
Managing Duplicated Code with Linked Editing

Michael Toomim, Andrew Begel, Susan L. Graham
Department of Computer Science

University of California at Berkeley
{toomim, abegel, graham}@cs.berkeley.edu

Abstract

We present Linked Editing, a novel, lightweight editor-
based technique for managing duplicated source code.
Linked Editing is implemented in a prototype editor called
Codelink. We argue that the use of programming abstrac-
tions like functions and macros—the traditional solution
to duplicated code—has inherent cognitive costs, leading
programmers to chronically copy and paste code instead.
Our user study compares functional abstraction with Linked
Editing and shows that Linked Editing can give the benefits
of abstraction with orders of magnitude decrease in pro-
gramming time.

1. Introduction

The task of managing duplicated or “cloned” code1 has
occupied the minds of programmers for the past 50 years.
During this time, researchers and practitioners have de-
veloped a variety of techniques for removing or avoid-
ing it by employing functions, macros and other program-
ming abstractions. Functional abstraction was designed into
early programming languages, such as Fortran and Lisp.
Object-oriented programming, originating with Simula-67,
has provided further mechanisms for parameterized reuse
to avoid duplication. Aspect-oriented programming has al-
lowed cross-cutting duplication to be abstracted. Engineer-
ing practices like Refactoring [18] and Extreme Program-
ming [6] have promoted specific methodologies of abstract-
ing duplicated code. In the last decade, a multitude of
tools have been developed (both in research and in industry)
that help programmers semi-automatically find and refac-
tor existing duplication into functions, macros and methods
[3, 4, 5, 8, 10, 12, 14, 15, 17, 19, 23, 24, 25, 27, 28, 29,
30, 31, 33, 35, 36, 37, 40]. Given this long-term com-
mitment to programming abstractions as a solution to du-

1We use “duplicated code” and “cloned code” synonymously to mean
two or more multi-line code fragments that are either identical or similar,
particularly in their structure.

plicated code, it stands to reason that there should be little
duplication left in practice.

However, duplicated code remains chronically en-
trenched in our programs. Recent studies estimate that
the Linux kernel (as of 2002) is 15–25% duplicated [1],
the GNU Compiler Collection (1999) is roughly 9% du-
plicated [14], the X Window System’s source code (1995)
is roughly 19% duplicated [3], and the Sun Java JDK [38]
(2002) is 21–29% duplicated [25]. These are all large,
highly developed, well-known open software systems.
Some privately developed systems are much worse off,
for example Ducasse et. al. [14] analyzed an internal
Cobol payroll server (1999) with 60% duplicated code,
and Baker [2] analyzed a closed AT&T software system
(1992) with 38% duplication. In a 2004 ethnographic soft-
ware engineering study by Kim et. al., expert programmers
produced an average of four code clones per hour [26].
These data show that duplicated code is pervasive—despite
the years of research and development in employing func-
tion, macro, and other programming abstractions, dupli-
cated code has not gone away.

We believe that the problem is due to an over-reliance
on language-level programming abstractions: abstractions
can be difficult to create and use, and may be impossible to
implement. As a result, programmerswill write duplicated
code—our approach is to mitigate its disadvantages. We
introduceLinked Editing, an editor-based interaction tech-
nique for managing duplicated code. With this technique,
the programming environment keeps track of code clones
and provides enhanced visualization and editing facilities
to the programmer, allowing him or her to understand and
modify many code clonesas one—but without incurring the
cognitive costs of a heavyweight language-level abstraction.

We implemented Linked Editing in a prototype editor
called Codelink, and conducted a user study to evaluate it.
The user study showed that Codelink can provide benefits
comparable to functional abstraction, but with much less
programming work. The results suggest that programmers
would use Linked Editing in situations in which they would
otherwise duplicate code.

The contributions of this research are the following: a
cognitive account of the ways duplicated code impedes the
task of programming, and the abstraction costs that cause
programmers to duplicate code; a novel editor-assisted tech-
nique embodied in the Codelink tool for solving the prob-
lem; and an empirical user study comparing the benefits and
drawbacks of Codelink with functional abstractions when
applied to some types of duplicated code.

We first describe the problems of duplicated code in Sec-
tion 2. We then propose a theory of why programmers
duplicate code in Section 3. We illustrate Linked Editing,
Codelink, and how they solve the duplicated code problems
in Section 4, and our user study and results in Section 5.
The remaining sections, 6, 7, and 8, describe Codelink’s
implementation, future work, and related work.

