SpeedNav: Document Navigation By Voice

Andrew Begel, Zafrir Kariv
University of California, Berkeley
abegel@cs.berkeley.edu, karivkln@uclink4.berkeley.edu

October 9, 2002

Abstract

This paper examines document navigation using
voice recognition software. Existing commercial
tools’ support for voice-based navigation provides
a substandard replacement for those whose disabil-
ities prevent them from using the keyboard and
mouse. We show, in a GOMS analysis, that the two
main limiting factors of any navigation method are
the interactive speed of the recognizer, and the cog-
nitive load of the task presented to the user. Our
tool, SpeedNav, was designed to address the cur-
rent situation by enabling users to navigate via an
auto-scroll mechanism, reducing both the number
of commands spoken (incurring less delay) and the
cognitive load (enabling the user to focus more on
scanning the text for the desired target than on issu-
ing navigation commands). The results of our user
study with speech recognition experts are presented
within.

1 Introduction

There are many people who suffer from Repetitive
Strain Injury (RSI), and others from more severe
motor impairments, who cannot easily use a key-
board and a mouse. For these individuals, staying
productive in a work and home environment that in-
creasingly relies on computers for creating and edit-
ing documents is difficult.

One form of assistive technology that has the
potential to remedy such disadvantages is speech
recognition. Speech recognition enables one to

speak into a microphone and have what one says
translated into actions for the computer to perform
(commands) or transcribed directly into a document
(dictation). It has been around for over 40 years,
yet only in the past five years has it really become
usable on personal computers. There are three ma-
jor commercial products that support voice recog-
nition on the desktop: IBM ViaVoice [4], Scansoft’s
Dragon Naturally Speaking (and Dictation) [15],
and Microsoft Office XP [13].

Speech recognition used as a replacement for the
keyboard and mouse is not the solution for every-
one. Recognition accuracy suffers when users have
accented speech, speech impediments, inconsistent
prosody (such as if the user has a cold or is hoarse),
or, if used in a typically noisy environment. Nu-
merous studies show problems with the basic us-
age of speech recognition, including errors (due to
both the recognizer and the user, especially during
misdictation correction) [8], limited human working
memory capacity for speech [10], and the unforgiv-
ing nature of restrictive acceptable voice input [14].
In addition, users must re-learn basic word process-
ing techniques using voice rather than keyboard and
mouse. These problems and the steep initial learn-
ing curve cause, for most users, speech recognition-
based editing to be significantly (and often pro-
hibitively) slower than editing using keyboard and
mouse.

With few exceptions ([9]), all of the research ex-
ploring deficiencies in speech recognition has con-
centrated on dictation, which has prompted com-
mercial speech recognition manufacturers to im-

prove it. However, the process of document nav-
igation has not been subject to similar consumer
pressure, and as as a result, has stagnated. To this
effect, current methods of document navigation are
cumbersome and difficult to use.

Through our GOMS analysis of documentation
navigation in Section 3.1, we show that navigation
by speech is limited by two main components:

1. Speech recognition performance which
slows down interactive use.

2. Cognitive Load of the task as presented to
the user.

We hypothesize that reducing the number of spo-
ken commands (which reduces the total time spent
in speech recognition), and reducing the number of
actions that require willful thought (which reduces
the cognitive load of the task) will make it possi-
ble to create a faster and easier-to-use navigation
by voice mechanism.

In this work, we have designed, implemented,
and tested several ways to increase the speed and
utility of speech-based document navigation meth-
ods, while reducing the cognitive load at the same
time. In the following paper, we introduce the ba-
sics of speech recognition, discuss our numerous
designs, influenced by interviews with experts in
speech recognition, and explore the ramifications of
those designs gained by looking at prototypes and
trying them out for ourselves. We developed criteria
for the design of widely-applicable document navi-
gation methods. Two of our designs survived this
phase, and were tested with expert users of voice
recognition. We present the results of our user study
which turn out to be inconclusive as to whether
our methods improve on existing techniques. Fi-
nally, we conclude with several new ideas to improve
on the voice-based navigation techniques developed
herein.

2 Speech Recognition Basics

The primary use of speech recognition is the cre-
ation and maintenance of text documents. A user

begins by dictating into a microphone, whereupon
the speech recognizer translates the speech into text
for later insertion into a word processor. Speech rec-
ognizers often support some automatic formatting
(such as capitalizing proper nouns and the begin-
ning of sentences), but usually require the user to
explicitly verbalize punctuation and document for-
matting commands (such as boldface, italics, etc).

Once the user has finished dictation, they must
use the voice recognizer to navigate and edit their
document. All three commercial speech recognition
packages support similar interfaces for these tasks.
A user can say a short phrase to cause the cursor
to move or to perform an editing action (cut, copy,
paste, boldface, italics, etc).

Navigation commands usually involve no docu-
ment content at all (e.g. move down 2 lines, go
to the previous page). We call this kind of cursor
movement relative navigation. Dragon’s Naturally
Speaking supports Select-n-Say, where a user is able
to augment a navigation command with an explicit
phrase from the document (e.g. Select the sentence
that starts with ‘The quick brown.’) in order to
speed the process. In addition, all packages support
mouse grid, a means of addressing a pixel location
on the screen using a hierarchical 3x3 grid that is
overlaid on the screen. Mouse grid usually requires
five to six commands (one to bring it up, three or
four to navigate to the target, and a final one to
select it). We call these kinds of cursor movement
direct navigation.

