
 

 

 

 

 

What makes a great software engineering manager? 
 

 

Journal: Transactions on Software Engineering 

Manuscript ID TSE-2017-03-0064.R1 

Manuscript Type: Journal First 

Keywords: 

D.2.9.e Organizational management and coordination < D.2.9 Management 
< D.2 Software Engineering < D Software/Software Engineeri, D.2.9.h 
Productivity < D.2.9 Management < D.2 Software Engineering < D 
Software/Software Engineering, D.2.9.i Programming teams < D.2.9 
Management < D.2 Software Engineering < D Software/Software 
Engineering 

  

 

 

*****For Peer Review Only*****



1

What Makes a Great Manager
of Software Engineers?

Eirini Kalliamvakou, Student member, IEEE , Christian Bird, Member, IEEE ,

Thomas Zimmermann, Member, IEEE , Andrew Begel, Member, IEEE , Robert DeLine, Member, IEEE ,

Daniel M. German

✦

Abstract—Having great managers is as critical to success as having

a good team or organization. In general, a great manager is seen

as fuelling the team they manage, enabling it to use its full potential.

Though software engineering research studies factors that may affect

the performance and productivity of software engineers and teams (like

tools and skill), it has overlooked the software engineering manager. The

software industry’s growth and change in the last decades is creating

a need for a domain-specific view of management. On the one hand,

experts are questioning how the abundant work in management applies

to software engineering. On the other hand, practitioners are looking to

researchers for evidence-based guidance on how to manage software

teams. We conducted a mixed methods empirical study of software

engineering management at Microsoft to investigate what manager at-

tributes developers and engineering managers perceive important and

why. We present a conceptual framework of manager attributes, and

find that technical skills are not the sign of greatness for an engineering

manager. Through statistical analysis we identify how engineers and

managers relate in their views, and how software engineering differs

from other knowledge work groups in its perceptions about what makes

great managers. We present strategies for putting the attributes to use,

discuss implications for research and practice, and offer avenues for

further work.

Index Terms—software engineering management; empirical studies;

software companies

1 INTRODUCTION

Case studies from diverse industries show that great man-
agers make a significant difference in the performance of
teams and organizations [1], [2], [3]. Conversely, the wrong
person in a manager role has detrimental effects on em-
ployee engagement, productivity, and the quality of pro-
duced results [4]. As software development today is done
in teams, managers are essential to organize the effort of
creating good software and manage the people that carry it
out.

The manager’s role is multifaceted. One of their respon-
sibilities is to deliver a product that makes the organization
successful. This is generally captured by various metrics of
productivity, performance, profitability etc. The manager is
also responsible for creating conditions where employees
feel motivated and productive. Success here is captured in
the employees’ perceptions, which studies show determine
behaviour and impact organizational outcomes [5], [6], [7].
Thus understanding what impacts engineers’ perceptions of

their managers is of high importance. Unfortunately, we still
don’t know what to look for in a great software engineering
manager, and how to further develop their skills to support
the teams they manage.

As the software industry undergoes tremendous change
every year, researchers must continually rethink the fac-
tors that affect the traditional concept of productivity1. In
this vein, our research goal is to understand how software
engineering managers function and what is perceived to make
them great. Great managers positively impact motivation
and engagement [8]; we aim to raise awareness of these
aspects, as they can affect software engineering outcomes,
even if in a second-order manner. We look for attributes
that are perceived to characterize great software engineering
managers, how and why these attributes are important, and
how they are used specifically in this domain.

The study we report in this paper used a mixed meth-
ods approach. We conducted 37 semi-structured interviews
with engineers and managers of varied demographics at
Microsoft. We then used their input to create and deploy
a survey to 3,646 engineers and managers, using a question-
naire grounded on contextualized information. We found
that the engineering manager guides engineers to make
decisions, motivates them, and mediates their presence in
the organization. To that end, a sufficient level of technical
knowledge is necessary but people management skills are
critical for great software engineering managers. Comparing
the perceptions of managers to engineers in our analysis,
we found general alignment but also identified specific
differences that can help tailor management approaches.

Our results have novelty for software engineering, but
also link to organizational psychology and behaviour, and
apply to other knowledge work domains. Through a sepa-
rate survey, we reviewed how the perceptions in software
engineering relate to those in other knowledge worker
groups within Microsoft. Identifying the similarities and dif-
ferences between domains’ perceptions can help us under-
stand what conditions are likely to make manager practices
effective.

In this paper:

1. Rethinking Productivity in Software Engineering: https://www.
dagstuhl.de/en/program/calendar/semhp/?semnr=17102

Page 1 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

• we contribute a conceptual framework of fifteen at-
tributes that characterize great engineering managers

• we offer contextual examples of how these attributes
are put into action, and discuss the role of technical
knowledge for managers to be great

• we provide quantitative evidence about how the
attributes rank in perceived importance, what demo-
graphic differences exist, and how the findings from
software engineering compare to other knowledge
work domains.

Our study has implications for both practice and re-
search. Our conceptual framework can be used by new
and existing engineering managers, or those in training, to
highlight which attributes they should focus on to improve.
The identified attributes also fuel further work, to measure
their impact on organizational or engineering outcomes.

2 RELATED WORK

In this paper, we set out to explore how software engi-
neering management works in practice at a large software
company, and identify the particular aspects which are
relevant today. Our work draws on multiple perspectives,
and we relate our findings to other knowledge work groups.

Many theories have been developed around how to
manage organizations in general. Originally, these theories
focused on how workers perform tasks. In the 1920s, works
by Taylor [9], the Gilbreths (described in [10]) and Gantt [11]
formed the classic era of management, when studies of
how to speed up production offered advice to managers
on how to organize the tasks and environment for factory
workers to be efficient. Between the 1920s–1950s, the field of
management turned its attention to how workers thought
and felt about their work (see [12] for a detailed overview)
aiming to motivate employees to identify with organiza-
tional goals [13], [14], and improve performance [15].

Two milestones have been key to shifting the focus of
management on managing people. The first one was the
introduction of psychology and sociology theories in man-
agement, researching factors that impact human needs [16]
to better understand workers’ motivation [17] and engage-
ment [18]. Especially after the 1960s—considered the mod-
ern era of management—the focus is on employee work
attitudes and motivation [19] and the recognition of people
management as separate from work organization or project
management [20]. The second milestone was the rise and
increased mobility of knowledge workers, which turned
attention towards the behavioural aspects of employees [21].
Peter Drucker [22] led management thinkers to see the
corporation as a social institution and workers as assets,
challenging existing management principles as fit only for
manual labour.