2. The duplicated code problem

We wish to eliminate theproblemsof duplicated code,
rather than the code itself. Thus, we must understand how
duplicated code impedes the task of programming. We in-
terviewed three programmers (computer science graduate
students at U.C. Berkeley), and combined the results with a
survey of the literature and our own analysis to identify the
following four problems with duplicated code:

Verbosity. Redundant cloned code creates clutter and ob-
scures meaningful information, making code difficult to un-
derstand.

Tedious, repetitive editing. Edits made to one clone must
often be made to its copies. Thus, a single modification
often requires many edits, making sustained modification
unwieldly.

Lost clones. Although edits to one clone must often be
made to other clones as well, there is no way of getting
to those other clones from the first, or of even realizing that
the others exist. Missed edits lead to inconsistent code.

Unobservable inconsistency. Even if programmers find
all clones and edit each one, it is impossible to verify that
the edits have been madeconsistently—that the common
regions are identical, and the differences are retained—
without manually comparing each clone’s body, word-by-
word, and hoping that no important details were missed.

These problems, and the prevalence of duplicated code,
define theduplicated code problem.

3. Why programmers duplicate code

Programmers employ functions, macros, classes, as-
pects, templates, and other programming abstractions to re-

duce duplication. The identical sections of the clones be-
come the body of the abstraction’s definition, and the dif-
ferences become parameters. However, abstractions can be
costly, and it is often in a programmer’s best interest to leave
code duplicated instead. Specifically, we have identified the
following generalcosts of abstractionthat lead program-
mers to duplicate code (supported by a literature survey,
programmer interviews, and our own analysis). These costs
apply to any abstraction mechanism based on named, pa-
rameterized definitions and uses, regardless of the language.

Too much work to create. In order to create a new pro-
gramming abstraction from duplicated code, the program-
mer has to analyze the clones’ similarities and differences,
research their uses in the context of the program, and design
a name and sequence of named parameters that account for
present and future instantiations and represent a meaningful
“design concept” in the system. This research and reason-
ing is thought-intensive and time-consuming.

Too much overhead after creation. Each new program-
ming abstraction adds textual and cognitive overhead: the
abstraction’s interface must be declared, maintained, and
kept consistent, and the program logic (now decoupled)
must be traced through additional interfaces and locations
to be understood and managed. In a case study, Balazin-
ska et. al reported that the removal of clones from the JDK
source code actuallyincreasedits overall size [4].

Too hard to change. It is hard to modify thestructure
of highly-abstracted code. Doing so requires changing ab-
straction definitionsand all of their uses, and often neces-
sitates re-ordering inheritance hierarchies and other restruc-
turing, requiring a new round of testing to ensure correct-
ness. Programmers may duplicate code instead of restruc-
turing existing abstractions, or in order to reduce the risk of
restructuring in the future.

Too hard to understand. Some instances of duplicated
code are particularly difficult to abstract cleanly,e.g. be-
cause they have a complex set of differences to parameter-
ize or do not represent a clear design concept in the system.
Furthermore, abstractions themselves are cognitively diffi-
cult. To quote Green & Blackwell: “Thinking in abstract
terms is difficult: it comes late in children, it comes late
to adults as they learn a new domain of knowledge, and it
comes late within any given discipline.” [20]

Impossible to express.A language might not support di-
rect abstraction of some types of clones: for instance those
differing only by types (float vs. double) or keywords (if
vs. while) in Java. Or, organizational issues may prevent
refactoring: the code may be fragile, “frozen”, private,
performance-critical, affect a standardized interface, or in-
troduce illegal binary couplings between modules [41].

Programmers are stuck between a rock and hard place.
Traditional abstractions can be too costly, causing rational
programmers to duplicate code instead—but such code is
viscous and prone to inconsistencies. Programmers need a
flexible, lightweight tool to complement their other options.

4. Our approach: Linked Editing

We propose Linked Editing: a novel technique for visu-
alizing and editing duplicated code based on the program-
ming environment rather than the programming language.
With this technique, two or more code clones are identi-
fied as being similar and are persistently linked together.
The differences and similarities are then analyzed, visual-
ized, and recorded, allowing users to work with all linked
elements simultaneously, or particular elements individu-
ally. This “linked” editing model eliminates the problems
of duplicated code (verbosity, tedious editing, lost clones,
and unobservable consistency) without requiring extra work
from the programmer. We implemented a prototype of
Linked Editing in an extension to XEmacs we call Codelink.