These designs are naive and have several flaws.
In relative navigation there are too many words
to speak; using the keyboard is much faster (aver-
age typists can type around 5 keys per second [2]).
In addition, the words require the user to esti-
mate cursor distances to the desired screen loca-
tion. If this location is more than some threshold
line/characters away, the user has to guess the dis-
tance, or spend time to explicitly count the distance.
If the location is off the screen, the user must jump
long distances and then correct for any over or un-
dershoot. In addition, there is no auto-repeat sup-
port in commercially available speech recognizers,
as there is on a keyboard. The user must repeat the
navigation phrases over and over again until the de-

sired location is found.

Select-N-Say requires the users to read and under-
stand the text on the screen before uttering their
navigation command. This incurs more cognitive
load than using the keyboard or mouse to move
the cursor. Assume the user reads at a rate of 260
words per minute [2], and the average search phrase
is 5 words long. If the user has already spotted the
phrase on the screen, it will take him a little over 1
second to read the phrase. At a dictation speed of
80 words per minute, it will take another 3 seconds
to speak it, for a total of 4 seconds of activity for
the task. By stark contrast, the time it takes to
verbalize a location uniquely and accurately is far
greater than the time needed to point to it with a
mouse.

In addition, Select-N-Say only works when the lo-
cation is on the screen and visible. If the words
at the desired location are not unique, the user
must include nearby, but unrelated words to form a
unique search phrase. If the user finds that words
they want to speak are difficult for the speech recog-
nizer to recognize reliably (such as the homophones:
to, two, too and 2), they must either avoid speaking
them in their search, or suffer the slowdown due to
arduous dictation correction facilities.

This analysis of document navigation techniques
is high-level. In the next section, we use GOMS to
undertake a more formal analysis.

3 Analyzing Navigation Tech-
niques

A look at cursor navigation techniques brings to
mind Fitt’s law [3], which states that the time it
takes for a person to point at a location in space is

2xdistance)
target size

This work has been extended by others [11] to the
action of pointing at a target on computer screen
with a mouse. In addition, later work has explored
moving a mouse manually along an on-screen path
to develop the Steering Law [1].

time o log(

distance

time o width of path

Karimullah and Sears [9] studied cursor naviga-
tion using voice commands to move the cursor to an
on-screen graphical target. Unique to their study,
Karimullah and Sears enabled the users to control
the cursor’s velocity rather than its position.

While each of these techniques appears to approx-
imate the document navigation task, there are im-
portant differences. Our task is multi-page; the tar-
get of navigation is usually not initially visible, and
must be scrolled into view. Second, our task in-
volves scanning for a target phrase in the midst of
a page of text, not merely spotting a sole graphical
target. Thus, Fitt’s law and its extensions are not
applicable for our task. Therefore, we see the need
to develop a new GOMS model of text document
navigation using speech recognition.

3.1 GOMS Analysis for Navigation

We employ the GOMS usability modeling technique
for predicting how much time several common doc-
ument navigation techniques will take. Applying
the KLM variant of GOMS [7], we illustrate how
the keyboard, mouse, and voice-activated operators
involved in these techniques combine to form a com-
plete timing measurement. The following numbers
apply only to experts in both keyboard-based and
voice-based navigation techniques. We are directly
comparing the two in order to gain an understand-
ing of the disadvantages afforded by the current
voice-based techniques on those who cannot use key-
board and mouse.

The most important factor in the task of search-
ing through a text document is not distance to the
target (especially since the target is not often on
the screen), but instead how recognizable the tar-
get phrase is. This is related to what you are looking
for, what the actual words are, how unique they are,
how fast you can read and comprehend the text, and
especially whether or not you know the exact word-
ing of what you’re looking for or have only a vague
knowledge of its contents.

In Figure 1, we describe the equations that gov-
ern the time it takes to navigate n lines in a text
document to a desired target.

Equation #1 shows that the number of lines a

Dlines = Z iy (1)
—n<in
tscan, =an+ 3 Z e+ Z cs; (2)
—n<i<n —m<j<m
tna'v = (1 + perror) Z Ci; (Arc + tscani)
—n<i<n

3)

diines = distance in lines to the target

Are = computer’s recognition delay per
command

a, = number of commands to scroll
n lines

Cs; = number of commands to speed
up or slow down to speed m

a,B,7v = multipliers of components of tscqn,

tscan, = time to scan n lines to look for
the target

Perror = the sum of voice recognition and user
error rates

tnav = total time to navigation from

start to target

Figure 1: Supporting equations for the GOMS model.

given command scrolls (e.g. down arrow scrolls one
line, page down scrolls 24 lines) multiplied by the
number of times that command was given equals
the number of lines traveled.

Equation #2 shows that the user’s scanning time
is proportional to the number of lines read and the
number of scrolling and speed changing commands
given (each command may take the user’s mind off
the scanning process)!.

Equation #3 shows that the total navigation time
is equal to the summation for all commands that
move n lines times the delay in recognition plus
the time the person needs to scan the text after
scrolling. This summation is then multiplied by one
plus the expected error rate (recognizer error and
user error).

Let’s look at each type of navigation and run
them through the equation. Given a navigation that
is dyines away, and a set of commands that enables
you to navigate by any number of lines or any num-
ber of screens (equivalent to some number of lines),
and given a target phrase-human combination that
imposes a definite effect on ¢4, , We can vary some
variables in the following navigation methods:

¢ Keyboard navigation: A, is very small,
around 70 ms [2]. The error rate is close to zero.