After decades of research on management in general,
there are a large number of theories that describe managers
and their behaviors in the organization. However, if one
wants to apply these theories in a particular domain such
as software engineering, the factors in their models must
be reduced to practice. A recent review of this literature
was done by Lenberg et al., describing the intersection of
organizational psychology with “behavioral software engi-
neering” [23]. They found 23 relevant papers on leadership

of software teams since 1997, and concluded that still more
human-oriented studies are needed in software engineering.

Although software engineering management is often
equated to project management [24], [25], [26], some books
about software engineering project management also men-
tion people management; for example, Lister and DeMarco’s
Peopleware [27] discussed such issues in software projects
early on. Beecham et al. conducted a systematic literature
review of motivation in software engineering and reported
studies that show a strong impact of managers and their
practices on engineers’ motivation [28]. Other books fo-
cus on advising developers on how to act in a more col-
laborative or socially-aware manner [29]; or take an en-
trepreneurial view on management [30]; or are anecdotal
and based entirely on the (admittedly extensive) experience
of the author [31]. Stories of bad managers are widespread,
often showing how their behavior contributes to product
failures [32].

In the majority though, literature on software engi-
neering management focuses on prescribing formalized ap-
proaches (e.g the Spiral and Waterfall models) or alternative
approaches (e.g Agile and Lean) to scheduling, planning,
and delivering software products on time and budget. The
Software Engineering Body of Knowledge [33] briefly ad-
dresses group dynamics and teamwork, but overlooks the
management of teams and their members.

Looking to the popular press for inspiration, some au-
thors have a cynical view of management theories and
prescriptions [34] while some offer anecdotal evidence and
advice for management behaviour that they believe led to
their success [35]. Other experts focus on the relevance
of management principles in domains that undergo rapid
growth and change [36] (such as in the technology and
software industry [37]).

There seems to be a need for studies to understand
people management in software engineering and how man-
agement principles apply or relate to the software engineer-
ing domain. The study we present in this paper aims to
address this. While we acknowledge and draw on research
on general management, we set out to explore how engi-
neering management works in practice and which aspects
are relevant today, without presupposing. We have also
drawn on multiple perspectives, and related our findings
to other knowledge work groups.

Two studies have discussed aspects of management,
specifically in software engineering organizations.

Our study shares some similarity of purpose and find-
ings with a study from Li et al. [38], which investigated
software engineering expertise. The study identified 53 at-
tributes of great software engineers. Some of the attributes
that were found important for engineers were recognized
as potentially inspired or facilitated by the manager; for
example, creating shared success for everyone on the team, or
creating a safe haven where engineers could make mistakes
without repercussions. Our study independently identified
these as important attributes for engineering managers too,
and also uncovered complementary ones and strategies to
enact them.

Recently, researchers at Google (a software engineering
company of comparable size to Microsoft) investigated the
question, “Do managers matter?” [39], [40] and found 8 be-

Page 2 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

haviors for great managers in their organization. In a follow-
up study of what makes effective teams, Google found it is
important that team members feel psychologically safe [41],
and have clarity about their purpose and goals [42]; these
are aspects that the manager can influence in a positive way.
We refer back to these studies in Section 9, and discuss how
they relate to the findings we present in this paper.

Virtual teams often provide a context in which man-
agement proficiencies and deficiencies can have a strong
impact on the team. Saxena and Burmann [43] looked at
the special needs of virtual and globally distributed teams,
especially focusing on task-related and culturally-related at-
tributes that affect team performance. Managers must facil-
itate communication and effective interactions between far-
flung team members and empower them to make decisions
independently (due to time zone differences). Kayworth
and Leidner also focus on virtual teams, identifying factors
such as mentoring and empathy, which help make managers
more effective leaders [44]. Zhang et al. identify how man-
agers evolve from controlling virtual teams, to coordinating
work among team members. Becoming an effective delega-
tor, even of management functions and decision-making, is
a key factor to making virtual teams successful. [45].

3 METHODOLOGY

Our research methodology comprised two high level
phases. In the first, exploratory, phase, we interviewed 37
software engineers and engineering managers to identify
perceived important attributes of great software engineering
managers. In the second, confirmatory, phase, we developed
and deployed a survey to a larger population.

3.1 Interviews

We used interviews to identify the important attributes that
make a great software engineering manager, as well as
understand why such attributes are seen as critical and how
they manifest in software engineering contexts.

Participant selection. We purposely sought to interview
a diverse group to capture as many varying opinions and
experiences as possible. To that end, we used a stratified
purposeful sampling approach [46] to recruit interviewees.
This selection strategy is a form of Maximum Variation
Sampling [46] and is appropriate when “the goal is not to
build a random and generalizable sample, but rather to try
to represent a range of experiences related to what one is
studying.” To capture multiple perspectives, we interviewed
software engineers (those being managed), and managers at
multiple levels.

Software engineering manager (or simply, engineering man-
ager) is the name of a particular role at Microsoft. According
to the job description, these managers are responsible for
delivering results through one or more teams of engineers;
they assist the team with goal setting, handle hiring deci-
sions, manage resources for the team(s), and are responsible
for guiding the engineers’ professional development and
reviewing their performance. As part of communicating
business direction to their team(s), engineering managers
liaise with other teams and meet with upper management.
Before major releases, engineering managers represent their

team in cross-team discussions about project status, and
decisions on the features that ship to customers.

Although our study focuses on the engineering manager
role, we elicited the perspectives of managers at multiple
levels. These included team leads (often owning a feature
with a small number of engineers reporting to them),
engineering managers, and upper level managers (those that
hire, advise, and review engineering managers). Since we
found that responses were in alignment across the different
management roles, we make no distinction in the remain-
der of the paper; we simply divide those interviewed and
surveyed into engineers and engineering managers.

For both engineers and managers, we selected partici-
pants along the dimensions of experience (new to the role—
hired in the last 6 months—or long time in their current
role—longer than 5 years), number of employers (has their
entire career been at Microsoft or have they worked else-
where), gender, organizational level (engineer, team lead, en-
gineering manager, and upper level manager), and product
group (e.g., Windows, Office, Azure).

We sent recruitment emails to a random sample ranging
between 10 and 50 people, depending on the size of the
stratum. For those that accepted (37 persons), we sent a
follow up email asking them to select and rank the top
five most important attributes from a list of 16 manager
attributes (we refer to those as seed attributes in the rest of
the paper). Table 1 shows the role and experience of the 37
interviewees. In the parentheses we provide the number of
participants that we sent invitations to from that stratum.

We asked only for the top five attributes knowing that
due to the cognitive load of rankings individuals usually
pay more attention to the top few choices rather than care-
fully ranking all alternatives, resulting in additional noise
in the lower rankings [47]. The online survey tool we used
allowed the participants to drag attributes as separate items
and place them in the order that represented their ranking.

