
Novice Software Developers, All Over Again 
 

Andrew Begel 
Microsoft Research 

1 Microsoft Way 
Redmond, WA 98052 

+1 (425) 705-1816 

andrew.begel@microsoft.com 

Beth Simon 
Computer Science and Engineering Dept. 

University of California, San Diego 
La Jolla, CA 92093-0404 

+1 (858) 534-5419 

bsimon@cs.ucsd.edu 

 
ABSTRACT 

Transitions from novice to expert often cause stress and anxiety 

and require specialized instruction and support to enact efficient-

ly. While many studies have looked at novice computer science 

students, very little research has been conducted on professional 

novices. We conducted a two-month in-situ qualitative case study 

of new software developers in their first six months working at 

Microsoft. We shadowed them in all aspects of their jobs: coding, 

debugging, designing, and engaging with their team, and analyzed 

the types of tasks in which they engage. We can explain many of 

the behaviors revealed by our analyses if viewed through the lens 

of newcomer socialization from the field of organizational man-

agement. This new perspective also enables us to better under-

stand how current computer science pedagogy prepares students 

for jobs in the software industry. We consider the implications of 

this data and analysis for developing new processes for learning in 

both university and industrial settings to help accelerate the transi-

tion from novice to expert software developer. 

Categories and Subject Descriptors 

D.2.9 [Software Engineering]: Management – productivity.  

General Terms 

Human Factors. 

Keywords 

Human aspects of software engineering, Software development, 

Training, Computer science pedagogy 

1. INTRODUCTION 
Software developers begin a transition from novice to expert at 

least twice in their careers – once in their first year of university 

computer science, and second when they start their first industrial 

job. Novice computer scientists in university learn to program, to 

design, and to test software. Novices in industry learn to edit, 

debug, and create code on a deadline while learning to communi-

cate and interact appropriately with a large team of colleagues. In 

this paper, we illustrate how these experiences are similar to and 

different from one another. We provide a detailed view of the 

novice experience of software developers in their first industry 

job. Our intent is to offer data to facilitate the comparison of the 

novice academic experience with the novice industry experience. 

We wish to aid further development of academic experiences 

which will provide students more authentic practice for moving 

from novice to expert (perhaps repeatedly) in their industrial ex-

periences. 

University curricula strives to prepare students for industry expe-

rience, including teaching them core computing concepts that will 

allow students to become lifelong learners and keep pace with 

innovations in the discipline. Thus, approaches to teaching these 

―hard‖ skills have been driven by advances in industry, such as 

new programming paradigms (OO) and new development metho-

dologies (Agile, Extreme Programming). The ―soft‖ skills, or 

human factors in software engineering, such as the ability to 

create and debug specifications, to document code and its ratio-

nale and history, to follow a software methodology, to manage a 

large project, and to work with others on a software team, are less 

well supported in university pedagogy.  

Students who enter the professional software engineering work-

force have to learn new skills, techniques and procedures, in ef-

fect, becoming novices all over again. What they may be surprised 

to find is that the soft skills are a major component of their new 

jobs [10] [32] [38]. Employers recognize that students entering the 

workforce directly from university training often do not have the 

complete set of software development skills that they will need to 

be productive, especially in large, independent software develop-

ment companies. A recent article in eWeek.com interviewed sev-

eral industry software developers who said that new college gra-

duates are lacking communication and team work skills, and are 

unprepared for complex development processes, legacy code, 

deadlines, and for working with limited resources [37].  

We see a connection between the way that a fresh college gradu-

ate engages an organization as a new employee and the pedagogi-

cal approaches that purport to prepare him or her for such an ex-

perience. Schein proposed that there were three main aspects to 

introducing newcomers to organizations: function, hierarchy and 

social networking [35]. Function represents the tasks and technic-

al requirements of a position. Hierarchy is the organizational 

command structure, and social networking is the movement of the 

newcomer from the periphery of the network towards the center as 

new personal connections are made. Within the university setting, 

function is very well addressed through courses that teach general 

knowledge like programming, data structures, and software engi-

neering, and domain knowledge, such as graphics, artificial intel-

ligence, and operating systems. Hierarchy and social networking, 

however, are not covered as well, especially seeing how providing 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

ICER’08, September 6-7, 2008, Sydney, Australia. 
Copyright 2008 ACM 978-1-60558-216-0/08/09…$5.00. 

 

mailto:andrew.begel@microsoft.com


experience in these areas would serve students well when they 

begin their first software development job.  

As an example, university pedagogy promotes teamwork to en-

gage students in working in pairs or larger groups in order to learn 

how to work with others. However, these groups are typically 

egalitarian – all members are equal in knowledge, experience, and 

power. This is not the case in industrial settings – co-workers have 

more knowledge and experience, and managers have more power. 

Likewise, corporations contain multiple teams of people working 

together – getting to know people on other teams gives employees 

opportunities to learn, move laterally to improve their person-

group or person-organization fit, and gain opportunities by in-

creasing the number of people and the connectedness of their 

social network [2] [25]. In contrast, social networking is often left 

completely up to the students in academia. Not only is it rarely 

structured within the context of a course, it is rarely structured 

within the context of the curriculum and most often is stigmatized 

through strong policies on cheating, collaboration, and the like. 

We believe that the kind of educational pedagogy students are 

exposed to leaves them inadequately prepared for the hierarchical 

and social networking aspects of industrial positions in software 

development, two of the three critical components in newcomer 

engagement. We came to this belief after conducting a study of 

eight college graduates starting jobs as software developers at 

Microsoft. We observed these new developers in their daily work 

over a two month period within the first six months of their em-

ployment. We asked them to reflect on their learning process and 

relevant college experiences through daily video diary entries. 

After analyzing our data, we find that new developers show com-

petence in the functional and technical aspects of their positions, 

but lack preparation and training in the social and communication 

aspects they face on a daily basis. We believe that their initial 

naïveté caused extra stress, anxiety, low performance and poor 

productivity during their formative months at the company.  

The outcomes we observed are expected when viewed through the 

lens of newcomer socialization from organizational management 

[1] [2] [14] [34] [39]. This research field offers advice for organi-

zations seeking to improve the learning process by which outsid-

ers become insiders. While the literature has generated clear ab-

stractions, without specific research in software engineering or-

ganizations, it is not easy to understand how to apply their rec-

ommendations. As such, our grounded theory-based observational 

study of the tasks and activities of newcomers in software devel-

opment provides a strong, evidence-based foundation for under-

standing the specific issues affecting novices in the software in-

dustry. In this paper, we offer information to educational re-

searchers to support the design of computer science courses to 

address the anticipated needs of their students‘ transition to indus-

trial jobs.  

In the rest of this paper, we describe our study, and show the 

kinds and distribution of tasks that novice industrial developers 

conduct on a daily basis, and discuss how preparation for these 

tasks are addressed by computer science curricula. We then look 

at the new college graduates‘ reflections on their own learning and 

education and corroborate what they say with our observations of 

their experiences. Next, we apply the lens of the newcomer socia-

lization literature in conjunction with our findings of novices in 

industry to consider preparatory educational opportunities to im-

prove this transition process from novice to expert. We conclude 

with an invitation for the computing education community to 

consider their own departments‘ standing with the newcomer 

socialization framework – and how it might be possible to alter it 

to provide students with experiences which give them better prep-

aration for industry. 

2. MOTIVATION 
Academia has long kept up with the rapidly changing software 

development industry when it comes to languages, tools, and 

processes. They have been able to address these functional aspects 

of software development because they are well-documented and 

reported through feedback from the industrial community [8] [24]. 

Programming languages may change, and development environ-

ments may change, but the core ideas taught in computer science 

– the algorithms, the architectures, and the design principles – stay 

true over much longer periods of time. However, the social and 

hierarchical aspects of working in the software development in-

dustry have not been as well addressed in the curriculum.  