1See discussion in Section 4.2

¢, =1, ¢,, = 1 (assuming 24 lines per page),
and for 2 < n < 23, ¢, = n. Auto-repeat on
the keyboard, lowers successive A,.’s to 33 ms
(assuming 30 cps repeat rate).

e Speech-based navigation by discrete
jumps: A, for speech recognition using IBM
ViaVoice on a Thinkpad T20 P3-700/5121is 750
ms. The error rate is around 5%. ¢, for any n
= 1 (using the command “go down n lines”).

e Find Dialog by keyboard: People use the
find dialog only when they know the exact
word(s) that they are looking for. Equation #3
is not representative of the find dialog. The fol-
lowing equation more closely approximates the
task time.

cfindArc + ttyping + COKArc+
(E(sznd) -]-)(cnethrc + tscan)
(4)
Users operate the find command by first issuing
a command to open the find dialog, then typing
in the words they are looking for, and hitting
the OK button. For each successive search re-
sult highlighted by the system, the user must
scan the line to see if the desired words were

tfind =

found; if not, the user issues a find-next com-
mand and repeats. The expected number of
times to repeat is half of the number of times
the words appear in the target document, as-
suming that the user’s target is uniformly dis-
tributed amongst the search results.

In this mode, A, =70 ms, Cfind = 1, cox =
1 and cpeqpt = 1.

e Find Dialog by Voice: This is the same as
Find Dialog by Keyboard, except that A,, =
750 ms, and tiyping is replaced by tgictation, the
time it takes to dictate (with errors and error
correction) the target phrase into the find dia-
log. ¢fing is usually 2 (Edit menu — Find menu
item), but can be 1 with a speech macro. cox
= 1, and ¢peq¢ is usually 2 (Edit menu — Find
Next menu item), but can be 1 with another
speech macro.

e Select and Say: This is similar to the find
dialog, but the target phrase must be visible
on-screen, thus we must add in the scrolling
time to make the line visible on-screen to the
equation. The equation is as follows:

tselectandsay = tscroll + tscan + tdz’ctate (5)

tseron 18 the time to scroll within one screen
of the target using any of methods described
above. tgcqn is the time it takes for the person
to find the desired target on the screen (related
to a user’s skimming capability) and is inversely
related to the target’s uniqueness. Once the
person finds the target, they must speak it out
loud (tgictate) and then the software hilights the
phrase.

As one can see, the two dominant controllable fac-
tors here are tgs.., and ¢, , the scanning time and
the number of commands issued by the user. Re-
ducing any of these numbers should result in faster
navigation times.

4 Design

Our design phase started with a survey of expert
voice recognition users for their impression of ex-
isting voice recognition packages, with emphasis on
their use of the editing facilities. We sought to in-
corporate the expert’s suggestions for improvement
into our product.

4.1 Expert Interviews

We interviewed several experienced users of speech
recognition — those who use speech recognition for
most of their work during the day. Several issues
stood out amongst all the experts.

1. The speed and quality of voice recognition was
always described as too slow, too cumbersome
to use, too unreliable, bad at recognizing ac-
cents, and error-prone. These were the biggest
issues by far. When described in terms of frus-
tration, one particularly good user said he ex-
perienced 2-3 frustrating moments per hour.
Usually if a user had the use of their hands,
they would “cheat” and revert to using a key-
board whenever voice recognition began to fail
them.

2. Experts use voice recognition in different ways.
Some use it only for dictation, and perform
editing by hand. If any editing by voice was
performed, it would be a short period of time
after dictation (such as completing a para-
graph). Many find that it does not work in
all needed applications, and does not work in
technical applications (e.g. for computer pro-
gramming).

3. People had problems editing by voice. In par-
ticular, they could not easily verbalize where
they wanted the cursor to go, nor could they
eagsily figure out how to command the cursor
to go there. For some, using the mouse grid
feature was the only reliable way they could
move the cursor to a location they could see on
the screen. All those we interviewed recognized

that speech macros could be useful to speed up
this task, but most did not use them.

4.2 Prototype Ideas

We developed many ideas towards achieving our
goals. We prototyped six of them in Microsoft Word
using Visual Basic. These prototypes were useful in
furthering our understanding of the difficulties in
designing a good navigation tool, and we present
our findings here.

Our major idea was auto-scrolling with a voice-
enabled speed control. To reduce the number of
commands the user must say, the user can start
scrolling the document in a particular direction,
scanning the document as it scrolls by, looking for
the desired phrase, and then stop it when they see
their target on the screen. We assert that this also
reduces the cognitive load to merely scanning the
text as it scrolls by — the user does not have to re-
utter the text in order to select it. We also add
a speed control, enabling the user to match the
scrolling rate to his natural scanning capability.

To validate our idea, we extend the GOMS analy-
sis (from Section 3.1) for the following two methods:
auto-scroll and auto-scroll with speed control.

Speech-based navigation by auto-scroll: In
this mechanism, there are only two commands nec-
essary, “start” and “stop”, so ¢, = 2, and for
all other n, ¢;, = 0. The time between successive
scroll actions is tpqyse- This is set to a particular
value (the next mechanism enables speed control)
but must be greater than the ts.,, or the person
will not have enough time to comprehend the text
before it scrolls away. A,. = 750 ms, so the drop
in the number of commands to a constant two com-
mands should have a significant effect to lower the
overall navigation time. The velocity of the scrolling
motion directly affects the precision of the user to
avoid overshooting and indirectly affects accuracy
of cursor placement.