We illustrate Linked Editing and its benefits with a sce-
nario. We begin with the duplicated code shown in Fig-
ure 1.1: two methodswake() andwakeAll() from the
threads implementation of an educational Java operating
system used at U.C. Berkeley. Notice that the only differ-
ence between the two methods is that one has anif state-
ment where the other has awhile loop. This type of dif-
ference, as mentioned in Section 3, is impossible to abstract
directly in Java. We will show, instead, how a program-
mer would use Linked Editing (in Codelink) to manage this
code.

4.1. Linking code

First, the programmer “links” the two clones in the ed-
itor. To do so, she selects the first clone with her mouse,
and then selects the second while holding Control (creating
a second simultaneous selection). Once both clones are se-
lected (Figure 1.2), she clicks the “Link Selections” button.
The system now runs a differencing algorithm (discussed in
Section 6) on the two code fragments, and displays the re-
sults by highlighting all common regions in blue, and differ-
ences in yellow (Figure 1.3). This visualization provides an
immediate benefit to the programmer—she can now easily
scan the duplicated code and understand precisely and com-
pletely how the two pieces of code are alike and how they
differ—alleviating theunobservable inconsistenciesprob-
lem. Linked Editing can be used in this way as a pure vi-
sualization aid, for instance by a third-party programmer
trying to understand existing duplicated code.

1
2

3

Figure 1. (1) Before linking two similar Java
methods in Codelink. (2) After selecting the
methods. (3) After linking the methods.

4.2. Editing linked code

The core capability of Linked Editing, however, is that
the programmer can edit all linked clones simultaneously.
As she moves her editor’s text cursor in a clone, a blueghost
cursorappears in the corresponding position of each related
clone. Now, if she decides to add a debugging statement to
each instance, she simply types the statement in one of the
clones, and the other clones are modified simultaneously
with each keystroke (Figure 2.1). She can also navigate
among linked clones with keyboard hot-keys. Thus, Linked
Editing allows the programmer to edit all instances of a par-
ticular clone at once, as if they were a single block of code.
This is our solution to thetedious, repetitive editsproblem.

Unlike previous work in simultaneous editing [32], how-
ever, Linked Editing allows the programmer to just as easily
make a change to asingleclone individually. Clicking the
“Linked Editing” button causes the ghost cursors to disap-
pear and the main cursor to revert to a thin black bar. The
programmer can now remove the debugging statement from
one of the clones by simply deleting it from that clone (Fig-
ure 2.3). Codelink re-analyzes the code after each keystroke
and makes the new differences yellow. This simple oper-
ation would have been much more difficult using macros,
since the programmer would have had to modify the macro
definition, making it support a new parameter, in addition
to each of its instantiations—in order to support an isolated
change to a single instance.

User types here

Ghost cursor

Clicks to
toggle

21 3

Figure 2. (1) Adding a line to two clones. (2) Modifying one instance. (3) Deleting line in one instance.

4.3. Elision, persistence and refactoring

To further enhance code understanding, Linked Editing
providesselective elisionof clones—the programmer can
hide the redundant common regions of linked code with el-
lipses, leaving the differences visible, as shown in Figure
3. Now, the clone looks remarkably similar to a traditional
function definition and use. In this way, Linked Editing al-
leviates theverbosityof duplicated code. If the programmer
clicks the triangle, or moves her cursor into the elided pro-
cedures, it toggles back to its expanded form.

When the programmer saves her file, the “links” between
clones are saved as meta-data, so that any programmer with
a Linked Editing-enabled editor that opens the file will see
and have access to the links. With this feature we expect the
system to alleviate the need for clone-finding tools. Since
the cost of linking code is so small, it would be to her ben-
efit to create links between most clones that she runs across
in practice, improving her ability to read and edit them. In
this way, we imagine that programmers would systemati-
cally add clone links to their code-base—thus “document-
ing” all existing clones as a side-effect of their normal work.
By making cloned code an explicit property of a program,
the lost clonesproblem of duplicated code is alleviated.