It has repeatedly been documented that software development is a 

highly social activity with frequent interactions between develop-

ers and between their tools [12]. Krasner et al. studied communi-

cation breakdowns in software development organizations and 

identified how critical social factors were to the success of a soft-

ware project [20]. LaToza et al. [22] surveyed developers at Mi-

crosoft to learn how they worked, communicated and what prob-

lems they encountered. They found that developers communicate 

within their teams an average of 8.4 unplanned, face-to-face meet-

ings per week and 16.1 emails per week. Kraut and Streeter 

[21] studied coordination via a survey in the software department 

of a research and development company. Frequent, informal 

communication was common even in larger projects that had 

more formal meetings, even those which respondents found valu-

able. When asking for help, other team members were the main 

and best source of answers. Perlow conducted an ethnographic 

study of software engineers [32] and found that engineers value 

the time they spend creating software, but spend much of their 

remaining time interacting with others in order to ask ques-

tions, plan joint work, or achieve coordination. The engineers 

were able to complete their work only by incorporating these so-

cial interactions; they could not do it alone.  

None of this work addresses learners, however, making the les-

sons difficult to apply to educational situations. The newcomer 

socialization literature, on the other hand, does address how learn-

ers fit into professional organizations. They find that newcomers 

are anxious due to their lack of knowledge about the requirements 

of their role, of the chain of command, and of knowing who in the 

organization that can help them complete their tasks [39]. To help 

newcomers through their transition, techniques such as new em-

ployee orientations, mentoring, proactive interventions and moni-

toring by supervisors, and social support by colleagues have been 

shown to reduce stress and anxiety, reduce role ambiguity, in-

crease job satisfaction and retention, and boost person-

organization fit [1] [2] [11] [14] [16] [18] [25] [34] [39].  

The newcomer socialization literature relies on an assumption, 

however, that socialization is similar for all newcomers, in spite of 

differences in demographics, organization or role. This makes it 

difficult to apply any suggestions to computer science undergra-

duates or professional software developers without concrete evi-

dence of what software developers do all day, how they interact 

with others to do it, and what problems they face in getting their 

work done. In our study, described below, we thoroughly recorded 

novice software developers‘ tasks, activities, social interactions, 

and outcomes. Our evidence confirms that mastery of function, 



hierarchy and social network is critical to the productivity, effec-

tiveness, and satisfaction of new professional software developers.  

This mastery may be more easily acquired when new software 

developers are prepared through a variety of pedagogical ap-

proaches such as pair programming, legitimate peripheral partici-

pation, and mentoring programs. We hope that this detailed in-

formation on new software developers will enable a more rigorous 

discussion and evaluation of new programs designed to improve 

the undergraduate educational experience. We encourage the 

reader to think about experimenting with educational programs 

and interventions while looking at the data; in Section 6, we re-

view several existing programs through the lens of newcomer 

socialization. 

3. STUDY METHODOLOGY 
We conducted a direct observation case study and used grounded 

theory to analyze the data. In this section, we describe our obser-

vation and analysis techniques, and present our coding schema 

along with several examples of our raw data.  

3.1 Subjects 
We selected eight developers newly hired by Microsoft between 

one and seven months before the start of the study. We identified 

25 available subjects (based on manager approval and schedule 

consideration) and selected 8 (7 men and 1 woman), balanc-

ing years of schooling and division within the company. Four had 

BS degrees, 1 MS, and 3 PhDs, all in computer science or soft-

ware engineering. Of the BS recipients, 2 were educated in the 

US, 2 in China, 1 in Mexico, 1 in Pakistan, 1 in Kuwait, and 1 in 

Australia.  All PhDs were earned in US universities. We also se-

lected for the least amount of previous software development 

experience (none outside of limited internships), with the excep-

tion of the subject from Australia who had two years of develop-

ment experience outside of Microsoft.  

Each subject was observed for 6-11 hours over 2, 2-week periods 

with a one month break in between. Observations occurred in the 

subjects‘ standard work environments without interruption and 

included meetings and subjects‘ interactions with others. Time-

stamped logs of each observation were recorded and kept for later 

coding and analysis. Video diary entries were recorded by the 

subjects at the end of every day that they were not observed. Sub-

jects were asked to talk about the most interesting thing that hap-

pened that day followed by a question asking them to reflect on 

some aspect of their college education or new hire experience.  

Subjects were compensated weekly ($50) for their participation.  

No information from the study was shared with the subjects‘ man-

agers – except for publicly available publications such as this 

one. Human subjects permission was obtained at the University of 

California, San Diego. Similar legal protection was obtained at  

Microsoft. 

3.2 Task Analysis 
We employed a grounded theory descriptive analysis of the tasks 

that engage novice software developers (NSDs). We identified the 

tasks that NSDs perform through analysis of the observation 

logs. We initially coded task types from the task taxonomy devel-

oped in a study of software developer activities by Ko et al. 

[19]. In that study, the task taxonomy was based on the observa-

tion of 17 software developers (each observed for up to 90 mi-

nutes) where subjects performed a software development task 

while thinking aloud.   

As we began observation, it became clear that our subjects were 

engaged in much more than programming-related tasks.  As we 

observed and tagged, we re-worked the tasks identified by Ko et 

al., merging some and adding some new tasks, based on the activi-

ties we observed in our longer, less coding-focused observations.  

In the process of developing this task list, we also formed a set of 

subtasks which provided more detail on the tasks in question. This 

process occurred daily as observations took place. After each 

week of observation, task groups were finalized. Specific subtasks 

were added as needed. The task and subtask coding structure that 

emerged from the data is presented in Table 1.   

We reviewed the observation log entries of what subjects were 

doing, tagging each with one or two task and subtask tags. For 

example, an entry might be tagged Coding / Searching and also 

Communication / Asking Questions if the developer asked a col-

league where an API call was defined in the code.  

Table 1. Tasks of NSDs. Tasks are listed in frequency order. 

Task names defined by Ko are listed in italics. 

Programming 

(Coding) 

Reading, Writing, Commenting, 

Proof-reading, Code Review 

Working on Bugs 

(Debugging) 

Reproduction, Reporting, Triage, De-

bugging 

Testing 

(Testing) 

Writing, Running 

Project Management  

(Project Management) 

Check in, Check out, Revert 

Documentation 

(Documentation) 

Reading, Writing, Search 

Specifications 

(Designing) 

Reading, Writing 

Tools 

(not in Ko) 

Discovering, Finding, Installing, Us-

ing, Building 

Communication 

(Communication) 

Asking Questions, Persuasion, Coor-

dination, Email, Meetings, Meeting 

Prep, Finding People, Interacting with 

Managers, Teaching, Learning, Men-

toring 

3.3 Task Example 
To see how these task classifications fit the activities that typical   

developers perform, consider these representative scenarios drawn 

from our observation data. Many new developers are assigned to 

fix a bug or write a new non-mission-critical feature. To fix a bug, 

a developer has to  

1. read the bug report,  

2. reproduce the bug in the runtime,  

3. isolate the bug in a debugger,  

4. read the source code for the program,  

5. ask questions of co-workers to understand the source 

code and the root cause of the bug,  

6. fix the bug by programming workaround code,  

7. test the fix,  

8. figure out if a new regression test should be written,  

9. convince co-workers that the fix is the right one under 

the circumstances,  

10. get the fix reviewed by a manager or co-worker,  



11. work with a tester to verify that the fix did not cause any 

regressions,  

12. check in the fix into source control,  

13. attend a bug triage meeting to report on the status of the 

bug,  

14. meet with managers of other components that may be 

affected by the bug fix and persuade them to sign off on 

the fix,  

15. and finally, write up the results of the investigation and 

bug fix in the bug report. 

Writing a new feature involves a whole other set of activities. 

First, the developer has to 

1. work with his requirements engineer to come up with a 

set of capabilities for the new feature, 

2. work with his mentor and manager to develop a sche-

dule to design and implement the new feature, 

3. explore the design space, 

4. research alternative designs in old code, in specifica-

tions, and on the web, 

5. write a structured specification document detailing the 

design, the architecture, the API, the specification of 

particularly tricky algorithms, a test plan, and a plan to 

ensure the code is secure,  

6. read through code in the product that is similar to the 

new feature to copy from when writing new code, 

7. implement the feature, 

8. test and profile the feature, 

9. report progress to co-workers at status meetings to get 

advice on changes or get help if stuck,  

10. ask a colleague to code review the new code, 

11. meet with the security team to ensure the code is secure, 

12. check in the code, 

13. update the progress report on the work item tracking 

system, 

14. and finally, meet with the manager to evaluate the fea-

ture, the work process, and get assigned a new project. 