The list of seed attributes was compiled based on two
sources. First, we used the 11 attributes used in the an-
nual company poll where Microsoft employees evaluate
their manager; most of the Microsoft Poll attributes can be
traced back to management literature. The second source of
seed attributes was our review of additional management
literature [48], [49], [22], [50], [39] (5 attributes); we added
attributes found in the literature that were not already in-
cluded in the company poll or very similar to those. We also
provided space for the participants to add other attributes
that they felt were important.

Interview protocol. We asked all participants—
regardless of their level—to refer to and talk about the
engineering manager role. We asked interviewees basic de-
mographic questions; the information collected was the
participants’ number of years of professional experience,
the number of different companies they worked in, and
their current role at Microsoft. Next, we had an in-depth
discussion of three of the attributes we selected from their
top five seed and write-in attributes. We determined that
a discussion of three attributes could pragmatically fit in
the time we had with the participants to both collect all the
information we needed, and not rush their answers. This
was confirmed as a fitting strategy after the first few inter-
views. The attributes were selected for discussion based on

Page 3 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

TABLE 1: Participants in the role and experience dimensions

New Experienced

Engineer P1, P2, P3, P4, P5
P6, P7, P9, P18, P20,

P23, P26
(out of 50) (out of 40)

Team Lead P27, P30 P28, P31, P32
(out of 10) (out of 10)

Manager
P11, P12, P14, P17, P19,

P21, P22, P25
P8, P10, P13, P15, P16,

P24
(out of 40) (out of 40)

Upper Manager
P29, P33, P34, P35, P36,

P37
(out of 20)

the ranking given by the participant; we chose the highest
ranking attributes. When interviewees had provided write-
in attributes that they felt were more important, we gave
these priority in our discussion. Gradually, as we achieved
saturation regarding some of the attributes, we intentionally
picked for discussion attributes that we had less information
about as long as the participants had highlighted them as
important (i.e. were in the top five).

We asked why they felt each attribute was important for
great managers to have. We also asked about strategies to
gain or utilize the attribute (for managers) to ensure our
understanding of the nature of the attributes, and to offer
actionable insights from our study. We intentionally used
the abstract term “great” without providing a definition so
as not to bias interviewees and instead gain an understand-
ing of what it meant to them. We accomplished this by
employing a “War Story” elicitation procedure to explore
concrete experiences from the interviewee related to the
attribute [51]. We explained that we were interested in expe-
riences they had any time during their development career,
not limited to Microsoft, and also asked them not to use
names or indicate whether various experiences, thoughts,
etc. referred to their current or prior teams or managers.
Interviews lasted from 30 minutes to an hour and were
recorded with the interviewee’s permission.

Analysis. The interviews were transcribed; we then
identified all attributes brought up during the interviews
and performed an open card sort to identify categories and
organized them into themes [52], [53]. Each card represented
an attribute that was described in an interview, either seed
ones or those that emerged from the participants; we sorted
83 cards into 15 categories. The card sorting was performed
by two of the authors (one of them was a Microsoft em-
ployee), in two rounds. For each category, we examined the
context for every card in that category and came up with
a name and a short list of examples for the attribute. The
interview transcriptions were then coded according to these
categories.

3.2 Survey

We designed a survey based on interview results to validate,
and see how the attributes generalize to a broader popula-
tion.

Survey instrument. The survey’s primary purpose was
to assess the importance of each of the identified attributes from

the interviews and determine if there were additional ones
to add. We asked respondents to rate each attribute of engi-
neering managers on a ten point scale from “not important”
to “critical”. The displayed order of the attributes was ran-
dom for each respondent. We provided the name of each at-
tribute with a short description of examples demonstrating
it in practice (see Table 2 for the text of each). We provided a
write-in question for respondents to provide attributes that
they felt were important; we received 123 responses to that
question. We reviewed the responses manually and found
that they were paraphrasing or giving concrete examples of
one of the 15 attributes or identifying a subcase of one of the
attributes and did not generate new input.

As with the interviews, all participants were instructed
to discuss the engineering manager role. That means that
engineers and team leads were discussing a role that is or-
ganizationally above them, the engineering managers were
discussing their own role, and the upper level managers
were discussing a role that is organizationally below them.

We probed the attribute being technical more with a sce-
nario based question, asking respondents to pick one of two
candidates for a manager position, and justify their choice.
The first candidate was described as excellent technically
and competent socially while the second one as competent
technically and excellent socially.

We collected gender demographics, geographical loca-
tion, role of the respondent, role of the person the respon-
dent directly reports to, size of the team the respondent is
in or manages, number of years the respondent has been in
their current role, and number of years they have been at
Microsoft in total. This allowed us to check for differences
in opinions from various demographics (e.g., gender, role).

We used Kitchenham and Pfleeger’s guidelines for per-
sonal opinion surveys in software engineering research [54].
We followed the practices suggested by Morrel-Samuels
for workplace surveys [55] such as avoiding terms with
strong associations, using response scales with numbers at
regular intervals with words only at each end, and avoiding
questions that require rankings. We piloted the survey [56],
with 199 randomly selected developers, team leads, and
engineering managers. The pilot included an additional
question at the end of the survey asking if anything was
unclear, hard to understand, or should be modified in any
way. We received 26 responses (13% response rate) and
based on feedback, we clarified the wording of several
questions. The full survey can be found in our supplemental
materials [57].

We sent the final survey to 3,646 people in the software
engineering discipline spread across the strata described.
The survey was anonymous, as this increases response
rates [58], [55] and leads to more candid responses. We
received 563 responses, leading to a 15% response rate.
This is comparable to online software engineering surveys,
which usually report 14% to 20% response rates [59]. A
power analysis indicated that for confidence intervals of 5%
at 95% confidence level, 384 responses are needed [60] which
are exceeded by our 563 responses.

Knowledge worker survey. To relate the findings in soft-
ware engineering to other knowledge worker domains, we
deployed a second survey in knowledge worker disciplines
at Microsoft that are not software engineering.

Page 4 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 5 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 6 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 7 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

in this sense they build the team culture. The culture covers
issues that have to do with the quality of work the team
aspires to:

!“Messaging to the team that ‘our goal is to ship a product
with 0 known bugs’ is a very aspirational goal, but it should be
everybody’s goal. You may not know what the bug is or how to
fix it, that’s a different thing, but there should be no concept in
people’s head that it’s okay to ship with bugs.” [P21]

The great engineering manager guides the team by
coaching developers on quality aspects; implementation
decisions are left to engineers, but the manager ensures that
software quality aspects like reliability, scalability, availabil-
ity, and extensibility are considered.