Finally, Linked Editing has been specifically designed to
augment, not replace existing tools and techniques. A pro-
grammer may decide that a set of linked clones are really
part of a higher-level concept, and want to refactor the code
into a method or macro now that it has been written and
tested. The Linked Editing tool will be able to automate
this task, using its existing knowledge of the code’s simi-
larities and differences, and present the programmer with
a dialog box in which to name the method or macro and
its parameters. Programmers without Codelink could then
take advantage of the link, since they could work with the
functionally abstracted form rather than the Linked Edit-
ing form. In addition, code could be transformed in the
other direction: from abstract functions and macros to con-
crete inlined code. This would make some abstracted code,
like complicated macros, easier to understand. In fact, a de-

Figure 3. An elided clone looks similar to a
function definition and use

sign goal is to allow programmers to fluently move back and
forth between program representations, to suit their chang-
ing tasks and style of work. (This feature is not yet imple-
mented in Codelink.)

4.4. Summary of benefits

Our approach addresses the difficulties described in sec-
tion 3. With Linked Editing, it is easy tocreate new
abstractions—the user just selects a set of clones with the
mouse or keyboard and clicks “link selections”. It is easy
to modifyall clones since changes to any one clone are au-
tomatically and simultaneously made to all linked clones,
and it is easy to modify asingleclone instead by changing
editing modes. It is easy tounderstandthe correspondences
between clones because Linked Editing provides an as-you-
edit incrementally-updated visualization of clone similari-
ties and differences in addition to clone-aware navigation
and ghost cursors. It is easy topredict edits under simul-
taneous editing because all blue regions are guaranteed to
remain identical after arbitrary edits. Linked Editing is also
verygeneraland immune to language faults: it is language-
independent, can link arbitrary syntactic structures, and can
even link clones between files of different languages.

5. User study

We conducted a user study to compare the use of
Codelink with programming abstractions. Our hypotheses
were that programmers would be able to link clones with
Codelink in much less time than it would take to abstract
the clones, and that Codelink would provide programmers
with comparable benefits after linking the code.

We paid 13 students from U.C. Berkeley to participate
in the study. Subjects had a diverse range of programming
skill, ranging from graduate students in Computer Science
to introductory-level undergraduates. Subjects performed
their programming tasks in the Scheme programming lan-
guage since functional abstractions in Scheme are expres-
sively powerful and well-understood by students at Berke-
ley, thus mitigating biases from language-specific abstrac-
tion costs. We expect the results to transfer to functions,
macros and methods in other languages as well.

We used a within-subjects experimental design. With
both functional abstraction and Codelink, subjects were
asked to perform a set of programming tasks: (1) to abstract
or link two short pieces of cloned code, (2) to perform a
modification task requiring new code to be added to both
clones or instances (the same code to each), and (3) to per-
form a modification task requiring new differences between
each clone or instance. We believe these programming tasks
illustrate the tradeoffs in editing duplicated/abstracted code.
Although both sets of programming tasks followed the gen-
eral sequence given above, the specific tasks and code were
very different for each technique to eliminate learning ef-
fects. The pairing between techniques and task-sets and the
ordering of techniques used were fully counterbalanced to
eliminate ordering, learning and task biases.

Before performing each set of programming tasks, sub-
jects completed a short (5-10 minute) tutorial to teach them
about the technique (functional abstraction or codelink, de-
pending on the condition) and what was expected of them
on the tasks. The tutorial walked them through the three
types of programming tasks, with very simple code and
modifications. Subjects filled out a questionnaire after
each experimental task-set to assess the particular technique
paired with that task-set. The entire study lasted between
30 and 90 minutes. The programming tasks were recorded
with a screen-capture program, and audio was captured and
merged into the video to facilitate data analysis. Subjects
did not test their code; they were rather instructed to stop
when they thought their code would work.

5.1. Evaluation metrics

We recorded two dependent variables: thetime it took
subjects to link or functionally abstract the code (Step 1 in
each set of programming tasks), and theratings they gave

!⌥⇤ ⌃✏'⇣⇣⌘✏⇥⇤⌦,⌫

Please circle an answer for each of the following questions.
Answer the questions with respect to the tasks you just performed.

Maintainability
Do you think it is easier or harder to maintain the code with the functional abstraction than
without it?

1 2 3 4 5 6 7
Much
Easier

Moderately
Easier

Slightly
Easier

Same Slightly
Harder

Moderately
Harder

Much
Harder

Understandability
Do you think it is easier or harder to understand the code with the functional abstraction than
without it?