Note that many steps in these scenarios involve interacting in 

complex ways with several members of the software team, includ-

ing co-workers, mentors and managers. Each of these scenarios 

was played out in more detail in our observation logs. 

3.4 Task Sample 
In this section we give a flavor of the observation of one of our 

participants along with a section of its associated activity log 

(shown in Table 2). Subject T was assigned to fix a bug. After 

reading the five bug reproduction steps, he attempted but failed to 

successfully execute the first step. He spent 45 minutes trying to 

debug the problem by swapping various software libraries on his 

computer, including swapping computers, to no avail. He went 

across the hall to a colleague, A, and asked him for help. Subject 

T explained what he had tried, but Colleague A disagreed with his 

assessment of the problem. Colleague A returned with him to the 

office and noticed that he had copied incorrect libraries to his 

computer, then told him where to find the proper binaries, and 

went back to his office. 

The incorrect binaries were a consequence of the debugging strat-

egy however, and not the original problem. Subject T tried to 

reproduce the bug for another 12 minutes before going back to 

Colleague A to tell him that things were still not working. Col-

league A explained more about the libraries he copied, causing 

Subject T to realize that he had the wrong mental model of the 

libraries and the directories in which they were meant to be 

placed. Colleague A taught him the proper model, recounting 

stories of his own debugging prowess from years back, and sent 

Subject T on his way with another few generic debugging strate-

gies, both of which Subject T had already tried. Subject T did not 

press the colleague for more help until he could prove that he had 

tried these strategies with the corrected mental model, though he 

knew they would not work. After another 25 minutes of debug-

ging and testing on his own, Subject T had still not successfully 

executed the first reproduction step, and appeared to have made 

no progress at all.  

3.5 Reflection Methodology 
On each day that we did not observe them, the subjects in the 

study recorded a 3-5 minute video diary entry using a webcam we 

attached to their computer. We created 40 scaffolded questions, of 

which most subjects recorded answers to the first 20. One made it 

to 35. The numbers vary due to absence, lack of free time, and 

number of observations we made. We listened to the videos and 

transcribed the answers to 13 of the questions that related to learn-

ing and the college experience. Finally, we tagged the most inter-

esting responses in the transcriptions for inclusion as quotes in our 

report.     

3.6 Threats to Validity 
Our subjects came from a range of educational backgrounds. In 

our data, we did not see any obvious effects of this diversity on 

communication, procedures or skill acquisition, but we did notice 

that subjects with a Ph.D. were more reflective about their own 

progress and processes. We are not sure how much actual effect 

this had on their learning process. 

Our study was conducted over a period of 2 months in the first 6 

months of our subjects‘ employment. Each subject was at a differ-

ent stage of personal development and each changed and learned a 

different amount over the two months of the study. This learning 

effect is the focus of this study, and not a confounding variable.  

Observation was conducted mostly in silence, with the observer 

sitting behind or next to the subject, watching the subject‘s screen. 

A few times during each session it was necessary to prompt the 

subject to tell the observer what was going on, or explain why 

something was happening, or introduce a visitor. Subjects ap-

peared to be conducting normal work while being observed. 

While a Hawthorne effect is probable, we feel that our lengthy 

and continuous observations put them more at ease to behave as 

they would without us watching. In our post-study interview, we 

asked if they had noticed any change in behavior during observa-

tions; the subjects reported only that they goofed off less while we 

were around.    

We originally had a ninth subject in the study, whom we removed 

after one observation. His behaviors and actions during the obser-

vation exhibited all the signs of a fully expert software engineer, 

with no signs of hesitation, insecurity, deferment to others‘ au-

thority, etc. His observation logs were deleted, and are not in-

cluded in any of our presentation or analysis. 

 

 

 

 



Table 2. An activity log from Subject T shown with tagged task types and subtypes. 

 

Our study was conducted at Microsoft; while we imagine its re-

sults apply broadly to software developers at other independent 

software vendors, more study at other sites is required to tease out 

the effects of specific cultural norms at Microsoft. In addition, 

Microsoft developers go through a rigorous screening and inter-

view process just to get hired, so the subjects in our study are 

already likely outside the norm.  

Subjects‘ managers were involved solely in the selection process 

of choosing which new hires would be asked to be part of the 

study. At no other time was their input or participation sought, 

required or accepted, except when a subject had a meeting with 

their manager during one of the observations. At these times, we 

asked for permission to stay and take notes from both manager 

and subject, but when asked, we did leave on occasion to avoid 

confidential conversations. We took steps to guard against a sub-

ject being coerced by his manager to be a part of our study; at any 

point, even after the study had finished, subjects were free to 

withdraw from the study and erase their data. Also, at no time was 

any information about any of the subjects revealed to anyone in 

their management chain.  

4. SOFTWARE TASKS 
In this section, we provide some low-level details about the spe-

cific software tasks in which NSDs engage, the distribution of the 

amount of time they spend on them, and show exemplars of the 

types of things they did during those tasks. Those tasks that they 

spend the most time on are worthy candidates for analysis to de-

termine if they are supported by computer science pedagogy. Fig-

ure 1 shows the percentage time spent on various tasks by our 

NSD subjects over all of their observations normalized by the 

length of time that we observed the subject. Recall that every 

activity is tagged with as many task types as required to describe 

reality. Though this was most often just one task, some log entries 

required two tags. Whenever two tags were used, we added that 

time to an overlap time which is added to the total time of our 

observations for each subject in order to normalize the values and 

present an accurate visualization. For example, subject X spent 

the majority of his overlap time in Communication, Specification 

and Documentation tasks. However, W‘s overlaps were distri-

buted fairly evenly between most of the task types. The bars in the 

graph may be directly visually compared with one another within 

and between subjects, so we can see from the length of the bar 

that T spent the most time doing communication tasks.   

4.1 Task Breakdown 
Most of our NSDs spend a large portion of their time in commu-

nication tasks. This covers meetings (both organized and sponta-

neous, and with varying numbers of colleagues), seeking aware-

ness of team members (and their code and tasks), requesting help, 

receiving help, helping others, working with others, persuading 

others, coordinating with others, getting feedback (such as on 

code), and finding people.  

Communication. Subjects W, X and T spent an overwhelming 

amount of their time in communication tasks.  Both attended sev-

eral meetings and got help from others in dealing with bugs. W 

had particularly high levels of communication due to the low cost 

of communicating with his team – he worked in a ―bull pen‖ ar-

rangement with four other developers, where it was customary for 

them to casually request help by spoken means, or offer to provide 

it in case of sudden outbursts of frustration.  

Timestamp Description Task Type Subtask Type 

11:45:43 AM reruns copy script.  Working on Bugs Reproduction 

11:46:18 AM script done. checks over script output to make sure it looks right. 
Says that the script is complaining that the files aren't signed. Email 
with source directory says that they are signed. Weird. copied suc-
cessfully, but binaries aren't signed. 

Working on Bugs Reproduction 

11:47:26 AM Shakes head. Subject T is confused. Team lead says they’re signed. 
But empirical evidence says they're not.  

Working on Bugs Reproduction 

11:48:11 AM Subject T says maybe he wants to sign the binaries himself.    

11:48:36 AM Subject T mutters to himself “bad bad very bad”   

11:56:23 AM Subject T goes to A across the hall to ask what’s going on. Communication Asking Questions 

11:56:35 AM After explaining problem, Colleague A disagrees with Subject T’s 
assessment, comes to Subject T’s office and notices that Subject T is 
copying the wrong architecture binaries to computer. Unsigned 
binaries are a red herring. Now he copies the right binaries (still 
said unsigned) and no need to reboot.  

Communication Learning 

11:57:27 AM [Application] now launches just fine. Working on Bugs Reproduction 

11:57:49 AM Attempts to repro the bug again. URL works success. repro fails. 
Subject T expresses confusion why should it repro. Debug binaries 
and non-debug binaries eliminate repro.  

Working on Bugs Reproduction 



 
Figure 1. Tasks by time for each subject, normalized by the total time + time where events overlapped in each observation. Total 

observation time in hours is listed in parentheses after each subject’s identification letter.  