Speed-based navigation by speed-
controllable auto-scroll: Finally, we take
the above mechanism and add two commands to
control the pause time: “faster” and “slower”. We
hypothesize that the desired navigation speed of

the user will follow the equations below:

tstart = Arc (
tstop = tscan" + Arc (

tpause 2 tstop (

o 3 O
D

time it takes for the system to
react to a start command
time it takes for the system to
react to a stop command
time between successive
actions by the editor

Once the user begins scrolling, the system sets
the pause time to the user’s personal initial value.
The user may issue the speed control commands to
raise and lower this pause time, but may not lower
the time below the time he needs to scan n lines
of text for the target. The pace of scrolling will
drop (pause time will increase) as the user nears
the target. While the A,.. is 750 ms for the “start”
and “stop” commands, we feel it is possible that the
“faster” and “slower” commands overlap the pause
time, therefore its contribution to tscqy, is zero (This
finding requires further study). Most users do not
realize that A,. is so long, and therefore they do
not slow down in time, and overshoot the target.
This overshoot problem will diminish (but never go
away) with practice.

tstart =
tstop =

tpause =

4.3 Prototype Results

We implemented six variants of the above idea. The
first was to auto-scroll the cursor (not the docu-
ment) one line at time, enabling the user to start,
stop and control the speed of the cursor motion.
We learned that human eye tends to follow mov-
ing objects (e.g. the cursor), in preference to read-
ing the text of the scrolling document. In addition,
Microsoft Word has a undesirable property of leav-
ing the cursor at the bottom of the page when it
is scrolling down, preventing the user from reading
anything below it.

We noticed a far more insidious problem of cur-
sor overshoot, which we believe to be inherent in
any type of auto-scrolling solution. The user (me-
diated by the speech recognition software) has a

minimum reaction time (usually around 750 ms)
between recognition of the cursor hitting the tar-
get and the computer recognizing and acting on the
command to stop scrolling. This time is far too long
for any sort of precision, and precise control of the
cursor requires the user to anticipate the arrival of
the cursor at the target. Combined with Microsoft
Word’s behavior of leaving the cursor at the bottom
of the screen, this introduces an element of surprise
when the desired target finally comes into view, fur-
ther exacerbating the overshoot problem.

The second variant was to use Microsoft Word’s
built-in AutoScroll function, which provides a
variable-speed auto-scroll controllable by mouse and
keyboard (not voice, incidentally). This scroll af-
fects the document, rather than the cursor, and ap-
plies a motion blur to the text correlated with the
speed of scrolling to make the moving text more vi-
sually appealing. However, we found that the mo-
tion blur actually makes the text more difficult to
read at slower speeds, and at faster speeds, we could
not read the text at all. That Microsoft does not al-
low voice control over the function makes this func-
tion useless to those who are unable to utilize the
keyboard or mouse.

We decided to replicate Microsoft’s AutoScroll
function ourselves, omitting the motion blur, with
control via speech recognition. We scrolled the doc-
ument (not the cursor) one line at a time with vari-
able speeds (ranging from 8 lines per second maxi-
mum to no minimum speed) controllable by simple
voice commands. However, we found scrolling line
by line to be too jerky, and as scrolling sped up, the
document became more difficult to read. Of course,
we again encountered the cursor overshoot problem.

We then switched to auto-scrolling via page-down
instead of line down. This scrolled way too fast to
read anything, and we rejected it out of hand.

The lesson to the previous three prototypes is
that the human eye cannot fixate long enough on
moving text to read it. Therefore, our last two pro-
totypes ameliorate this problem by combining auto-
scrolling with a pause feature. We auto-scroll the
document one page at a time, and then pause for
a variable length of time (default pause 2 seconds).
The long pause helps the user read the text on the

page to discover if their target phrase is on it, and
gives them extra time to stop the cursor (before the
screen has had a chance to scroll again). However,
our use of page-down caused a context problem —
the full screen scroll caused the user to lose their
place in the document because there was no over-
lap between the previous screen and the next. In
addition, since the page-down function occurs in-
stantaneously, if the user looked away for a second,
it might not be easy to tell if the scroll had actually
occurred.

We modified that fifth prototype to make the
page-down function only scroll 3/4s of the page and
to do it over a short period of time (50-100 ms). We
implemented at maximum speed of 750 ms/pause to
prevent the user from accidentally scrolling too fast.

A final lesson we learned is that once the user
has finished scrolling the document, the text cursor
must be placed on that screen (which is unlike the
behavior of the on-screen scrollbar) and preferably,
in the middle of the text (vertically and horizon-
tally), because it provides the shortest distance to
any point within the screen, optimizing subsequent
on-screen cursor-relative navigation.

4.3.1 Summary of Lessons Learned

1. Cursor overshoot is an inherent consequence of
the closed feedback loop with very slow reac-
tion time mainly due to the speed of speech
recognizer.

2. When scrolling, do not leave the cursor at the
bottom of the screen because the eye will focus
on it, and you can not read anything below it.

3. Blurring the text is a counterproductive idea
and makes it harder to read at all, no matter
what the speed.

4. Microsoft Office (as of version XP) does not
allow voice-control over any aspect of the Auto-
scroll function.

5. Line-by-line auto-scroll appears too jerky to
read.

6. Auto-scroll by page-down is too fast.

7. The human eye cannot read text that is con-
stantly moving. The eye must fixate on a word
in order to read it[2].

8. Full screen scrolling causes the user to lose their
place in the document because they see no con-
tinuity of context between the two screens.