1 2 3 4 5 6 7
Much
Easier

Moderately
Easier

Slightly
Easier

Same Slightly
Harder

Moderately
Harder

Much
Harder

Changeability
Do you think it is easier or harder to modify the code with the functional abstraction than without
it?

1 2 3 4 5 6 7
Much
Easier

Moderately
Easier

Slightly
Easier

Same Slightly
Harder

Moderately
Harder

Much
Harder

Speed
Do you think the tasks take more or less time overall if you functionally abstract the code first
and then edit it than if you edit the duplicated code directly?

1 2 3 4 5 6 7
Much

More Time
Moderately
More Time

Slightly
 More Time

Same Slightly
 Less Time

Moderately
 Less Time

Much
 Less Time

Effort
Do you think the tasks take more or less effort overall if you functionally abstract the code first
and then edit it than if you edit the duplicated code directly?

1 2 3 4 5 6 7
Much

More Effort
Moderately
More Effort

Slightly
 More Effort

Same Slightly
 Less Effort

Moderately
 Less Effort

Much
 Less Effort

Figure 4. Sample questionnaire question

each technique on the post-task questionnaires. Abstrac-
tion/link time was measured from the subject’s first key-
press after reading the task instructions to the last keypress
before flipping to the next task’s instructions.

On the post-programming questionnaires, subjects rated
each technique along the following five metrics:maintain-
ability , understandability, changeability, editing speed,
andediting effort ; reported on a 7-point semantic differ-
ential scale. Each question asked subjects how the tech-
nique they used (functional abstraction or Codelink) helped
or hindered them on the programming tasks, as compared
to editing the duplicated code directly. An example ques-
tion is shown in Figure 4. With these questions, we judged
how each technique helped or hindered programmersafter
the initial abstraction or linking of code.

Finally, the experimenter asked subjects the following
question verbally: “If you had the Codelink tool in your ed-
itor or programming environment, and the other program-
mers on your programming project had it too, how likely is
it that you would use it in your own programming work?”
The responses were classified into three groups:probably
or definitely wouldn’t use Codelink, not sure, andprobably
or definitely would use Codelink. Because this question was
only incorporated into the study after the first three subjects
had been run, we only received 10 responses instead of 13.

5.2. Results

The timing data, shown in Figure 5, verified our first hy-
pothesis: whereas functional abstractions took 13:06 min-
utes to create on average, the mean time to link code with
Codelink was 22 seconds. This is a dramatic difference—
the link time was 2% of the abstraction time. This result
is statistically significant withp < 0.01, obtained with a
two-tailed t-test. The standard deviations for the functional
abstraction and link times were 9:23 minutes and 11.6 sec-
onds, respectively.

The questionnaire results are shown in Figure 6. Sur-
prisingly, on average subjects rated Codelink higher than
functional abstractions with respect toall metrics. This
difference was statistically significant forunderstandabil-
ity andchangeability (paired two-tailed t-test,p < 0.05).
Thus, the questionnaire data more than verified our hypoth-
esis that Codelink provides benefits comparable with those
of functional abstractions. We find this very encouraging.

Since subjects did not test their code, they sometimes

Technique Mean Abstraction Time Std. Dev.
Functions 13min 06sec 9min 23sec
Codelink 22sec 12sec

Figure 5. Functional abstraction refactoring
time vs. Codelink link time

made programming errors. The most serious errors oc-
curred when making large edits during step 1 of functional
abstraction.

Finally, we wanted to know if subjects would use
Codelink in their real-life work. 9 of the 10 subjects
asked reported that they “would” or “probably would” use
Codelink in their work. The other one reported “not sure.”

In summary, subjects learned how to use Codelink
quickly, and in very little time achieved results competitive
with functional abstraction. Almost all subjects said they
would use Codelink in their regular work. These results
indicate that Linked Editing holds much promise as a solu-
tion to the duplicated code problem. Furthermore, the fact
that functional abstraction was rated lower than Codelink
provides evidence for the costs of abstraction discussed in
Section 3.

6. Implementation

Codelink is implemented within Harmonia-Mode [39],
an XEmacs extension that provides interactive program
analyses via the Harmonia interactive language-analysis
framework [7, 21]. It can be applied to many programming
languages, thanks in part to the language-independence of
the Harmonia framework. A thorough user-centered, iter-
ative design process was used to design and verify the us-
ability of the user-interface prior to the study described in
Section 5.