 

Subjects Y and X also spent the largest amount of their time on 

communication tasks compared to any others, but both also have 

strong representation in a second task. Subject X spent a large 

number of hours in design meetings with his team‘s feature lead 

and a team from another product that was involved in his design 

process. He also frequently engaged in pair-programming and 

pair-debugging exercises with other NSDs in his team. Subject Y 

also spent time communicating in bug triage meetings, but spent a 

good deal of time coding, which often included utilizing docu-

mentation to figure out how to code. Y also was a frequent user of 

IM to ask and answer coding questions with experienced members 

of his team. 

Much of Subject R‘s communication was about coordination. 

Subject R‘s tasks required him to work with several other team-

mates to analyze and coordinate test runs of a benchmark, and 

collect and present test results in a report. The test computers were 

a limited resource which required a great deal of coordination, as 

did the development of the shared test results reports. 

Overall, communication was a critical and common activity for 

NSDs. They communicated in order to get help and to develop 

and confirm their understanding of how to do their job in relation 

to their team. Additionally, this reporting of what tasks NSDs do 

may even underestimate the importance of communication. If 

NSDs had spent more time in communication with their col-

leagues, they might have been able to gather information more 

productively than they had. 

Documentation. The next most common task for subjects R, T, V, 

and Y was documentation. Documentation occurred in conjunc-

tion with programming and debugging by searching for documen-

tation and understanding it (often of APIs on the web) in order to 

comprehend or create code. NSDs would also write documenta-

tion in the form of bug reports and specification plans. Finally, 

NSDs often kept personal documentation to record project man-

agement and tool knowledge or to record information that they 

would need to present at meetings. Several of the subjects made 

comments to the researchers that they struggled to keep these 

personal notes organized and accessible. They had no structure for 

them and desired some help or scaffolding for managing their 

personal documentation.  

Subjects R and V spent more time on documentation than any-

thing else. In both cases, their time was spent reading documenta-

tion (in a variety of sources: textual documents, on MSDN, on the 

web, and in emails) to try to understand their team‘s code. This 

was as a result of flailing in other efforts – either to code some-

thing or to install/set up their development environment. Subject 

V thought this extensive reading was not the best use of his time, 

but as a very new hire he felt he had no other resources. 

Working on Bugs. The next most common activities were work-

ing on bugs and programming. Bug fixing was an activity whose 

frequency varied greatly by subject – depending on the stage of 

their development cycle during observation. Subjects Y and T 

were observed in bug triage meetings, and Subject W‘s team had 

virtual and physical triage meetings, though none were observed.  

All subjects were observed reproducing bugs (sometimes their 

own), and understanding why they occurred. Subject Z was very 

focused on debugging, often correlating success with a reduction 

in bug count. At one time, he was resolving hundred of bugs a day 

– through pattern-matched changes. Other debugging tasks we 

observed included testing, navigating, and searching.  

Programming. Three of our NSDs spent time implementing fea-

tures (Subjects U, Y, and Z), an activity that combined program-

ming, specifications and debugging. Subjects observed writing or 

understanding code often were jointly engaged in a documentation 

task (to understand how code worked or to understand APIs or by 

mimicking on-line code samples). Especially when programming 

in support of the debugging process, we observed NSDs navigat-

ing and searching through code – a process often difficult for 

them to effectively manage. Finally, we observed very conscien-

tious code commenting by NSDs. Sometimes they commented 

code that they were reading for a debugging fix, even if they were 

not changing those exact lines of code. In their struggles to under-

stand and become conversant with a codebase, they were in a 

position to appreciate code comments, and seemed willing to add 

them. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Z (8.5)

Y (11.25)

X (9.75)

W (10.5)

V (9.5)

U (6.5)

T (8.5)

R (7.75)
Communication

Documentation

Working on Bugs

Programming

Tools

Project Management

Testing

Specifications

Non-work



Subject U‘s first project was to design and implement a wizard 

dialog box using APIs he had never used before. He spent the 

majority of his time programming, but mostly because of an inef-

ficient technique of learning a new language by trying everything 

on his own.  He would perhaps have been more productive and 

perhaps less stressed if he had spent more time seeking help and 

less flailing on his code alone.  

Subject X‘s project required re-coding a previous summer's intern 

project – an intern who was no longer available to answer ques-

tions. Subject W worked on a web service whose development 

lifecycle involved writing many small features and fixing bugs on 

an ongoing basis. As W was new to the codebase, he had many 

questions for his colleagues to answer. In addition, W worked in 

the bullpen, with four other, more experienced developers all 

working on similar projects. They would answer questions that W 

had (and vice versa), even if W had not directly addressed his 

questions to anyone in particular. 

Project Management and Tools. Project management  and tools 

seemed to occupy an inordinate amount of NSDs time. In particu-

lar, project management tasks tended to interrupt NSD 

progress. In the extreme, the newest of our subjects (V) was com-

pletely blocked in getting set up in his development environment 

by project management issues. Subject Z‘s team was in an active 

bug fixing phase, and he had been assigned the job of eliminating 

1,300 new compiler warnings. He separated each batch of re-

moved warnings into a separate check-in, each requiring coordi-

nation with colleagues for code review and submission to the 

revision control system. We saw NSDs doing project management 

and tools tasks, such as using revision control systems, building 

their project, setting up their project or development environment, 

running auxiliary tools, and creating tools that they needed to 

support project management tasks and procedures.   

Specifications and Testing. Time spent with specifications was 

very dependent on the phase of development that a subject‘s team 

was currently in.  Both Subjects X and W spent significant time 

both understanding and writing specifications. Testing came up 

most notably in specific projects for Subject Z, but it was seen in 

small instances across a number of subjects. 

4.2 Subjective Observations 
An integral part of adapting to a new environment for our NSDs 

involved trying to figure out what they did and did not know 

through techniques directly linked to building up their understand-

ing. We observed events where we perceived that NSDs were 

seeking to understand what was going on, reflecting on what they 

were experiencing or figuring out, experiencing confusion, and 

memoing to themselves on their learning. Subject V, our most 

recently-hired subject, was often engaged in reflection on why 

things were not installing properly and on ―teaching instances‖ 

where he worked to learn from the comments and assistance of 

others.  

4.3 Observation Caveats 
In considering all of these results, one must keep in mind that a 

developer's expression of a need does not tell the entire story 

about what developers really need to do their jobs. In particular, 

due to the non-intrusive, observational approach of our study, it 

was possible to observe that NSDs do not always recognize that 

they need some information. That is, they may flail, stop making 

progress, task switch, or do any number of things when, in the 

eyes of the observer, seeking out some information could allow 

them to make progress. In particular, we observed many cases 

where a NSD would not recognize that they should seek informa-

tion from a colleague in order to make progress on the current 

task. This report indicates what NSDs actually do, but not what 

they perhaps should be doing. A more anecdotal look at the ways 

in which NSDs struggle to make progress in their tasks is reported 

by Begel and Simon [4]. 

5. REFLECTIONS 
While observation log analysis summarizes the tasks that NSDs 

could be objectively seen doing, it does not capture all aspects of 

their experience. In particular, how NSDs feel about what they do 

and why they do it may also be instructive. In this section, we 

organize and classify some of the reflections made by NSDs in 

video diary entries about their experiences. These reflections help 

round out the picture of the social and hierarchical newcomer 

issues that define the NSD experience. 

Scaffolding the diary questions proved helpful in getting the sub-

jects to think about their own learning experiences in university 

and industry. Particularly fruitful questions are listed here. 

(1) How did your university experience prepare you for 

your job at Microsoft? 

(2) What things would best prepare a college student for 

their first year at Microsoft? 

(3) If a ‗future you‘ came back to advise you now, what 

words of wisdom would he offer? 

(4) If you could go back to the past and give yourself ad-

vice at the end of your third week at Microsoft, what 

advice or warnings would you give? 

(5) How do you know when you are stuck? What do you do 

when that happens? 

Below we characterize and summarize the responses given by our 

subjects to these questions. 