4.4 Final Design

Our final design incorporates all of the lessons
learned above into a coherent product. The main
feature is an auto-scroll and pause, scrolling the text
of the document rather than cursor. The scanning
speed is controlled by the pause time, initially set
at 2 seconds. Each page-down/page-up action is in-
voked over a period of 100 ms, and scrolls 3/4 of the
page, creating a 1/4 page overlap between screens
of text. We added line scanning (line up and line
down) which operated solely by scrolling and had
a variably-controlled speed between 2 lines per sec-
ond and 20 lines per second. In addition, we added
character scanning (left and right) with variably-
controlled speed initially set at 8 characters per sec-
ond. When the user switched from page scrolling to
line or character scrolling, the cursor position was
place in the middle of the screen horizontally and
1/3 down the page vertically.

We supported nine commands in two categories:

1. Navigation: Page Down, Page Up, Go Down,
Go Up, Go Left, Go Right

2. Speed: Faster, Slower, Stop

Most of the commands are two words/syllables to
aid in speech recognition accuracy.

We experimented with a compensation for cursor
overshoot. When the user stopped the cursor, we
knew its velocity, and could estimate the amount
of A,.. We used this information to calculate how
many units (characters, lines, or screens) we would
automatically backtrack the cursor. Unfortunately,
in our preliminary experiments, users would “game”
the system, trying to estimate the amount of cursor
overshoot and anticipating when to stop it, which
directly interfered with our naive implementation of

this option. It was removed from the product used
in the final study.

5 Related Work

Our solutions are inspired by several works: Man-
aris et. al’s SUITEKeys voice-activated keyboard
and mouse [12], Igarashi and Hughes’s non-verbal
voice input [6].

Manaris specifically addresses individuals with
permanent motor disabilities (such as those who use
a keyboard via mouthstick) and enables them to
“press” keys on a keyboard and “move” the mouse
by speaking low-level actions. It is not clear whether
the voice keyboard has auto-repeat, but the voice
can start the mouse cursor moving and then cause
it to stop with another utterance. Inspired by this
work, we created an ability to start the text cursor
in motion and stop it at a later time.

Igarashi enables people to use pitch and volume
(instead of speech) to control a button or joystick.
We applied this idea to our solution by enabling a
user to control the speed of the cursor movement
(though we use words to command it rather than
non-verbal communications).

Igarashi’s earlier work on speed-dependent auto-
matic zooming [5] is also relevant to our work in
that he mentions that when a user scrolls too fast,
it is hard to read the text, even to just get a sense
of where you are. He proposes an automatic zoom-
out feature as scrolling gets faster to enable people
to gain a better sense of where we are. We believe
that our pause concept is superior since stationary
text is much easier to read than text moving at any
velocity.

Karimullah and Sears [9] studied speed-based cur-
sor control. They recruited non-expert users of
speech recognition (none had any visual, heading,
speech or cognitive impairments), where we are tar-
geting our work at expert users who are using speech
recognition as a primary form of input. Their users,
however, did experience the ubiquitous cursor over-
shoot problem, even though they restricted them-
selves to a single cursor speed. In addition, our task
is more realistic in a work setting, making the user

search through a text document rather than a sim-
ple graphical target. Finally, we are working with
multi-page documents, which implies that a simple
Fitt’s law of motion is inapplicable to navigate to
the desired target.

6 Implementation

We developed two implementations of our prod-
uct. Our hardware platform for both was an IBM
Thinkpad T20 with a Pentium IIT running at 700
MHz and 512 MB of RAM, running Windows XP
Pro. Both implementations used IBM ViaVoice 9
as the speech recognition software. IBM ViaVoice
provides an API to the programmer called SMAPI
(Speech Manager APT) which enables an application
to access voice recognition services, including access
to dictation and command and control grammars.

Our first implementation was written in Visual
Basic, which we used to script the Microsoft Word
2000 word processor. The speech recognition in-
terface was implemented through IBM’s ActiveX
controls (provided in ViaVoice 8). The second im-
plementation was written in Java using a modified
Swing Stylepad word processor. We interfaced to
the speech recognizer via an IBM-provided JSAPI
(Java Speech API) plugin.

6.1 Technology Problems

While writing the Visual Basic implementation, we
encountered several problems. First, as a computer
science graduate student, one author found the Vi-
sual Basic language (learned for this project) to be
quite a bit harder to understand and use than a
more traditional programming language like Java.
In addition, the COM OLE Automation documen-
tation for Microsoft Word is poorly organized (al-
phabetically by function name, even though it is
an object-oriented API) and at crucial times, the
online documentation was inaccessible. We found
that our control of MS Word was superficial and we
could not implement sophisticated shading behav-
iors, which we had intended for a seventh prototype.
In addition, all of MS Word’s scrolling techniques

left the cursor at the bottom of the screen during
the scroll, and we did not have enough control over
it to move the cursor to a stable screen position.

By contrast, Java’s open source implementation
and documentation made it possible to work around
any difficulties we had in massaging its software to
behave the way we intended. However, Java’s less
than speedy performance prevented us from imple-
menting smooth scrolling behaviors (some of MS
Word’s scrolling functions were also quite jerky, but
it was possible for the most part to avoid them), but
due to time constraints, we were forced to accept it.

We eventually abandoned the Microsoft imple-
mentation in favor of the Java version, and used
it in our voice recognition user study, described in
the next section.