Similar to enabling autonomy, the technique that man-
agers agree works better is to ask questions rather than give
directives, and involve the team.

!“It’s more about asking questions instead of providing direct
answers, getting the team together for brainstorming to determine
direction instead of making decisions for people. Even if you
already know the outcome you need the team to get to, you can help
them arrive to the same conclusion and guide the conversation that
way.” [P27]

Developers and managers pointed out the importance
for the developers to be convinced about the direction,
connecting it to job satisfaction and turnover in the team:

!“If the engineers don’t feel they are doing something important
it doesn’t matter if it’s going to get them a promotion or money
because they will feel they are doing nothing with their lives,
because they spend so much time at work. If they don’t hear from
my boss that something is important to do it’s hard for them to
buy into the idea of doing this, and that guarantees churn.” [P14]

5.2 Motivates the engineers

Developers and managers agreed that a great engineering
manager promotes fairness in their interaction with the
individual engineer. One perceived component of fairness
was actively showing appreciation for the engineers’ work:

!" “They value your contributions, they give you feedback that
what you have done is helpful, or brought success to the team or
the organization. That is great motivation to engineers.” [P18]

Email—especially if upper management can be included
in the communication to give more exposure to the work—
and meetings were the commonly mentioned venues. Man-
agers give opportunities to the individual engineers to
present their work in team meetings where they can give
positive reinforcement in front of the whole team.

Managers highlighted that showing appreciation for the
engineers’ contributions is important, following a maxim
of “Praise publicly; correct privately” which has positive
impact on the developers’ trust and motivation. Great
managers hold themselves accountable for mishappenings;
doing this acts as a form of proof that helps developers be
candid when having work challenges. A manager gave the
following example:

!“Sometimes they forget tests for a scenario and there will be an
email from management about it. I will take the responsibility, and

then talk individually to the person to make sure we do a better
job. They know they didn’t get hit at that point and they trust
you; you protected them rather than passing blame.” [P28]

An extension of demonstrating appreciation, is that the
great engineering manager builds a relationship with each

team member. Knowing about personal interests beyond
work helps create common ground and empathy between
the developer and the engineering manager; it contributes
to motivate engineers, and helps build trust with the en-
gineering manager. Managers especially insisted on how
important this attribute is to great engineering managers,
and how it is frequently overlooked. Managers mentioned a
different approach to how they meet with engineers, based
on this attribute.

!“Having 1-1 meetings in their office is better, it gives them
home field advantage so that they don’t feel like they are going to
the principal’s office. We might talk about life and things at work,
it goes back and forth. It makes them comfortable and allows them
to open up about work things because we have camaraderie.” [P31]

The great engineering manager recognizes the individu-

ality of each engineer; this attribute helps the manager tailor
the work to the interests and skills of the engineer, and build
a team with complementing skills. A developer described
how this can impact productivity:

!"“I had a manager asking me what I was interested in and giving
me work related to that and I felt a lot more comfortable and
happier. I had a manager try to mold [sic] me to their definition of
what a good engineer does and I was probably working the hardest
and yet my output was probably the least.” [P9]

The great engineering manager takes steps to maintain a

positive working environment for the team. One example is
the flexibility to achieve work-life balance; it signals a man-
ager personally interested and invested in the well-being
of the engineer beyond the professional level. A second
example of maintaining a positive working environment is
energizing the team. One of the managers mentioned that
the general feeling in the stand up meetings shows the
team’s health.

!“We do daily scrum meetings that are about making fun of
each other, making jokes at 10 in the morning. We can tell in
the meeting a certain amount of health, and if people are happy
they are generally good with their job. They will also talk to me if
something is off.” [P31]

Finally, echoing the trait of showing appreciation on the
individual level, managers pointed out that celebrating team
successes is good for morale, and linked it to job satisfaction.

!“There is a lot of job satisfaction that comes from knowing
that people care about what you’re doing. Celebrations can also
be about transparency, I share all the feedback that we get from
higher up—good and not so good—people like to see a direct line
between what they do on a daily basis to senior leadership” [P35]

Engineers also described the importance of having a
positive working environment, sometimes even more so
than the work they do:

Page 8 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9

!" “I would compromise on the work or the product if the team
has a positive working environment which I think the manager
influences deeply.” [P9]

The great engineering manager inspires the team. This
attribute was almost exclusively mentioned by managers;
they felt that the engineering managers that are great are
viewed as leaders, although in organizational culture, man-
agement and leadership are seen as different functions [67].
The simplest way to explain the difference between manager
and leader was by drawing the line between enabling and
giving a directive.

!“Managers issue decrees, whereas leaders encourage everyone
to move to a certain direction. Are you telling them what to do in
a way that they are on board with it, they get it, and they see it as
a growth opportunity, not as a directive?” [P33]

5.3 Mediates communication

The engineering team has dependencies and communica-
tion needs with other teams in the organization [68]. A great
engineering manager mediates information flow between
their team and other stakeholders.

First, the great engineering manager clears the path

to execution. Engineering managers recognized that any
type of interruption can be detrimental to the engineers’
productivity:

!“The operational space for engineers is that flow moment where
they are deep into writing code. The last thing they need is some
random person—business person, or the manager—going “hey,
have you got a second?”, you just killed half their day in that
moment. Giving them the space to focus is important, just be the
person that tells other people to go away. Defend their time.” [P36]

The concept of “flow”—originally introduced by Csik-
szentmihalyi [69]—has been popularized and is now well-
known and frequently cited in software engineering prac-
tice. In a state of flow, the software engineer is focused
on their work and their performance is optimized [70];
unfortunately, the state of flow is fragile, and a developer
whose concentration is broken needs significant time to
recover. The concept of “flow” in this paper is distinct from
how “flow” is described in lean manufacturing and product
development where it refers to a sequence of development
actions, each clearly adding value to the creation of a prod-
uct [71] (citing [72]).

The great engineering manager acts as a noise filter,
protecting the developers’ flow state and keeping the path to
execution clear for them. A manager described this further
during the member checking:

! “[...] as an Engineering Manager I often feel that my job is to
shield the team from distractions, among other things, basically
to get out of their way, keep the business out of their way, and
let them execute against clearly communicated/understood/shared
goals.” [P14]

One strategy mentioned by the interviewees was for
the engineering manager to filter incoming requests to the
developer, and discuss with them individually if and how
to prioritize them. The engineering manager also handles

requests or changes coming from upper management, in
the service of flow. Developers and managers see the great
engineering manager shielding the team from changing
requirements (“randomization”, in corporate lingo), and
manage upwards to negotiate workload. Through insulation
from randomization, the engineering manager helps the
team maintain its collective flow and performance.