5.1 Managing Getting Engaged 
When employees first arrive at a company, they face an imme-

diate quandary. They feel the need to prove to their managers that 

they are smart, productive and infallible, however, they do not 

know any of the functional aspects of their role yet. Thus, stress 

and anxiety go up as new employees attempt to master immense 

amounts of material in a short amount of time, all the while trying 

to take on tasks that have an impact on the team. Our subjects 

reflected on this and often regretted their speedy ramp-up. Subject 

T said ―you don‘t need a very deep understanding of one compo-

nent, but you need a broad knowledge of everything – you don‘t 

want to go deeply in one hole. It will take you longer time and it 

will delay your progress.‖ Subject V remarked that he should have 

spent more time: ―Put up some extra time and effort (apart from 

work time) to learn some new technologies, to learn about the 

product in much more depth… the very first year.‖ Subject W 

reflected on his high stress: ―I would probably tell myself to not 

get so stressed about things and take things in stride because it‘s 

no use getting yourself stressed about something. You‘re learning, 

I‘m learning, I don‘t want to get myself stressed out over these 

little things…‖ Subject X mentioned a strategy that most felt re-

luctant to engage at the beginning of their careers: ―Ask questions 

of the other devs.‖ ―You can figure out something in five minutes 

by asking someone instead of spending a day of looking through 

code and design docs,‖ said Subject V. Asking questions, howev-

er, reveals to your co-workers and managers that you are not 

knowledgeable, an exposure that most new developers felt might 

cause their manager to reevaluate why they were hired in the first 

place. 



5.2 Persistence, Uncertainty and Noviceness 
Perkins et al. classified novice programmers into ―stoppers‖ and 

―movers‖ [31]. Stoppers get stuck easily and give up. Movers 

experiment, tinker and keep going until a problem is solved. All 

of our subjects noted the importance of persistence, likely making 

them movers. Subject W, in particular, noted ‖the attitude of not 

giving up here at MS… if I am given a problem I am expected to 

solve it. There‘s no going to my supervisor and saying ‗I can‘t 

figure this out‘… Ultimately it‘s my responsibility.‖ Uncertainty 

and a lack of self-efficacy were proposed by Perkins to be the 

reasons why students became stoppers. However, we see these 

uncertainty and self-efficacy issues in our mover‘s observation 

logs, even though they are very persistent. When asked, our sub-

jects never admitted to having stopper characteristics: Subject W 

admitted ―I often don‘t know when I am stuck. [But] I try to per-

severe and find a solution no matter what.‖ Apparently, being a 

mover does not imply success, nor is it an attitude that always 

leads to success as evidenced by Subject X‘s quote on being 

stuck: ―I know I'm stuck when I've exhausted the known ways of 

solving the problem.‖ A better strategy for getting oneself unstuck 

is to ask someone else, a strategy hindered by the power inequali-

ty and social anxiety of newcomers. Some of our subjects did, in 

fact, ask others questions: Subject T said ―[when] I am stuck I go 

to a more senior teammate and see if they have encountered this 

kind of problem or situation before.‖ Often, however, this was 

only after flailing for a long time and spending many hours inef-

fectually trying to solve a problem. Consequently, one might pro-

pose that these uncertainty and self-efficacy are more applicable 

to the notion of ‗noviceness‘ rather than learning to program. 

Indeed, the organizational management literature finds that uncer-

tainty and lack of self-efficacy is a characteristic of any newcomer 

to an organization [11] [14] [2].  

5.3 Large-Scale Software Team Setting 
The subjects‘ reflections indicate that their technical/functional 

preparation for their software development jobs was adequate: 

Subject Z said ―I don‘t think I need a lot more technical skills.‖ 

However, subjects indicated they were ill-prepared for the degree 

of social interaction required: Subject V said that ―in university 

you are focusing on individual projects or 2-3 man team projects. 

The first thing that anyone is not prepared for and I was not pre-

pared for is collaborating in a team of 75 people which was 35 

developers and similar amount of testers and [having to] collabo-

rate with all of them.‖ The consequences of poor interactions are 

dire (continuing with the same quote): ―In [the] fashion that you 

don‘t break any of the part of the core or affect anyone else.‖ Sub-

ject X remarked: ―Even if you think something is simple it‘s not. 

If you think something is a minor change, it‘s probably not. 

There‘s lots of interesting consequences, side effects, things that 

you didn‘t think about when you are working on something.‖ 

Working closely with teammates was one way to improve the 

likelihood of success: Subject W said ―what I think I need to im-

prove on is being a team player… When my teammates have a 

success, or when they need help, I want to be more willing to 

make their goals my goals as well. Because their success is the 

success of the team and I want to help the team to be successful.‖ 

Subject X was not expecting such collaboration: ―I was actually 

surprised about how helpful people are and how much Microsoft 

is committed to developing your career.‖ Finally, whether or not it 

was possible in his university, Subject X expressed a desire to 

have worked on larger projects with more people. ―[I should] get a 

lot of experience working on a team project with people… not just 

some stupid homework assignment that only lasts one week.‖ 

6. REFLECTING ON PEDAGOGY 
In this section, we review various computer science curricula and 

pedagogical approaches through the lens of newcomer socializa-

tion. The tasks mentioned above, programming, working on bugs, 

testing, project management, documentation, specifications, tools 

and communications are addressed to various degrees in universi-

ty courses. Within each task, we can find Schein‘s three compo-

nents of belonging to an organization: function, hierarchy and 

social networking. The next three sections discuss the organiza-

tional aspects of several recent, but uncommon, pedagogical ap-

proaches: pair programming, legitimate peripheral participation, 

and mentoring. Our data implies that these practices should be 

more universally adopted. 

6.1 Pair Programming 
Within our programming classification is commenting and code 

review, both acts of communication to inform co-workers of the 

rationale behind the code. Code review is interactive, requiring 

the author of the code change to convince and persuade his col-

league that his code is correct, appropriate to resolve the work 

item, and meets the coding standards of the team. One finds the 

social component of code review in pair programming exercises 

as implemented in academia. Two students are paired together, 

both acting as developers, creating, editing and rationalizing the 

code in concert. Pair programming has been shown to increase 

student performance and self-efficacy [27] [36] [15]. It is less 

frustrating because of an increase in brainstorming, number of 

solutions explored, and the ability to defer to the partner to solve a 

problem when one‘s brain is tired. Pair programming also builds a 

community of people of whom the students feel comfortable ask-

ing questions [36].  

Pair programming does not, however, address the issues of hie-

rarchy. Both students have the same experience, similar back-

grounds, and both are striving to achieve a grade. Contrast this 

situation with a typical newcomer in an industrial job. Similar to 

the student situation, there is a manager who is evaluating the 

newcomer‘s performance, and like a college professor, endeavors 

to give the newcomer time to acquire knowledge and skills before 

applying harsh grading metrics. However, a new college graduate 

does not really know who is on his team, nor in what knowledge 

each member of the team is expert, and is the least knowledgeable 

member of his team. Additionally, experts have difficulty offering 

help to novices because while experts are trying to communicate 

semantic domain knowledge, novices are stuck on the syntax [33]. 

According to the newcomer socialization literature, this makes the 

newcomer anxious, and increases stress [39] [14]. Social support 

from co-workers and mentors reduces stress [11]. Similar effects 

due to the social nature of pair programming have also been re-

ported [36] [40]. Newcomers have been shown to learn best by 

observing others solving similar problems [28]. As their social 

network expands, the opportunities to learn from others increases, 

and for new college graduates especially, their performance is 

closely related to their social acceptance by the team [2].  

6.2 Legitimate Peripheral Participation 
One issue faced by university pedagogy is the authenticity of the 

experience. We can easily point out many ways in which college 

educational experiences do not accurately reflect industrial prac-

tice. Industry practices changes much faster than pedagogy mak-

ing this a persistent problem. This inauthenticity can be ameli-



orated in a course like Guzdial‘s media computation [13] or 

Bruckman‘s MediaMOO [9] which strives to convince students 

that they are part of a community of practice. Lave and Wenger 

[23] discuss how people join a community of practice by learning 

from others in apprentice positions. Through legitimate peripheral 

participation, doctors learn by observing more experienced doc-

tors conduct procedures and are mentored by them when perform-

ing these procedures for their first time, and then become mentors 

to other newcomers. Ostroff and Kozlowski made similar obser-

vations of newcomers to organizations – newcomers learn about 

organizational issues and practices by observing mentors and co-

workers [29]. Managers were not seen as useful for information 

acquisition by novices. In their Media Computation course, Guz-

dial and Tew reported that retention increased, especially by 

women, a group that had been more likely to drop out of computer 

science. The course also altered the expectations of its students to 

fit better with how experimentation with computers is actually 

practiced in the community to which the students were introduced. 