Our difference analysis uses the dynamic programming
version of the longest-common-subsequence (LCS) algo-
rithm [11], operating on subsections of lexical units in
the program obtained by splitting each token at “word”
boundaries—dashes, underscores, whitespace characters,
etc. The sequence of tokens returned by this LCS algorithm
became the blue “common” regions, and all other tokens
became the yellow regions.

When an edit is made to a single clone, an incremental
version of the difference algorithm is run. It isolates the to-
ken subsections in which the edit occurred, and then re-runs
the original difference algorithm in the smallest yellow re-
gion that fully encompasses this edited region. This method
of re-differencing changed regions is not optimal in all sit-
uations, but worked without problems in the user study.

Much Better

Moderately Better

Slightly Better

Same

Slightly Worse

Moderately Worse

Standard Dev.

Maintainability
Understandability Speed

Changeability Effort

Codelink Functions

Sheet1

-2

-1

0

1

2

3

Maintainability Changeability Effort

Code-Link Functions

Page 1

Figure 6. Questionnaire ratings for Codelink
and functional abstraction

7. Future work

Although the study results are promising, there are a
number of obstacles to be overcome before Codelink is a
viable option in real-world projects. The LCS algorithm
used in the prototype, although adequate for the user study,
has two shortcomings: it takesO(nk) time (for k clones of
sizen), and does not always report the most intuitive set of
differences between any two code fragments. (Some of the
issues are described by Heckel [22]). We are developing
a better differencing algorithm that uses interactive syntac-
tic information (provided by the Harmonia framework) to
derive differences that more closely correspond to the way
humans view duplicated code, with a much faster running
time. We are also revising the incremental re-differencing
algorithm, and developing a mechanism to allow users to
give feedback and fine-tune the types of differences re-
ported by the algorithm.

Apart from differencing, we can also experiment with
when to invoke differencing engine and link the clones.
While the current implementation requires the user to select
all clones and click “Link Selections,” even this step could
be performed automatically, either as a result of the user
copying and pasting code or via the output of a third-party
clone-finding tool, such as the ones mentioned in Section 1.

If programmers are able to link many clones simultane-
ously across the breadth of a project, an “overview” window
or pane that visualizes all linked clones as the programmer
edits one of them would be necessary. We would also like to
make our link meta-data resilient to file modifications made
by third-party tools. Lastly, we notice that there are often
higher-level patterns to clones (like consistent variable re-
naming) for which Linked Editing may be able to infer and
provide automated editing support.

We are working on many of these issues and plan to re-
lease a more robust version of Codelink to the public as an
open-source software project in the future. This will allow
us to get real-world usage data to verify that Linked Editing
can scale to real programs, and that programmers would use

it in their real work.
Finally, we are working to extend the general tech-

nique of Linked Editing to support documents in non-
programming domains, such as spreadsheets, web sites,
form letters, graphic charts, and music scores. Al-
though these documents frequently contain duplicated con-
tent, their authoring environments provide impoverished or
nonexistent abstraction facilities, and are frequently used by
non-programmers. We feel that Linked Editing could pro-
vide a substantial benefit to these domains.

8. Related work

Some researchers have posited that the problem with du-
plicated code is that programmers cannot find it in their
programs. To this end, a wide array of tools have been
developed to detect duplicated code, by both the research
community and the industrial and open-source communi-
ties (see references in Section 1). However, clone finders
do not alleviate any of the costs of abstraction. If abstracting
a clone is too costly when a programmer originally creates
it, it may be too costly when a clone finder detects it as well.
On the other hand, we would like to integrate a clone finder
with the Codelink tool in order to automatically or semi-
automatically link existing duplicated code in a code-base.

Other research has attacked the duplicated code problem
by automating some of the typing necessary to rewrite du-
plicated code into programming abstractions. For example,
XRefactory [42], Eclipse [16], CloRT [4], and Clone Dr. [9]
support semi-automated refactorings for some types of du-
plicated code. However, these tools do not solve any of
the costs ofusingabstractions (discussed in Section 3) that
can make the resulting abstractions difficult to understand
and modify. Furthermore, they do not help programmers
with any of thecognitivework of creating abstractions, such
as architecting a new design concept and designing the ab-
straction interface, which we believe to be more substantial
than the typing they reduce. Indeed, no study has been con-
ducted to show that programmers having such tools would
produce fewer clones.