The great engineering manager also facilitates external

communication; with other engineering teams, and with
upper management.

Often, the engineering team has outgoing requests for
other teams; the great engineering manager pushes to get
what their team needs, especially if it is critical to work that
is underway. In facilitating communication with external en-
tities the manager is not bypassing the engineer or limiting
their autonomy; the manager is instead using their status
and connections to achieve results on behalf of their team.
The other forms of external communication are performance
reviews and other meetings with upper management, where
the engineering manager represents the team.

The great engineering manager navigates the two at-
tributes, clearing path to execution and facilitating external

communication with upper management. On the one hand,
to shield their team, the engineering manager may prioritize
requests from upper management lower, or decline them.
On the other hand, to advocate the teams’ work, the engi-
neering manager needs to showcase the team’s impact on
achieving organizational goals, which are closely related to
upper management requests. To balance between the two
situations data and prior success are persuasive factors.

!“For stopping randomization I bring soft data: names, efforts
assigned to them, show we don’t have capacity for more, just
different priorities. Sometimes management may ask for things
that are, regardless of our capacity, probably wrong, not timed
right, or not scoped enough. Then I bring a deeper analysis of
what the problem space is.” [P14]

The engineers’ focus is on implementation details and
delivery of features; there lies a risk that the goals they see
are removed from the strategic vision of the organization
because they are unaware of business drivers [73]. The great
engineering manager actively drives alignment between
individual output and the organizational scope. By sharing
strategic information about goals, and clearly explaining
the intent and desired outcome, the engineering manager
ensures that effort is channeled in the right direction, and
that engineers know enough to make informed decisions as
part of their autonomy on implementation. An engineering
manager explained:

!“Every team member are the experts of their area, they know
the best things that can come out, but they can push in different
directions. Those are their personal contributions and they feel
ownership to them. My goal is to see how we can align these
contributions in a way that they still feel like their own and they
are now all pushing in the same direction, helping the organization
move the business forward. ” [P13]

As with guiding the team, the great engineering manager
consults with the team about achieving the higher level
goals and does not enforce a certain path.

Page 9 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

!"#$%&"'($#')*

+,-./"("$0#$% 1)'#*#&)&#,$2,3

!"#$% &"%'()%*+$

!"#$%&#

'(#)#

'**+#

'%,-.*+*/0%#

!*+1$0*.#

23*4+%&#

5*&6+%70$"

83*9$-:;4"

<0#,1##0*.:;4"

<30=0./;>1(+0$"

?%.$*30./

@%=0%90./;,*A%

B76+(0.0./;3($0*.(+

23*=0A0./;-%+6

C0.A0./;-%+6

B#$0&($0./;%�*3$

D340$3($0./:;4"

<0#,1##0./;A0+%&&(#

!6*$$0./;�(9#

?()0./;#1//%#$0*.#

@(0#0./;5*.,%3.#

Fig. 2: What participants described falls under being technical

!“I pose a question like ‘hey, here are some of the challenges
our business is facing, how do you think you can help in these
respects? Here are some seeds of lines of thinking, but help us
come up with a strategy together, what are things we can do to get
there.’” [P13]

6 BEING TECHNICAL

The attribute of “being technical” emerged consistently in
the interviews, but in an unexpected way that warranted
more careful examination.

By the respondents’ account the engineering manager,
as a rule, does not produce technical output, i.e does not
write code. In fact, respondents were explicit about a great
engineering manager not making technical decisions; rather
the engineers do.

What, then, is the role of technical knowledge for an
engineering manager? According to the interviewees, a tech-
nical engineering manager:

• is respected by the team,
• may be more vigilant about quality issues,
• would be a fair evaluator of the engineers’ work,
• empathizes with engineers and clears their path to

execution, and
• would represent the team better, both to other teams

and to upper management.

We noticed all interviewees using the same, albeit ab-
stract, lingo of the engineering manager “being technical”.
To address the possibility that the interviewees meant dif-
ferent things concealed by the use of the same term, we
contacted them and asked them to clarify what “being tech-
nical” meant for them. We heard back from 25 interviewees.
The overlap in their responses signals they originally meant
similar things; we mind mapped their input in Figure 2.
“Being technical” was described in terms of what the en-
gineering manager should be in a position to comprehend,
and how it helps.

The engineering manager needs to have enough tech-
nical knowledge to understand the engineers’ work, the
tools and technologies they are working with, and the
system they are building (languages and frameworks were
the most cited examples of technologies). The engineering
manager should also understand the tasks engineers work
on, the complexity of problems they report to their manager,
and the proposed solutions. With a nuanced view of the

engineers’ work, the engineering manager can facilitate
their growth; they mentor and set the standards of quality
through code reviews and feedback.

Comprehension also helps the engineering manager
facilitate discussion of approaches to implementation, or
what to build next. An engineering manager with enough
technical knowledge can explain the rationale between al-
ternatives, and ask the right questions about why one is
preferable to another.

Engineers often encounter design dilemmas [74], and
discuss them with the engineering manager, who is ex-
pected to act as an arbiter. In an iterative process the engi-
neering manager makes suggestions and helps the engineer
navigate their way out of the dilemma by spotting flaws and
raising concerns. Overall then, “being technical” means that
the engineering manager has enough knowledge to hold
informed discussions that will help the engineer make
decisions. Developers particularly mentioned that having
enough knowledge cannot be faked, and that they can tell
even from a very brief conversation if someone has enough
technical understanding.

!"“It is very easy for the engineer to understand if the other person
is technical or not. For example I may talk about something that I
am working on and then I will say what I will do and how long
it will take. When you discuss there will be some technical details,
and they will be unable to say if you need some help or parts from
other teams.” [P18]

There is an underlying tension at this point. Engineers
at Microsoft (and most companies in the tech industry2)
are usually promoted to managerial posts because of their
technical excellence; this explains why they find “letting go”
challenging as one manager of managers explained.

!“The biggest piece is giving up the need to jump in and do.
New managers see this all the time; it may take the engineer 3
days to do something and the manager one. They have to step back
and let the other person do it in 3 for the long term success of the
team, otherwise that’s not people management. That’s counter-
intuitive to someone who was promoted the first time because
they were the best technical person on the team. You think as a
software company as you move up the most senior person should
be the most technical person; that probably is true from an intellect
perspective but that’s not how they spend their time” [P29]

2. http://spectrum.ieee.org/at-work/tech-careers/from-engineer-
to-manager-how-to-cope-with-promotion

Page 10 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 11 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 12 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

differences are shown in Table 4. As before, we only display
statistically significant results (p < 0.05).