This realignment of expectations has a large effect on newcomers‘ 

self-efficacy and increases their commitment to remain part of the 

community [11].  

Alan Blackwell designed a course curriculum based on Andy 

Dearden‘s Case Studies in Software Design course that required 

his students to join an open source development project [7]. They 

had to introduce themselves to the community, learn about the 

software by asking questions, pick up a bug to fix, fix the bug, and 

then interact with the management of the project to get the patch 

checked in. This course plan takes Guzdial‘s illegitimate peri-

pheral participation to its legitimate endpoint. This increases the 

fidelity of the social side of software development and gives stu-

dents opportunities to explore and modify (fix bugs, write new 

features) existing large projects. While this may be pedagogically 

risky, it is possible to carve out a safe region of older code in ad-

vance to scaffold the students‘ understanding. In addition, the use 

of legacy code presents an opportunity to interact with more expe-

rienced people who had worked on the code before, and learn how 

to ask them questions about the code and its rationale and persist 

until they get some useful answers.  

Harvey Mudd‘s final year project course, Clinic, provides an even 

more legitimate simulation of industry practice. In Clinic, student 

teams work on software engineering projects for local businesses 

who come up with project ideas, provide requirements and direc-

tion, and interact with students as customers. While the interaction 

with the customer is of high fidelity, students form their own re-

mote software team, and do not often interact closely with the 

business‘ development teams. Barry Boehm teaches a similar 

course for graduate students in software engineering at the Uni-

versity of Southern California. These courses additionally provide 

a convenient stage for empirical studies of software engineering.  

Hazzan and Tomayko‘s Human Aspects of Software Engineering 

[38] course specifically simulates of the social dynamics of soft-

ware teams. Their software engineering course teaches students 

about handling difficult social situations on software teams, eth-

ics, processes and techniques for learning on the job, how incen-

tive structures are conceived, and values that affect team perfor-

mance and cohesiveness. 

6.3 Mentoring 
Newcomer socialization research shows the importance of men-

toring to the newcomer‘s success. Newcomer acquire information 

by observation most easily from their mentors [29], but fall back 

to co-workers when mentors are not available. Mentors introduce 

newcomers to people in their social network and help build rela-

tionships with the people can best answer their questions and sup-

port opportunistic learning situations. Fisher [11] shows that so-

cial support from mentors and peers lessens stress, anxiety, unmet 

expectations, and increases self-esteem. Proactive attempts by 

mentors and managers provide a newcomer with the organization-

al context; this context helps a newcomer better align their expec-

tations with reality. Proactivity by mentor and manager have been 

shown to be more effective in improving socialization outcomes 

than proactive attempts by the newcomer to gain information and 

knowledge on his own [25].  

Berlin and Jeffries conducted a study observing apprenticeship 

consulting interactions and note that interactions with mentors 

provide incidental learning, where apprentices get more than they 

asked for, or thought they needed [4]. Berlin also reports that 

mentors are available to answer simple questions, but go more 

deeply when the apprentice is ready for the information [6]. They 

explain design rationale, help to find difficult to find information, 

and provide advice on procedures and processes. Basically, men-

tors teach newcomers how to fit in both technically and socially.  

Berlin and Jeffries [4] also found that novices easily get tripped 

up learning to use new tools and often use new tools inefficiently 

due to uncertainty about tool capabilities. Berlin suggests three 

reasons why novices are less productive than experts [6]. Experts 

are less derailed by minor obstacles; they use better tools to facili-

tate common tasks, and they are able to use other experts faster, 

for their difficult problems. She attributes this last reason to cul-

tural factors that encourage novices to ―figure things out on their 

own,‖ and only ask questions about semantic issues, rather than 

―simple‖ issues with tools and procedures. Kirschenbaum [17] 

found similar results in a study of Naval instructors – novices 

considered too many alternate solution paths and were only able 

to utilize surface domain knowledge, like that obtained in text-

books, which turned out to hinder their search accuracy by limit-

ing the range of options that novices considered when solving a 

problem.  

Peer mentoring was an important source of learning and informa-

tion for two of the subjects in our study. These two joined Micro-

soft at the same time as a friend. Every time they learned some-

thing new, they would tell their friend (and vice versa). This was 

much more fluid than knowledge transfer from a mentor or man-

ager to the new hire. Peer mentors are at similar levels of expe-

rience, and feel more comfortable exchanging information about 

these basic tasks without feeling insecure about revealing their 

lack of knowledge. At the end of the study, we asked all of the 

subjects whether they felt confident enough to mentor someone 

new. Five of eight said yes, but only in the ―getting started‖ tasks 

that all new developers would have to go through. They did not 

yet feel comfortable being the ―go-to‖ person for information 

about their product. 

Many universities use mentoring as an approach to improve reten-

tion of women and under-represented minorities in computer 

science education [26] [30]. Mentoring increases the sense of 

belonging by enabling mentor and protégé to relate on culture, 

diversity, and values which may not be reflected in daily work 

practice [30]. This helps move the novice from the periphery of 

the social network towards the center.  



7. IMPLICATIONS FOR CHANGE 
Our observations of novices analyzed through the lens of newco-

mer socialization suggest a set of possible changes to new hire 

―onboarding‖1 programs and university computer science curricu-

la – to prepare new college graduates for the ways that new devel-

opers work before they become experts, and hopefully, speed 

them along the process of gaining expertise. 

7.1 New Developer Onboarding  
Many new hires at Microsoft are assigned a mentor for their first 

few months on the job; we believe that the best outcomes are as-

sociated with intensive mentoring in the first month. A good men-

tor does not simply provide pointers to extant information on 

tools, processes and people, but models proper behavior and ac-

tions. For example, when Subject V came to someone in his team 

(incidentally, not his official mentor) with a bug reproduction 

problem, this person mentored him by looking at the bug report 

with him, figured out that it was inherently ambiguous (which was 

causing the new developer his reproduction problems), looked up 

the people who had written the bug report, and composed, with 

Subject V, an email to the bug report author asking about the am-

biguity. He then looked up the author in the corporate address 

book, found out that he was in the building, and asked Subject V 

if he wanted to go visit the author in person. This process visceral-

ly demonstrated to the new hire how the social norms of Micro-

soft worked – in a way that merely telling him would not have 

done.  In contrast, Subject V's official mentor was quite busy, 

which limited his availability. He often simply pointed Subject V 

at resources and documentation – sometimes incorrectly so. 

Mentors and managers who are effective teachers and coaches 

will improve the employee experience and the team‘s productivi-

ty. They should be proactive to overcome a new hire's perfor-

mance anxiety. Teaching capability is paramount since they inte-

ract with novices more often than anyone at the company. Men-

tors and managers should model proper behaviors associated with 

work practices, e.g. bug triage, code review, status meetings, and 

asking for help from others. This can be bootstrapped by gather-

ing best practices from managers and mentors around the compa-

ny, and combined into a form that could be spread to others.  

Along with increasing the effectiveness and pro-activity of man-

agers and mentors is doing the same for the new developers them-

selves. A new hire mailing list and/or chat room, per software 

team, could alleviate anxiety and foster a community of questions 

and answers about topics deemed too ―simple‖ to ask a more ex-

perienced colleague. A similar practice to cohort mentoring is to 

have slightly more experienced colleagues mentor new hires – 

they have a similar outlook on their job since they are still begin-

ners, and have additional related experience with which to offer 

advice and career mentoring in a way that much more experienced 

colleagues cannot relate.  

Learning who team members are and how their projects are struc-

tured is an important activity often left for assimilation by new 

hires. We propose feature interviews to address this. A new de-

veloper will make appointments each week with a different devel-

oper on their team; in this appointment, she will interview the 

developer to learn about the features that the developer owns, the 

                                                                 

1 The term onboarding is the Microsoft term for the orientation 

process by which new hires adjust to and become effective 

software developers within the corporation. 

features‘ overall architecture and place within the larger system, 

the design and implementation challenges faced, the developer‘s 

job philosophy, and what the developer finds personally interest-

ing or meaningful about their work. Hopefully, this would teach 

the new developer about the software system as it exists (rather 

than its specification) slowly, over time, giving the novice time to 

assimilate the information. It should also help to spread the value 

system and culture of the workplace more deliberately than now, 

which would help novices identify which values are held by all, 

and which should not be held by anyone.  