Linked Editing provides a novel variant ofsimultaneous
editing, which was first introduced by Lapis [32]. Linked
Editing’s variant differs from simultaneous editing in Lapis
by making links persistent; allowing blocks of code to be
edited individually in addition to simultaneously; visualiz-
ing the consistencies and inconsistencies between clones;
and providing elision of redundant text. Furthermore,
Linked Editing’smodelof similarity and edit-propagation
is new. Lapis generalizes each edit individually with an ar-
tificial intelligence algorithm that is not fully predictable by
the user and can make mis-generalization errors. Linked
Editing, on the other hand, establishes the correspondences
between clones up-front when linking code, displays them

to the user as blue regions of text, and guarantees that the
blue regions will remain identical after arbitrary simultane-
ous edits. This predictability allows Linked Editing users
to make complicated, sustained modifications and still be
able to verify that changes have been generalized to other
instances appropriately.

Linked Editing can be considered an example of pro-
gramming by analogy. Other projects in this area are Graph-
ical Rewrite Rule Analogies [34] and VisualAgentTalk [13],
in which programmers can generalize logic to multiple in-
stancesanalogically(e.g. “Cars move on roads like trains
move on tracks”), rather than abstractly. Like Linked Edit-
ing, this paradigm does not require the specification of an
abstract concept to represent similarity, and thus avoids the
costs of abstraction of Section 3.

9. Conclusion

We described Linked Editing, a technique that augments
a text editor to provide programmers with a lightweight
mechanism to read, write, and edit patterns of duplicated
code in an abstract way. We implemented a prototype of
Linked Editing named Codelink, and compared it to func-
tional abstraction in a user study. The study found that
Linked Editing can provide the same benefits as functional
abstractions with drastically less work. Most subjects said
they would use a tool like Codelink in their real-life work.
These results indicate that Linked Editing would be likely
to be used in practice by developers, and would be powerful
enough to alleviate the issues of duplicated code in many
situations.

Software developers continuously deal with reading,
writing, and maintaining programs that are infused with du-
plicated code because functions, macros and other program-
ming abstractions don’t adequately support their needs. An
improvement to this situation would greatly benefit the state
of software development at large.

10. Acknowledgments

We give special thanks to Marat Boshernitsan for guid-
ance with the theory and paper; and Jonathon Jamison and
Laura Germine for providing crucial feedback on the design
of the Codelink user interface and user study. This research
was supported in part by NSF Grant CCR-0098314 and by
a research award from Intel Corporation.

References

[1] G. Antoniol, M. D. Penta, E. Merlo, and U. Villano. Ana-
lyzing cloning evolution in the linux kernel.Journal of In-
formation and Software Technology, 44(13):755–765, 2002.

[2] B. S. Baker. A Program for Identifying Duplicated Code.
Computing Science and Statistics, 24:49–57, 1992.

[3] B. S. Baker. On finding duplication and near-duplication in
large software systems. InSecond Working Conference on
Reverse Engineering, pages 86–95. IEEE, 1995.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Partial redesign of Java software systems
based on clone analysis. InProceedings: Sixth Working
Conference on Reverse Engineering, pages 326–336. IEEE,
1999.

[5] I. D. Baxter, A. Yahin, L. M. D. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees. InPro-
ceedings of the International Conference on Software Main-
tenance, pages 368–377. IEEE, 1998.

[6] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[7] M. Boshernitsan. Harmonia: A flexible framework for
constructing interactive language-based programming tools.
Master’s thesis, University of California, Berkeley, June
2001. Appears as Computer Science Technical Report CSD-
01-1149.

[8] K. W. Church and J. I. Helfman. Dotplot: A program for ex-
ploring self-similarity in millions of lines for text and code.
American Statistical Association, Institue for Mathemati-
cal Statistics and Interface Foundations of North America,
2(2):153–174, 1993.

[9] Clone Dr. http://www.semdesigns.com/Products/Clone/index.html.
[10] Clonefinder. http://www.studio501.com/.
[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Intro-

duction to Algorithms. The MIT Electrical Engineering and
Computer Science Series. MIT Press/McGraw Hill, 1990.

[12] Copy-Paste Detector. http://pmd.sourceforge.net/cpd.html.
[13] B. Craig. Behavior combination through analogy. InPro-

ceedings of the IEEE Symposium on Visual Languages,
pages 270–273. IEEE, 1997.