We selected the five disciplines with the most Microsoft
employees for comparison and included both managers and
non-managers. For the analysis, we built a linear regression
model for the importance of the attributes using the demo-
graphics as control and the knowledge work domains as
dummy variables. Each number in Table 4 shows the change
in importance of an attribute for a knowledge work group,
relative to the software engineering discipline. A positive
value means that the knowledge work discipline rated the
importance of a particular attribute higher than the software
engineering discipline, while a negative value indicates
that the importance is rated lower by the knowledge work
discipline.

Software engineering values being technical more, rela-
tive to all the knowledge groups we investigated. However,
as explained in 3.2, we used different wording for this
attribute between disciplines and this may account for the
difference we see. As a result we refrain from drawing
conclusions; we identify this aspect as one of our validity
threats in Section 10.

Disregarding being technical, the largest difference re-
lates to building team culture, which seems to be valued
less highly as a management attribute in Software Engi-
neering (between 0.36 to 0.88 points lower compared to
other disciplines). This attribute surfaced as important for
great engineering managers in the interviews and survey,
with managers viewing it as more important. It appears,
however, that while the software engineering domain sees
value in great managers building team culture, it does not
value it as highly as any of the other knowledge work
domains. It would be interesting to investigate if this relates
to the incremental nature of feature work that developers
usually engage in and if, as development is increasingly
seen as a team-based activity, the gap in perception between
domains is closing.

Software engineering also regards driving alignment as
less important (between 0.45 to 0.68 points lower), with the
largest difference compared to Business Programs & Opera-
tions and Sales . In business literature, Sales are considered
a key area that needs to be aligned with Operations [76] and
Marketing [77], for an organization to achieve its financial
goals; this may explain why driving alignment is seen as
more important by the respondents in the Sales discipline.

Driving alignment seems also more valued in Program
Management; this can be explained by the fact that this
discipline is typically concerned with managing clusters of
related projects. Interestingly, although alignment is impor-
tant to Program Management, mediating inter-team inter-

action is seen as more important in software engineering
(0.47 points higher in Software Engineering than in Pro-
gram Management). This is in line with business literature
that has found that the program management discipline—
despite its nature of handling dependencies—neglects inter-
organizational issues and inter-project coordination, as well
as the interplay between the temporary and the permanent
organization [78].

Builds team culture, drives alignment, and inspires the

team were consistently ranked lower in importance by
the software engineering discipline, compared to all other

knowledge work groups.
One potential tension highlighted by our findings is

that Software Engineering sees clearing path to execution

as more important (0.38 points higher), relative to the Pro-
gram Management discipline. This indicates the importance
engineers place on being able to work uninterrupted and
on maintaining a productive state of flow. Program Man-
agement usually has requests of the engineering teams that
affect their workload, and seeing clearing path to execution

as less important may have implications for how the two
disciplines coordinate with each other.

9 DISCUSSION

Practitioners in the software industry are looking for con-
crete insight on how to manage software teams and are
currently getting their information from consultancy stud-
ies4. Management is by no means a new discipline, yet the
transferability of long-standing management principles has
recently been put to question [36]. We see this as a call for
a domain-specific view on management; our study aimed
to help understand the role of management in software
engineering currently.

Given the interest to practitioners, there is an abundance
of anecdotal information on the web about what it means
to manage engineers and how one can be successful in
it. However, the software engineering practice deserves a
thorough, specific, and contextual understanding of soft-
ware engineering management. The software engineering
research community can use its expertise and high academic
standards to provide concrete empirical advice to engineer-
ing managers, that is scientifically compiled.

In this study, we started this process by building a view
of the aspects and attributes perceived as important in
real-world software engineering rather than general man-
agement principles alone. Our study makes a timely and
significant contribution by rigorously establishing what is
relevant for managers of software engineering teams.

9.1 Implications for research

The goal of this study was to understand how software en-
gineering managers function and what people management
aspects are perceived important.

In describing their perceptions and experiences (as pre-
sented in sections 4 and 5) the interviewees alluded to links
between a manager’s attributes and the outcomes of the
team. For example, in their quotes participants mentioned
the manager’s impact on productivity through motivation,
software quality through facilitating the team’s technical
work, and helping developers grow their skills. While these
are useful indications of the manager’s impact on outcomes,
we have not probed further into this aspect. Future work
should assess each of the attributes we have identified
and their degree of contribution to the final product of
development. Our findings can inform research seeking to
model the software development activity (e.g the Interme-
diate COCOMO model [79]), or empirical studies studying
developer and team productivity [80], [81], [82].

4. https://hbr.org/2016/10/leaders-need-different-skills-to-thrive-
in-tech

Page 13 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 14 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

gineering researchers and practitioners interested in the po-
tential effects of management to educate themselves about
theories coming from these areas; they appear to heavily
influence the software engineering management practice,
and—given the overlap across domains—may reflect “uni-
versal” people management principles.

9.2 Implications for practice/managers

Our framework can provide guidelines to engineering man-
agers; it can be read as a matrix showing which attributes
are relevant in different combinations of conditions. New
and existing engineering managers could benefit from our
framework by knowing what are the desired attributes for
great engineering managers, highlighting that social and
motivational aspects are important.

One of the unexpected findings in our study was the
role of being technical for a great engineering manager;
if it is not the defining characteristic of the engineering
manager, what is? Developers and managers highlighted
people management skills as the critical element of the great
engineering managers; however, these are not skills they
have prior knowledge or training in:

!“It’s a big career choice to choose management or technical
because as much as people think you can do both, you can’t.
Most engineers tend to be introverts and that’s how they got into
technology. To just automatically assume they are going to be great
people persons by giving them a new title is not true generally. It
takes a lot of work to learn some of those behaviors that are not
natural as a technical person.” [P29].

This view is consistent with discussions among software
engineering practitioners about how engineers find the tran-
sition to managerial roles difficult 5. One of the identified
issues is that the necessary people management skills are in
fact not what got engineers promoted in the first place.

There seems to be a concept of diminishing returns of
technical excellence for engineering managers; while some
level of technical knowledge (enough to cover the elements
in Figure 2) is needed to understand and facilitate engineer-
ing work, after a point the focus on technical matters can
jeopardize the people management aspect. This finding runs
almost opposite to usual reward and promotion systems in
large organizations, a paradox often satirically referred to
as “the Peter principle” [93]. The fact that the engineering
manager does not need to be the most technical person on
the team raises questions about how to select engineering
managers, and our findings provide food for thought about
which traits to look for.