How do managers measure the performance of new developers? 

They will not be as productive as experienced developers and 

their learning process is an important aspect of their development. 

We feel that the right set of metrics would judge new hires on 

time spent learning, risk-taking, and cooperation with others. Ad-

ditionally, mentors would be judged on how fast the new hire 

came up to speed, rather than being assigned a novice as an unva-

lued side project. Many of the new hires we spoke to mentioned 

that they wished they had taken more time in the first few months 

to simply learn the system in breadth and depth, rather than jump-

ing straight into a project and trying to work like an experienced 

developer. They said their managers did not expect them to be 

productive from day one, but now later in their tenure, they had 

too much ―real work‖ to do to spend much time learning. We are 

developing a framework for teams and mentors to create a set of 

benchmark guidelines listing a series of personal development 

milestones, e.g. when to write one‘s first feature, or review some-

one else's code, or be assigned a bug, or write one's first bug re-

port. Each procedure can be written down and made part of a 

―curriculum‖ for new developers, so that their progress can be 

monitored. This monitoring would also enable companies to 

measure the effects of any changes they make to the onboarding 

process, in order to see if it improves the status quo.  

Personal software processes can be used to help novices reflect on 

their progress through a task, and provide an artifact to share with 

mentors, managers and other helpful colleagues early on to illu-

strate process mistakes and potential for improvement. New de-

velopers should be encouraged to think about how to figure out 

what to do next at any moment, when they should ask for help, 

and when they are stuck or making progress. One could adapt 

performance monitoring techniques from intelligent tutoring sys-

tems to understand developer activities and help notify novice 

developers to get up and ask someone for help at the moment they 

really need it. Combined with expertise finders, one could support 

computer-mediated pre-emptive mentoring [1], whereby local 

experts are notified when novices in their group are having trouble 

and/or are stuck on a problem, and be encouraged to go over to 

the novice and help them out face-to-face, before the novice 

wastes too much time being stuck.  

7.2 Educational Curricula 
In many universities, ―greenfield‖ software engineering capstone 

courses expose students to a full design, implementation and 

test cycle, and in doing so, teach students how to work on a team 

of many people on a relatively large piece of software while re-

maining in a pedagogically supportive setting. These students take 

on roles such as requirements engineer, developer, tester, docu-

menter, and work together to deliver software to a customer, 

usually in an egalitarian fashion. The de facto leader of most of 

these teams is the teaching assistant or course instructor.  



Our study reveals that new developers find themselves in situa-

tions that differ considerably from the university experience de-

scribed above. Many of the social and communication problems 

we found, especially with Subjects X and W, were rooted in the 

anxieties of working on a large team with a large, legacy code-

base. The anxiety of being the most junior member of a team in-

curs the need to impress everyone. The anxiety of not knowing the 

code at all requires ―wasting‖ time to learn it. They feel anxiety in 

taking too long to solve problems. Courses that incorporate team-

work typically do not address these insecurities. 

Instead of a greenfield project, a more constructive experience 

might provide students a large pre-existing codebase to which 

they must fix bugs (injected or real) and write additional features. 

Incorporating a management component would be valuable, 

where students must interact with more experienced colleagues 

(students who have taken the class previously, who can act as 

mentors) or project managers (teaching assistants) who teach them 

about the codebase or challenge them to solve bugs several times 

until the ―right‖ fix is found. During the development process, 

students could be asked to log bugs in a bug database, develop 

bug reproduction steps, and/or triage the importance of the bugs 

given some planned release schedule. 

In large software projects, bug fixes are not just code changes. 

There are many possible fixes for any particular bug — each one 

has to pass a social bar in addition to a technical one. Simulate 

some possibilities: how ―big‖ is the bug fix? How many lines of 

code does it touch? The more lines of code changed, the more 

likely you have introduced a new bug. Does the fix touch code 

that is frozen at this point in the development cycle? If so, find 

another fix that masks the bug in unfrozen code. Instead of grad-

ing students on fixing all bugs in their assignments, have them 

document the bugs and prioritize just the 25% that are most worth 

fixing, and have them justify their reasoning.  

Instructors should take time in class to model meta-cognitive 

skills for students. How do you know if you are making progress? 

How should you organize your thoughts when asking a colleague 

a question or bringing them up to speed? How do you get the most 

out of interactions with a teacher or mentor? How do you take 

notes when the person giving you instruction is ill-trained as a 

teacher (and may be your manager)? Students who are well-

trained in these arts will make better peer mentors for a new class 

of software engineers in future software development positions. 

Another lesson from organizational management is that newco-

mers with more accurate expectations have higher self-efficacy 

and less role ambiguity [11]. All of those in our study had signifi-

cant mismatches between their job expectations and reality. This 

led some to question why they were working at Microsoft. Work-

ing closely with managers helps to realign expectations for both 

parties [25]. A way to improve the accuracy of expectations for all 

computer science students and potentially improve retention of 

women and underrepresented minorities is to create a set of new 

hire videos. In these videos, new developers in industry could talk 

about their experiences, reflections on their university education, 

expectations, and daily tasks. While most software developers‘ 

jobs would not be considered ‗sexy,‘ they do involve quite a bit 

more communication and social activity than pure functional 

knowledge of programming, design and debugging. These videos 

could serve as a reality-check and recruiting tool for college stu-

dents who think that technology is cool, even if they do not wish 

to become programmers. 

8. CONCLUSION AND FUTURE WORK 
This study looks at new college graduates starting their first soft-

ware development jobs and finds that many of the problems they 

have typically have a root cause in poor communication skills and 

social naïveté. When viewed from the perspective of newcomer 

socialization, these results are not surprising. By adapting the 

lessons learned from the organizational management literature to 

the specifics of software engineering roles, we gain insight into 

how the use of particular instructional pedagogies, such as pair 

programming, legitimate peripheral participation and mentoring, 

may be able to more effectively prepare college students for the 

kinds of experiences they will face in industry than traditional 

curricula.  

In the future, we will be exploring how new software developers 

―onboard‖ on geographically distributed teams, especially when 

the majority of the team works remotely from the newcomer. The 

literature suggests tragedy and conflict will ensue. We plan to 

intervene in this process and bring all of our educational and in-

dustrial suggestions to bear to improve this kind of orientation 

experience for the newcomer and the team. We also hope to study 

the onboarding process for other roles (testers and requirements 

engineers), for non-US locations (e.g. China, India) and for large 

numbers of people due to corporate acquisitions. 

We would like to this see this kind of study replicated at other 

software companies to understand better which behaviors are 

specific to Microsoft and which are generic to the industry. We 

would also like computer science education researchers to study 

novices in university using observation, video diary and inter-

view-based methodologies similar to those we used to learn how 

the lessons of newcomer socialization could be applied to univer-

sity experiences. Please email us if you would like to use our ma-

terials in your studies. 

9. ACKNOWLEDGMENTS 
We thank Microsoft for inviting and funding Beth Simon to con-

duct this study with Andrew Begel. We also thank our study par-

ticipants for their patience during our observations. 

10. REFERENCES 
[1] Ashforth, B. E., Saks, A. M. Socialization tactics: longitu-

dinal effects on newcomers adjustment. Academy of Man-

agement Journal, 39, 149-178. 1996 

[2] Bauer, T., Bodner, T.,  Erdogan, B.,  Truxillo, D., Tucker, J. 

Newcomer adjustment during organizational socialization: A 

meta-analytic review of antecedents, outcomes, and methods. 

Journal of Applied Psychology, 92, 707-721. 2007 

[3] Begel, A. Help, I Need Somebody! In the CSCW Workshop: 

Supporting the Social Side of Large-Scale Software Devel-

opment, Banff, Alberta, Canada, Nov 2006. 

[4] Begel, A. and Simon, B. Struggles of New College Gra-

duates in their First Software Development Job. In the Pro-

ceedings of SIGCSE. Portland, OR. Mar 2008. 