7 User Study

In this section, we describe a study of three expert
users of voice recognition. We asked each user to
perform several editing by voice tasks using their
own voice recognition tools and our implementation
described above.

7.1 Hypothesis

We predict that the speed of the tasks will improve
from the user’s own voice recognition tools to our
auto-scrolling cursor. In addition, the number of
commands spoken should drop, lessening the de-
lay caused by the speech recognizer response time.
However, due to the need to control the speed of
the cursor, there may be more commands than we
predict using our GOMS analysis. We also antici-
pate the cognitive load of the navigation tasks will
go down, as measured the amount of time it takes
for the user to scroll the document to the page con-
taining the target.

7.2 Methods

We asked expert users of voice recognition software
to perform 8 tasks divided into two similar groups

Lines | Total Time | Multi-page Reading | # Cmds | # Recog | # User | # Mouse
(sec) | Time (sec) | Time (sec) Errors Errors Grid

User 1
Doc 1 Task 1 87 235 226 74 42 5 3 0
Task 2 55 75 68 42 5 1 0 0
Task 3 59 162 150 60 17 3 0 0
Task 4 92 86 84 48 11 1 0 0
Doc 2 Task 1 88 65 48 22 9 2 1 0
Task 2 62 129 118 81 9 0 0 0
Task 3 133 235 208 190 12 1 2 0
Task 4 154 290 271 173 22 2 4 0

User 2
Doc 1 Task 1 87 61 58 41 13 1 0 1
Task 2 55 18 11 10 5 1 0 1
Task 3 VOID VOID VOID VOID VOID VOID VOID VOID
Task 4 92 131 129 85 19 0 1 2
Doc 2 Task 1 88 59 26 N/A 8 0 0 0
Task 2 62 61 47 N/A 11 0 0 0
Task 3 133 205 188 N/A 27 0 1 0
Task 4 154 250 250 N/A 27 0 1 0

User 3
Doc 1 Task 1 87 69 61 26 16 0 3 0
Task 2 55 63 51 47 8 0 1 0
Task 3 59 83 74 58 11 0 1 0
Task 4 92 100 99 57 23 0 1 0
Doc 2 Task 1 88 33 24 N/A 5 0 1 0
Task 2 62 153 127 N/A 27 0 4 0
Task 3 133 98 98 N/A 12 0 4 0
Task 4 154 145 135 N/A 17 0 1 0

Table 1: This table shows the data

of 4. Each group involved short, medium, long dis-
tance, and backwards medium distance navigation
through a 10-15 page scene from a Shakespeare play
(Romeo and Juliet, Act III, scene 1, and Taming of
the Shrew, Act II, Scene 1). One user was familiar
with the plays, while the others were not.

Each task was phrased as a search for a specific
line in the play. However, learning from our pilot
study, we did not give the user the specific words
but only a vague description of the line. This ap-
proach, we seems to better approximates the kind
of navigation task a user is likely to perform on doc-
uments that are unknown to him, or those that are
not fresh in his mind.

The first group of tasks was performed using

collected from the users in our study.
(User 2, Task 3 is voided because he got confused what target he was looking for. Reading times for Tasks 5-8 (using
SpeedNav) for Users 2 and 3 are marked N/A because we could not reliably differentiate between the time spent reading and
the time spent issuing commands.)

10

the expert users’ own voice recognition setup, with
their own equipment and software (User #1 used
Dragon Naturally Speaking 5.0 on a P2/450 128MB.
User #2 used Dragon Naturally Speaking 5.0 on a
P3/550 320MB. User #3 used Dragon Dictate 3.01
on a P3/500 128MB). The second group of tasks was
performed using our SpeedNav software and laptop
that was brought to each session. Users were trained
for 10 minutes on IBM ViaVoice using the ViaVoice
User Setup Guru. Users then trained for about 5
minutes with SpeedNav on another sample docu-
ment to gain a feel for our software. We provided
a cheat sheet with a list of the nine SpeedNav com-
mands to each user during their tasks.

We video-recorded each session for later analysis.

At the end of the study, we interviewed the par-
ticipants to gauge their opinions and feelings com-
paring the two navigation methods.

7.3 Metrics

We measured several quantities (shown in Ta-
ble 1) to understand the impact of using traditional
speech-recognition-based navigation vs. auto-scroll
to navigate through a document. We measured the
total time per task, time to scroll the document to
the page that contained the target (called multi-page
navigation), the total number of commands spoken,
the number of recognition errors, the number of er-
rors caused by misuse of the tool, and number of
time the user invoked the mouse grid. In addition,
for the users’ own speech recognition-based tool, we
measured the time spent reading and scanning text
(implying that the rest of the time was spent issu-
ing commands and waiting for the response of the
speech recognizer).

7.4 Discussion of Results

We compared the two tools using two aggregate
measures derived from our data (see Table 2). The
first is the number of commands divided by the
number of lines traveled. The second is the multi-
page navigation time (in seconds) divided by the
number of lines traveled.?

We ran an unpaired t test that showed no sig-
nificant difference between the users’ own tools and
SpeedNav (P = 0.79 for the multi-page numbers,
and P = 0.31 for the commands per line numbers),
however, the means for SpeedNav were better. We
feel that if we re-did our experiment with enough
users, we would be able to better discern a differ-
ence between the tools.