There is an isolated case giving a different view on the
role of technical competence. A study by Artz et al. [94]
from economics reported that “a boss’s technical compe-
tence is the single strongest predictor of employee well-
being”. The study was based on 35,000 randomly selected
employees from various workplaces. Although the study
was published in 2016, the data it used comes from National
Longitudinal Surveys of Youth6: two in Britain (in 1990 and

5. http://spectrum.ieee.org/at-work/tech-careers/from-engineer-
to-manager-how-to-cope-with-promotion

6. https://www.nlsinfo.org/content/cohorts/nlsy79

2000) and one in the United States (covering the time 1979-
1988). It is, however, unclear which professions are included
in the survey or what part of the population corresponds to
software engineers.

In addition to how our findings may have impact on how
to select engineering managers, they can also inform how
to train them. We highlighted that the people management
aspect is for the most part foreign to engineers, yet critical
for engineering managers; interviewees identified needing
guidance in communication and generally “soft” skills. At
the same time, we found that, compared to other knowledge
work disciplines, the software engineering domain places
lower importance on aspects such as inspiring the team, and
building team culture. Our input could be used to augment
and tailor management training programs based on the
needs and beliefs that are relevant for software engineering
management specifically.

9.3 Connection to related work

Our findings agree with the conclusion of Li et al. [38] that
productivity is not the only criterion for excellence and that
the decision making behind how engineering is conducted
is important. The engineering manager seems to introduce
the developer to other aspects of engineering that matter
by maintaining an environment that allows the engineer to
act autonomously, to experiment safely, to work with and
ask for help from others. With attributes such as enables

autonomy, supports experimentation, guides the team, and
through arbitrating decisions supported by being technical,
the engineering manager cultivates effective decision mak-
ing behaviour to engineers, getting them from good to great.

Our findings are also in line with the 8 behaviours
that Google identified as key to its managers [39]. In the
course of a year, Google coded and analyzed interviews
(both with current employees and employees leaving the
organization), quarterly performance reviews, feedback sur-
veys, and data on team performance to understand manager
behaviours and their impact. While the wording of the
findings may differ between the two studies, the spirit of
the behaviours/attributes is similar. Our study has inde-
pendently identified the 8 behaviours in the Google study,
as attributes of great managers; we provide the mapping
between the two studies in Table 5.

Furthermore, our study has identified additional attributes;
for example, our participants placed importance on how
the manager inspires the team, how they support experi-

mentation, and how they facilitate external communication.
As Google’s study drew on insights about managers in
several departments in the company—not specifically soft-
ware engineering—the attributes in our study reflect what
is perceived as most relevant to the particular discipline.
Our study also provided a ranking of the attributes, by
perceived importance. Further research should include the
study of more organizations to identify additional attributes
and check the applicability of the ones we have offered here.

The Harvard Business Review publishes articles on man-
agement behaviour that is considered effective, in domains
outside software engineering; the results have similarities
with our study’s findings. Valcour [95] describes great
managers as understanding individual motivation, helping

Page 15 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

TABLE 5: Comparison of findings with Google’s study of managers

Manager behaviour in Google study Description (taken from the Google study report in [40]) Manager attribute in our study

Is a good coach Caters to the team members’ skill set and personality with
guidance and feedback, and pushes them to grow while
still making them feel supported

Grows talent & Recognizes in-
dividuality

Empowers team and does not micro-
manage

Trusts the team to manage their work as they see fit, while
still be available for questions

Enables autonomy

Expresses interest/concern for team
members’ success and well-being

Is caring, ensures the team members achieve their goals
while ensuring everyone on the team feels personally as
if they are valuable

Builds a relationship with team
members

Is productive and results-oriented Is relentless in removing obstacles for the team Clears path to execution

Is a good communicator Encourages open dialogue that permits team members to
share issues and concerns

Builds team culture (partial fit)

Helps with career development Shows that career development is not just promotion, but
also growth

Grows talent

Has a clear vision/strategy for the
team

Takes time to collaboratively create a vision and share and
act on it

Drives alignment

Has important technical skills that
help him/her advise the team

Has deep knowledge of the infrastructure, willing to get
to the bottom of a problem

Is technical

employees connect their work to the company’s mission,
providing timely feedback, and helping employees learn
and grow. These manager qualities map to the attributes rec-

ognizes individuality, drives alignment, and grows talent, in
our study. Sturt [96] reported that recognizing employees’
great work is one of the great manager’s important traits; in
our study interviewees reported a manager showing appre-
ciation for the engineers’ work as part of the attribute pro-

motes fairness. Similar findings to Sturt [96] were reported
by Beck & Harter [4] summarizing research from Gallup 7.
Buckingham [97], reporting on a large-scale study he con-
ducted for Gallup, found that great managers “discover what
is unique about each person and then capitalize on it”. A similar
quality for a great engineering manager was described in
our study as recognizes individuality. Finally, some of the
attributes we uncovered have a strong relationship to those
already brought to light, albeit in a more general context,
in the “Rethinking Project Management” movement [98].
For instance, the attribute drives alignment is similar in
nature to “aligning a project’s value with the firm’s strategic
business priorities” [99].

10 THREATS TO VALIDITY

As with any empirical study, there may be threats and/or
limits to our methods and findings [100].

The phrase “great software engineering manager”
means different things to different people. While we inten-
tionally left it undefined during our investigation in an ef-
fort to rely on participants’ own perceptions, there is clearly
no universal definition and thus our results aggregate the
views of people with diverse experiences. In future work,
we hope to explore the actual and different meanings of this
phrase as different perspectives using an approach similar
to França et al. [101].

While we interviewed many people, our goal was not to
capture a purely random sample. Rather, we chose a strati-
fied sampling approach in an effort to capture a wide range

7. http://www.gallup.com/

of responses from a diverse group [46]. We ensured that the
participants came from a range of projects and backgrounds
and had various tenures and levels of seniority. Such a
selection strategy is called Maximum Variation Sampling
[46] and is appropriate, as in this case, when a sample
may be limited and “the goal is not to build a random and
generalizable sample, but rather to try to represent a range
of experiences related to what one is studying.”

We then used these to inform our survey which was
deployed broadly enough to provide representativeness and
a sample large enough for statistical significance. Within the
strata we identified, the interview participants were self-
selected; even so, all 37 interviewees belonged to different
teams. Despite this diversity, it is impossible to cover the
entire variety of teams that work on Microsoft products
and services. As a result, some types of teams may not
be represented in our study (e.g multi-disciplinary teams).
The fact that the interviewees came from different teams,
however, gives us confidence that we have covered as much
ground as possible, given pragmatic restrictions of time
and access. Another effect of self-selection may be that
participants with strong opinions about manager attributes
may have been more likely to participate in the study; we
can only rely on what the participants reported given their
time and motivation to participate in the study.