[5] Berlin L. M. and Jeffries, R. Consultants and apprentices: 

observations about learning and collaborative problem solv-

ing. In Proceedings of CSCW. Toronto, ON, Canada, Nov 

1992. 

[6] Berlin, L. M. Beyond program understanding: A look at pro-

gramming expertise in industry. In Empirical Studies of Pro-

grammers: Fifth Workshop, pages 6–25. Ablex Publishing 

Corporation, 1993.  



[7] Blackwell, A. F. Toward an undergraduate programme in 

Interdisciplinary Design. University of Cambridge Computer 

Laboratory Technical Report UCAM-CL-TR-692. 2007 

[8] Brechner, E. Things They Would Not Teach Me of in Col-

lege: What Microsoft Developers Learn Later. In Proceed-

ings of OOPSLA. Anaheim, CA. Oct 2003. 

[9] Bruckman, Amy. ―The MediaMOO Project: Constructionism 

and Professional Community ― In: Kafai, Y., Resnick, M. 

(Eds.), Constructionism in practice: Designing, thinking and 

learning in a digital world, Lawrence Erlbaum Associates, 

Mahwah, NJ. pp. 71-96. 1996 

[10] Curtis, B. Krasner, H., Iscoe, N. 1988. A field study of the 

software design process for large systems. Communications 

of the ACM. 31(11), pp. 1268-1287, Nov 1988.  

[11] Fisher, C. Social support and adjustment to work: A longitu-

dinal study. Journal of Management, 11, pp. 39-53. 1985 

[12] Flor, N., Hutchins, E. Analyzing distributed cognition in 

software teams. Empirical Studies of Programmers: Fourth 

Workshop. J. Koenemann-Belliveau, T. Moher, S. Robert-

son, Eds. Ablex, Norwood, NJ, 1991  

[13] Guzdial, M., Tew, A. E. Imagineering inauthentic legitimate 

peripheral participation: an instructional design approach for 

motivating computing education. In Proceedings of ICER. 

Canterbury, United Kingdom, Sept 2006.  

[14] Jones, G. Socialization tactics, self-efficacy, and newcomers‘ 

adjustments to organizations. Academy of Management 

Journal, 29, pp. 262-279. 1986 

[15] Kafai, Y. B., I. Harel Children Learning Through Consulting: 

When mathematical ideas, knowledge of programming and 

design, and playful discourse are intertwined. Construction-

ism. I. Harel and S. Papert. Norwood, NJ, Ablex: pp. 110-

140. 1991 

[16] Kim, T., Cable, D., Kim, S. Socialization tactics, employee 

productivity, and person-organization fit. Journal of Applied 

Psychology, 90, pp. 232-241. 2005 

[17] Kirschenbaum, S. Influence of experience on information-

gathering strategies. Journal of Applied Psychology, 77, pp. 

343-352. 1992 

[18] Klein, H., Weaver, N. The effectiveness of an organizational-

level orientation training program in the socialization of new 

hires. Personnel Psychology, 53, pp. 47-66. 2000 

[19] Ko, A., DeLine, R., Venolia, G. Information Needs in Collo-

cated Software Development Teams. In Proceedings of 

ICSE. Minneapolis, MN. May 2007.  

[20] Krasner, H., Curtis, B., Iscoe, N. Communication break-

downs and boundary spanning activities on large program-

ming projects. In Empirical Studies of Programmers: Second 

Workshop, G. M. Olson, S. Sheppard, and E. Soloway, Eds. 

Ablex Publishing Corp., Norwood, NJ, pp. 47-64. 1987 

[21] Kraut, R. E., Streeter, L. A. Coordination in software devel-

opment. Communications of the ACM. 38(3). pp. 69-81. 

1995. 

[22] LaToza, T., Venolia, G., DeLine, R. Maintaining Mental 

Models: A Study of Developer Work Habits.  In the Proceed-

ings of ICSE. Shanghai, China. May 2006. 

[23] Lave, J., Wenger, E. Situated Learning. Legitimate Peripher-

al Participation. Cambridge University Press. Cambridge. 

1991.  

[24] Lethbridge, T. C. A Survey of the Relevance of Computer 

Science and Software Engineering Education. In Proceedings 

of CSEET. Washington, D.C. Feb 1998. 

[25] Major, D., Kozlowski, S., Chao, G., Gardner, P. A longitu-

dinal investigation of newcomer expectations, early sociali-

zation outcomes, and the moderating effects of role devel-

opment factors. Journal of Applied Psychology, 80, pp. 418-

431. 1995 

[26] Margolis, J., Fisher, A. Unlocking the Clubhouse: Women in 

Computing. Cambridge, MA: MIT Press. 2003 

[27] McDowell, C. Werner, L., Bullock, H. E., Fernald.  Pair 

programming improves student retention, confidence, and 

program quality.  Communications of the ACM, 49(8): pp. 

90-95, 2006. 

[28] Ostroff, C., Kozlowski, S. Organizational socialization as a 

learning process: The role of information acquisition. Per-

sonnel Psychology, 45, pp. 849-874. 1992 

[29] Ostroff, C., Kozlowski, S. The role of mentoring in the in-

formation gathering processes of newcomers during early or-

ganizational socialization. Journal of Vocational Behavior, 

42, pp. 170-183. 1993 

[30] Payton, F. C., White, S. D. Views from the field on mentor-

ing and roles of effective networks for minority IT doctoral 

students. In Proceedings of SIGMIS Conference on Comput-

er Personnel Research. Philadelphia, PA, Apr 2003. 

[31] Perkins D. N., Hancock C., Hobbs R., Martin F., Simmons R. 

Conditions of learning in novice programmers. In Soloway 

E. and Spohrer J. C. (eds), Studying the Novice Programmer, 

Lawrence Erlbaum Associates, Hillsdale NJ. 1989 

[32] Perlow, L. The time famine: Toward a sociology of work 

time, Administrative Science Quarterly, 44 (1), pp. 57–81. 

1999. 

[33] Riecken, R. D., Koenemann-Belliveau, J., Robertson, S. P. 

What Do Expert Programmers Communicate by Means of 

Descriptive Commenting?. In Koenemann-Belliveau, J., 

Moher, T. G. and Robertson, S. P. (eds.) Proceedings of the 

Fourth Workshop on Empirical Studies of Programmers, 

Norwood, NJ. pp. 177-195. 1991 

[34] Saks, A., Uggerslev, K., Fassina, N. Socialization tactics and 

newcomer adjustment: A meta-analytic review and test of a 

model. Journal of Vocational Behavior, 70, pp. 413-446. 

2007 

[35] Schein. E. H. The individual, tbe organization and the career. 

Journal of Applied Behavior Science, 7, pp. 401-426. 1971 

[36] Simon, B., Hanks, B. First Year Students' Impressions of 

Pair Programming in CS1. In the Proceedings of ICER. At-

lanta, GA. Sept 2007. 

[37] Taft, D. K. Programming Grads Meet a Skills Gap in the 

Real World. eWeek.com. Sept 3, 2007. 

[38] Tomayko, J. E., Hazzan, O. Human Aspects of Software 

Engineering. Charles River Media, Hingham, MA, 2004. 

[39] Van Maanen, J., Schein, E. Towards a theory of organiza-

tional socialization. In B. M. Staw (Ed.), Research in organi-

zational behavior. 1, pp. 209-264. Greenwich, CT: JAI Press. 

1979 

[40] VanDeGrift, T. Coupling pair programming and writing: 

learning about students' perceptions and processes. SIGCSE 

Bulletin 36(1) Mar. 2004, pp. 2-6. 

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-692.html
http://www.interaction-design.org/references/authors/r__douglas_riecken.html
http://www.interaction-design.org/references/authors/jurgen_koenemann-belliveau.html
http://www.interaction-design.org/references/authors/scott_p__robertson.html
http://www.interaction-design.org/references/authors/jurgen_koenemann-belliveau.html
http://www.interaction-design.org/references/authors/thomas_g__moher.html
http://www.interaction-design.org/references/authors/scott_p__robertson.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_fourth_annual_workshop_on_empirical_studies_of_programmers.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_fourth_annual_workshop_on_empirical_studies_of_programmers.html