Another difference between the tools is that users
had years of experience with their own tools, but
only 10 minutes of practice with SpeedNav. Per-
haps, users more practiced with SpeedNav would

2We use the multi-page navigation time rather than the
total time because users universally found that within-screen
navigation was much more cumbersome and inaccurate using
SpeedNav.

11

Commands Multi-page Nav Time
Lines # Lines

User 1

Doc 1 Task 1 0.48 2.60

Task 2 0.09 1.24

Task 3 0.29 2.54

Task 4 0.12 0.91

Average 0.25 1.82

Doc 2 Task 1 0.10 0.55

Task 2 0.15 1.90

Task 3 0.09 1.56

Task 4 0.14 1.76

Average 0.12 1.44
User 2

Doc 1 Task 1 0.15 1.67

Task 2 0.09 0.20

Task 3 VOID VOID

Task 4 0.21 1.40

Average 0.15 1.09

Doc 2 Task 1 0.09 0.30

Task 2 0.18 0.76

Task 3 0.20 1.41

Task 4 0.18 1.62

Average 0.16 1.02
User 3

Doc 1 Task 1 0.18 0.70

Task 2 0.15 0.93

Task 3 0.19 1.25

Task 4 0.25 1.08

Average 0.19 0.99

Doc 2 Task 1 0.06 0.27

Task 2 0.44 2.05

Task 3 0.09 0.74

Task 4 0.11 0.88

Average 0.18 0.99

Table 2: This table shows two aggregate measures
derived from our data: Number of commands divided
by number of lines read, and the multi-page navigation

time (in seconds) divided by the number of lines read.
(User 2, Task 3 is voided because he got confused what
target he was looking for.)

perform better. From our experience, users dramat-
ically improve their performance with voice recog-
nition software over time.

7.5 Post-Study Interview

We conducted an interview with each study partic-
ipant after completing the tasks. In general, partic-

ipants said that SpeedNav was easier to use than
their existing speech recognition system. There
were fewer commands required to move to the de-
sired location, and the commands themselves were
easy to remember. Participants also appreciated the
speed control. One participant also liked the cursor
moving by character because he could control the
cursor speed to match his reading speed and use
the cursor as his pointer.

On the other hand, participants universally had
trouble with cursor overshoot, especially when nav-
igating to a location within the current screen.
While in general, the cursor overshoot problem is
an inherent component of motion-based navigation,
SpeedNav exacerbated the problem by not support-
ing precise positioning within a page. One user
wanted to be able to place the cursor at natural
landmarks in the document (top of page, top of
document, etc). Users observed that relative po-
sitioning of the cursor (by motion along the vertical
or horizontal axis) is not always the most efficient
path to a point on the screen. One user preferred
to use mouse grid exclusively to navigate within the
screen, and was very proficient at it. Another user
felt that if he was more familiar with the document,
he would have been able to more effectively use the
speed controls, and slow down before reaching the
target (minimizing cursor overshoot).

8 Future Work

In our post-study interview, one user expressed a de-
sire for SpeedNav to adjust its speed automatically
according to the density of the document text visible
on the screen (measured in visible characters). This
would be even more interesting if SpeedNav con-
trolled the initial speed of motion when beginning
a navigation task as well. This would provide an
alternate means of adapting to the user’s inherent
reading speed than provided by Igarashi’s zoomable
user interface [5]. Both controls attempt to preserve
a constant density of text per unit time.

Another method to speed up the user’s navigation
performance is to improve the user’s own technique
in scanning text. A course in speed reading might

12

nicely complement our SpeedNav work.

In addition, we think that if we add a shaded re-
gion of lines to the document it could make these
lines easier to read. The idea is to shade three
lines of text with a pastel background, and when
the auto-scroll is active, we move this shaded region
down the page, one line at a time, until it reaches
3/4 of the way down the screen (it will make this
journey within the pause time for reading this page).
When the shaded region hits this point, the entire
screen will scroll 1/2 a page (leaving the shaded re-
gion 1/4 from the top of the screen). This shaded
region will help draw the eye (from the cursor) and
focus the reader to scan the text from top to bottom
as the shaded region moves.

We feel we can improve the sophistication of the
cursor overshoot correction algorithm in a novel
way. Since A,. > 0 requires that the cursor will go
further than where the user intended, we propose
to place two shaded regions (of different colors) on
the screen. The first shaded region goes at the top
of the page (when the user is scrolling down, and at
the bottom when scrolling up. For the rest of this
example, we will assume a downward scroll), and
the second, A,.. x speed,.,oy; lines below it, centered
in the middle of the screen. When the user scrolls,
they will read the text in the center shaded portion,
but in reality the system assumes the “cursor” is
in the upper shaded portion. When the user says
“stop”, the “cursor” in the upper shaded portion
scrolls down to the center shaded region and stops,
eliminating the users’ perception of the overshoot.
This kind of trickery was studied for cursor motion
within a screen towards a graphical target in [9].
Users experienced higher error rates with such an
automatically correcting cursor, but their experi-
ment used no speed control, which we feel might
enable users to slow down to a comfortable reading
speed.

In a completely different direction, we brain-
stormed two new techniques for document naviga-
tion that we did not have time to implement. The
first is context-aware mouse grid, and the second is
a phonetic Google-like search tool.