[14] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In H. Yang
and L. White, editors,Proceedings of the International Con-
ference on Software Maintenance, pages 109–118. IEEE,
1999.

[15] Duptective. http://c2.com/cgi/wiki?DupTective.
[16] Eclipse. http://www.eclipse.org/.
[17] F. Fioravanti, G. Migliarese, and P. Nesi. Reengineering

analysis of object-oriented systems via duplication analysis.
In Proceedings of the 23rd International Conference on Soft-
ware Engineering, pages 577–586. IEEE, May 2001.

[18] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[19] S. Giesecke. Duplication Management Framework.
http://sourceforge.net/projects/dupman.

[20] T. Green and A. Blackwell. Cognitive dimensions of
information artefacts: a tutorial.BCS HCI Conference,
http://www.ndirect.co.uk/˜thomas.green/workStuff/Papers/,
1998.

[21] Harmonia Project Web Site.http://harmonia.cs.
berkeley.edu .

[22] P. Heckel. A technique for isolating differences between
files. Communications of the ACM, 21(4):264–268, 1978.

[23] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program.ACM SIGPLAN No-
tices, 25(6):234–245, June 1990.

[24] J. H. Johnson. Substring matching for clone detection and
change tracking. InInternational Conference on Software
Maintenance, pages 120–126. IEEE, September 1994.

[25] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code.IEEE Transactions on Software Engi-
neering, 28(6):654–670, 2002.

[26] M. Kim, L. Bergman, T. Lau, and D. Notkin. Ethnographic
study of copy and paste programming practices in OOPL. In
International Symposium on Empirical Software Engineer-
ing, 2004.

[27] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept de-
tection. Automated Software Engineering, 3(1–2):77–108,
1996.

[28] J. Krinke. Identifying similar code with program depen-
dence graphs. InProceedings Eigth Working Conference on
Reverse Engineering, pages 301–309. IEEE Computer So-
ciety, Oct. 2001.

[29] B. Lagüe, D. Proulx, E. M. Merlo, J. Mayrand, and J. Hude-
pohl. Assessing the benefits of incorporating function clone
detection in a development process. InProceedings of the
International Conference on Software Maintenance, pages
314–321. IEEE, 1997.

[30] A. Marcus and J. I. Maletic. Identification of high-level con-
cept clones in source code. InProceedings of the 16th Con-
ference on Automated Software Engineering, pages 107–
114. IEEE, 2001.

[31] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. InProceedings of the International Confer-
ence on Software Maintenance, pages 244–, 1996.

[32] R. C. Miller and B. A. Myers. Interactive simultaneous edit-
ing of multiple text regions. InProceedings of the USENIX
Annual Technical Conference, pages 161–174, 2001.

[33] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Mat-
sumoto. Software quality analysis by code clones in indus-
trial legacy software. InProceedings of the 8th Symposium
on Software Metrics, pages 87–94. IEEE, 2002.

[34] C. Perrone and A. Repenning. Graphical rewrite rule analo-
gies: Avoiding the inherit or copy & paste reuse dilemma. In
Proceedings of the IEEE Symposium on Visual Languages,
pages 40–47. IEEE, 1998.

[35] Sametool. http://sourceforge.net/projects/sametool.
[36] Simian. http://www.redhillconsulting.com.au/products/simian/.
[37] Simscan. http://www.blue-edge.bg/download.html.
[38] Sun Microsystems. Java Development Kit (JDK).

http://java.sun.com/j2se/.
[39] M. Toomim. Harmonia-Mode User’s Guide, 2002.

http://www.cs.berkeley.edu/˜harmonia/projects/harmonia-
mode/introduction.html.

[40] Unpaste. http://sourceforge.net/projects/unpaste.
[41] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia.

Problems creating task-relevant clone detection reference
data. InProceedings of the 10th Working Conference on
Reverse Engineering, pages 285–295, November 2003.

[42] XRefactory. http://www.xref-tech.com/speller/.

http://harmonia.cs.berkeley.edu
http://harmonia.cs.berkeley.edu

	. Introduction
	. The duplicated code problem
	. Why programmers duplicate code
	. Our approach: Linked Editing
	. Linking code
	. Editing linked code
	. Elision, persistence and refactoring
	. Summary of benefits

	. User study
	. Evaluation metrics
	. Results

	. Implementation
	. Future work
	. Related work
	. Conclusion
	. Acknowledgments

