narrowed down the factors of interest to wind, rain, and density of trees.

They made sliders that controlled each of these factors and recorded the number of trees
burned, number of trees alive and time to extinguishing of fire for several combinations

of these parameters.  In the end they were able to develop an understanding of each of the

factors in isolation, as well as in combination such as high density of trees, low rain and
high winds.

8.2. But This One Goes to 1000

One of the most important design features of StarLogo is that all aspects of the

models and modeling environment are open to user inspection and manipulation.  While
the designer of a model might set parameters or specify particular behaviors, this

information is always accessible to the user and can be changed.
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Figure 7  Two students working exploring a StarLogo model.  A student makes a discovery (left)
and shares it with his neighbor (right).

Figure 6 A StarLogo slider (top) is clicked on
to change the maximum value from 50 to 1000
(bottom).

Recently, a fifth grade class that was

beginning to learn StarLogo by playing with
a sample project from the Adventures in

Modeling book.  The model included many
buttons and sliders that controlled the

movement and creation of turtles.  One boy

was fiddling with the slider that controlled
the numbers of turtles that were on the

screen, which by default, ranged from 1 to
50.  At some point, he double-clicked on the

slider to see what it would do.  He was then

presented with a dialog box that controlled the minimum and maximum values for that
slider.  Being a fifth grade boy, he immediately replaced the seemingly small value of 50

turtles with a new maximum of 1000 turtles.  He tried out the new value and quickly

proclaimed his finding as “cool” since the new patterns were much different than the old
ones with 50 turtles.

While this innovation was interesting, it might have taken quite some time for

others in the room to make similar changes if each one of them had to independently

discover this same mechanism.  But the accessibility of StarLogo, and the social
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Figure 8 The Rabbits and Grass model showing the
oscillations in predator-prey populations over time.  The
rabbits (red) increase as grass (green is plentiful).  The
rabbits soon deplete their resources, and die off, allowing
the grass to return.  The return in food is followed closely
by a return of rabbits.

atmosphere that it facilitates in the classroom permits and encourages the sharing of

information.  Within minutes of the boy’s discovery of the way to change the slider,
nearly half the class had changed their sliders in a similar way.  Of course, this being a

fifth-grade class the idea never jumped the boy-girl divide, and until they were forced to
share, the girls were left out of the loop.

8.3. The Evolution of Rabbits and Grass

StarLogo models have an advantage over off-the-shelf simulations when it comes
to integrating them into the curriculum.  Unlike typical purchased simulations that are

closed off from being changed by the user, StarLogo models can be customized to fit the
unique needs of each classroom.  One good example of this customization started with

our Rabbits and Grass project that has long been a part of StarLogo.  In Rabbits and

Grass  the rabbits (represented
by red turtles) move around

randomly on the screen, using up
small amounts of energy as they

move, but gaining energy as they

eat grass (green patches) when
they encounter it.  If the rabbits

gain enough energy they can
reproduce (by binary fission), but

if they lose all of their energy

they will die.  These rules lead to
the classic predator-prey

oscillations that are characteristic
of the Lotka-Volterra equations

often studied in beginning calculus.

Some time ago, Noah, a biology teacher who was in one of the Adventures in

Modeling workshops, was tinkering around with the Rabbits and Grass model and

decided to make a small change.  Instead of the rabbits all being red when they were

created, they were randomly assigned a color.  When the modified model ran for a couple
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Figure 9  The speciation model, showing the two
populations of rabbits and grass divided by an impassable
white barrier.  The two populations can be given the
same, or different selection pressures, and students can
observe how long it takes to create a new “species.”

of oscillations, quickly there were only one or two colors of rabbits left.  After searching

through the code for a possible bug that would lead to this behavior Noah realized that
this was indeed not a bug, but a feature of his new model.  The predator-prey model was

now a model of genetic drift.  As the rabbit population got very small on the downside of
the population oscillations, there would only be a few rabbits left.  Those remaining

rabbits would found the next generation of rabbits that would reproduce rapidly when the

food became more plentiful.  The offspring of these rabbits would be the same colors as
they were, leading to a population in the next generation with limited colors.

Noah said that the students in his class rarely understand this bottleneck effect after
reading it in their texts.  But there are no traditional laboratories that can help the students

explore this and related phenomena first hand.  So, Noah set out to build an entire suite of

Rabbits and Grass models for
teaching ecology and evolution to

his students.  He built models with

sexual and asexual reproduction,
selection, mutation and genetic

drift, and his model that put it all
together was a model of speciation.

In the speciation model, students

can apply different selection
pressures to a population of rabbits

that is split due to an earthquake
that isolates the two populations.

These principles are difficult to

teach to high school students,
perhaps because the time scales are so long.  As students experience evolutionary

phenomena in real time through these models, Noah says that his students are developing
a much deeper understanding of the concepts, and enjoying themselves in the process.  In

fact a neighboring biology class complained that Noah’s class was having too much fun.
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8.4. The Tides are Turning

In another of our recent Adventures in Modeling workshops, two of the

participants were interested in exploring the patterns in formation of tidal sandbars.  This

phenomenon is difficult to study in nature because of the large temporal and spatial scales
required.  Most modeling tools are not applicable to this purpose either, because this

process is intensely visual.  So these participants were excited to be able to have an
opportunity to explore this phenomenon.

The modelers started their project by borrowing a landscape generation procedure

from another project.  This gave them the capability to create underwater terrains with
some existing variation in sand height.  From there they set out to implement wave

action.  They represented waves by a line that swept from left to right on the screen,
moving some of the underlying sand to adjacent patches.  After exploring this version for

some time, they weren’t satisfied with the scale at which they saw the sandbars changing.

So, they decided to add another feature that they thought might be important – tides.
Tides were implemented by rising and falling water tables that caused underlying larger

scale changes in the sand, and also interacted with the waves as they moved across the
water.  The resulting model produced some striking visualizations of tidal and wave

movement of sandbars.

9. Conclusion

StarLogo provides many unique benefits to students when used in the classroom.!It

can change the way that kids view both science and technology as well as the relationship
between the two.!By empowering kids to “take over the technology,” StarLogo allows

students to become creators, not just consumers of technology.!It also helps students

develop deep understanding of scientific concepts as they design, build and explore
models of systems in which they are personally invested.!Further, StarLogo provides an

opportunity to engage students in what we deem “the real scientific method,” the messy
process of iteratively designing experiments, learning about systems, and subsequently

modifying experiments.!!
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While StarLogo has met with much success in many classrooms, there are still a lot

of students left to reach. But we, too, are engaged in an iterative process of model
building, where the StarLogo world is our model.!!As we learn from our own experiments

in the classroom use of StarLogo, we modify the tool to better meet the needs of our
audience.!This means providing greater accessibility and applicability through the

development of new tools and techniques.!This spring, we once again enter the design

phase for “StarLogo: The Next Generation,” and will begin constructing the software and
developing new workshops later on this year.
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