8.1 Context-Aware Mouse Grid

The beauty of mouse grid is its simplicity and speed
in quickly moving the cursor to a precise location
on the screen. However, it does not “know” what
is on the screen. In addition, people do not and
cannot remember unique terms for all semantically
important areas visible on the screen (even worse,
icons usually have no text alternative). If mouse
grid could be context-sensitive and be able to tag se-
mantically important areas of the screen, such as the
menu bar, toolbar, scrollbar, document with tex-
tual names or numbers, then, when the user invoked
mouse grid, visible tags would appear on the screen
naming the area of the screen which can be zoomed
in upon. The zoomed-in mouse grid would then tag
more important areas within that initial area (such
as each individual menu, or each section of the tool-
bar, or the large areas of the scrollbar (thumb, up
arrow, down arrow, page up section, page down sec-
tion) etc. If the user zoomed in on text, the text
would be annotated with numbered tags to visual-
ize the paragraph, then sentences/lines, then words
(and characters if necessary) to enable the user to
precisely drill down and move the cursor where they
want it to go.

8.2 Phonetic Google-search

To better adjust for speech recognition errors in the
find tool, we propose that for voice-enabled find, the
tool use phonetic searching rather than exact char-
acter matches. Also, the order of the words should
not matter, making the search similar to Google,
rather than traditional word processor search. In
addition, we feel that this find tool should be made
non-modal, to eliminate extraneous dialog box in-
teractions (bring up the dialog box, click OK to dis-
miss, click Find Next to continue the search) which
slow down voice control. In addition, the search tool
should bring up all results of the search and display
them in summarized form (with a sentence of con-
text above and below) on one side of the screen.
FEach match would be numbered and the user just
say the number of the desired match to go to the
location.

13

9 Conclusion

Document navigation, the less glamorous aspect of
speech recognition, deserves more attention from
the research (and commercial) community. An im-
provement in this functionality will enable those
with motor impairments to enjoy the same ease of
editing that non-impaired people take for granted.

This work contributes to our understanding of
the performance of the current state-of-the-art when
used by people with motor impairments. We have
shown through a GOMS analysis that the only ways
to improve this performance are to reduce the num-
ber of commands and the cognitive load on the
user. Reducing the latency in speech recognition
will help, but the problems will not go away until
speech recognition response is as fast as a keyboard
or mouse. Our SpeedNav tool showed the poten-
tial to reduce the number of commands and the
cognitive load through an auto-scrolling mechanism.
Even though our results were inconclusive (compar-
ing SpeedNav to commercially-available solutions),
further development along these lines (as well as a
larger user study) should show a more significant
result.

10 Acknowledgments

We would like to thank all the participants in our
user study and the members of the Assistive Tech-
nologies class in which this research was conducted.
In addition, Prof. Jennifer Mankoff gave us valuable
advice and feedback on this work.

References

[1] Johnny Accot and Shumin Zhai. Beyond Fitts’
law: models for trajectory-based HCI tasks.
In Proceedings of ACM CHI’97 Conference on
Human Factors in Computing Systems, pages
295-302, 1997.

[2] S. K. Card, T. P. Moran, and A. Newell. The
Psychology of Human-Computer Interaction.
Lawrence Erlbaum, Hillsdale, 1983.

[3]

[4]

[5]

[10]

P. M. Fitts. The information capacity of the
human motor system in controlling the ampli-
tude of movement. Journal of Experimental
Psychology, 47(22):381-391, 1954.

IBM. ViaVoice Speech Recognizer.
http://www-3.ibm.com/software/speech/.

Takeo Igarashi and Ken Hinckley. Speed-
dependent automatic zooming for browsing
large documents. In Proceedings of the ACM
Symposium on User Interface Software and
Technology, Speedy Input, pages 139-148,
2000.

Takeo Igarashi and John F. Hughes. Voice as
sound: Using non-verbal voice input for in-
teractive control. In Proceedings of the 14th
Annual Symposium on User Interface Soft-
ware and Technology (UIST-01), pages 155—
156, New York, November 11-14 2001. ACM
Press.

Bonnie E. John and David E. Kieras. Us-
ing goms for user interface design and evalu-
ation: which technique? ACM Transactions
on Computer-Human Interaction (TOCHI),
3(4):287-319, 1996.

Clare-Marie Karat, Christine Halverson, John
Karat, and Daniel Horn. Patterns of entry
and correction in large vocabulary continuous
speech recognition systems. In Proceedings of
ACM CHI 99 Conference on Human Factors
in Computing Systems, volume 1 of Speech and
Multimodal Interfaces, pages 568-575, 1999.

Azfar S. Karimullah and Andrew Sears.
Speech-based cursor control. In Fifth Annual
ACM Conference on Assistive Technologies.
ACM, 2002.

Lewis R. Karl, Michael Pettey, and Ben Shnei-
derman. Speech versus mouse commands for
word processing: An empirical evaluation. In-

ternational Journal of Man-Machine Studies,
39(4):667-687, 1993.

14

[11]

[12]

[13]

[14]

[15]

I. Scott MacKenzie and William Buxton. Ex-
tending fitt’s law to two-dimensional tasks. In
Proceedings of ACM CHI’92 Conference on
Human Factors in Computing Systems, pages
219-226, 1992.

B. Manaris, R. McCauley, and V. MacGyvers.
An intelligent interface for keyboard and mouse
control: Providing full access to pc functional-
ity via speech. In FLAIR, 2001.

Microsoft Corp. Microsoft Office XP.
http://www.microsoft.com/Office/.

J. Sachs. Recognition memory for syntactic and
semantic aspects of connected discourse. Per-
ception and Psychophysics 2, 1967.

Scansoft Inc. Dragon Naturally Speaking.
http://www.scansoft.com /naturallyspeaking.