We solicited the views of members of multiple organi-
zational levels in our study, to enhance the richness of our
data. While the engineers (most of the time) have not been in
a managerial position, the engineering managers and upper
managers have been engineers in the past. We have made
a point of reminding the participants—both verbally and
in writing—that they are asked their perspectives about the
engineering manager role. Still, it is likely that the managers’
views incorporate elements from both perspectives; we see
this as part of the natural evolution of the participants’
perspective, rather than a differentiator between them. This
is reflected in our findings, where we found that responses
were in alignment across the different management roles.

Because one of our primary instruments was a survey,

Page 16 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

we were concerned that the right questions were included
and presented the right way [102]. To address construct va-
lidity [103], our survey questions were informed primarily
from analysis of our interviews with software engineers and
software engineering managers. We also deployed a pilot
survey which led to feedback that allowed us to fine tune
the questions in the final survey.

Since we built one regression model per attribute from
our survey data, there is the possibility of making false
discoveries due to multiple statistical tests. According to
McDonald [104], there is “no universally accepted approach
for dealing with the problem of multiple comparisons”.
Any correction brings trade-offs between false and missed
discoveries. Section 4.C is exploratory and therefore more
liberal with including discoveries. Any discovery needs
further validation, no matter how low/significant the p-
values are. In an effort to address the topic of false discov-
eries, we computed the false discovery rate value for our
analysis. The resulting value of 0.1705 is an acceptable value
according to McDonald [104]. We also have made the 15 full
regression models including p-values available in a GitHub
repository associated with this paper to allow for alternative
corrections [57].

With regard to external validity [105], our analysis
comes wholly from one software organization. This makes
it unlikely that our results are completely representative of
the views of software managers and engineers in general.
While studies of multiple organizations are valuable, the
sensitive nature of management and access needed to data
and employees makes studies across multiple organizations
difficult, and responses may not be as candid if the inves-
tigators are “outsiders”. We talked to employees of other
software companies but were told that the employees could
not discuss management practices outside the company.
Most studies in the management literature involve a single
organization for this reason and are considered valuable
contributions. Single-case empirical studies are historically
supported by evidence as contributing to scientific discov-
ery [106], and intense observation has delivered insights in
the social sciences [107, pp. 95]. Microsoft employs tens of
thousands of software engineers, works on diverse products
in many domains, and uses many tools and processes, so we
believe that our approach of randomly sampling improves
generalizability. That being said, our results likely general-
ize more for large software organizations and less for small
software organizations, organizations in which software is
not the primary focus (e.g. the software department in a
bank or healthcare company), or organizations that are mov-
ing towards self-organized and self-managed teams (such as
Zappos[108]). These are all worthy of study and in an effort
to increase external validity and encourage replication, we
have made our survey instrument available so that others
can deploy it in different organizations and contexts [57].

11 CONCLUSION

In this paper we presented an exploration of the engi-
neering manager role and highlighted which attributes are
perceived important by engineers and managers. Our study
makes the following contributions, opening opportunities
for further work:

• It offers a framework of engineering manager
attributes, together with actionable strategies for
enacting them. This can help both research and
practice understand how the engineering manager
impacts the software engineering process and team.
Future work can look into how widespread these
perceptions are by studying more companies. Empir-
ical studies can also find ways to measure some or
all of the attributes we identified, to operationalize
engineering management and its impact on devel-
oper productivity and software quality. We demon-
strated similarity between attributes in our study
and variables identified in organizational psychology
which correlate to several organizational outcomes;
future work can use these as testable hypotheses and
develop additional ones.

• It brings empirical evidence of the similarities
and differences in perceptions about management
between software engineering and other domains
of knowledge work. To the best of our knowledge
our study is the first to empirically investigate this
aspect. Future work can compare with additional
knowledge work groups.

• Our findings about the role of technical excellence
for engineering managers, provide input to consider
for selecting and training engineering managers.
Future work can use our findings to further create
management training and assessment processes, tai-
lored to the software engineering domain.

REFERENCES

[1] J. Yang, Z.-X. Zhang, and A. S. Tsui, “Middle manager leadership
and frontline employee performance: Bypass, cascading, and
moderating effects,” Journal of Management Studies, vol. 47, no. 4,
pp. 654–678, 2010.

[2] F. O. Walumbwa and C. A. Hartnell, “Understanding transfor-
mational leadership/employee performance links: The role of
relational identification and self-efficacy,” Journal of Occupational
and Organizational Psychology, vol. 84, no. 1, pp. 153–172, 2011.

[3] C. Groscurth, “Great managers can fix broken performance man-
agement systems,” http://www.gallup.com/businessjournal/
183770/great-managers-fix-broken-performance-management-
systems.aspx, June 2015.

[4] R. Beck and J. Harter, “Why great managers are so rare,”
http://www.gallup.com/businessjournal/167975/why-great-
managers-rare.aspx, March 2014.

[5] Center for Advanced Human Resource Studies, “Perception is
reality: How employees perceive what motivates hr practices
affects their engagement, behavior and performance,” CAHRS
ResearchLink, 2011.

[6] G. C. Green, A. R. Hevner, and R. W. Collins, “The impacts
of quality and productivity perceptions on the use of software
process improvement innovations,” Information and Software Tech-
nology, vol. 47, no. 8, pp. 543–553, 2005.

[7] A. Howell, A. Kirk-Brown, and B. K. Cooper, “Does congruence
between espoused and enacted organizational values predict
affective commitment in australian organizations?” The Interna-
tional Journal of Human Resource Management, vol. 23, no. 4, pp.
731–747, 2012.

[8] J. K. Harter, F. L. Schmidt, and C. L. Keyes, “Well-being in the
workplace and its relationship to business outcomes: A review
of the gallup studies,” Flourishing: Positive psychology and the life
well-lived, vol. 2, pp. 205–224, 2003.

[9] F. W. Taylor, The Principles of Scientific Management,. New York:
Harper & Row, Publishers, Incorporated, 1911.

[10] F. B. Gilbreth and L. M. Gilbreth, Fatigue Study: The Elimination of
Humanity’s Greatest Unnecessary Waste. Macmillan, 1919.

Page 17 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

[11] H. L. Gantt, Organizing for Work. New York: Harcout, Brace &
Howe, 1919.

[12] S. Crainer, The management century: A critical review of 20th century
thought and practice. Jossey-Bass, 2000.

[13] E. Schein, Organizational Culture and Leadership. San Francisco:
Jossey-Bass, 1985.

[14] A. L. Kristof, “Person-organization fit: An integrative review of
its conceptualizations, measurement, and implications,” Person-
nel Psychology, vol. 49, no. 1, pp. 1–49, 1996.

[15] R. M. Ryan and E. L. Deci, “Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-
being,” American Psychologist, pp. 68–78, 2000.

[16] A. Maslow, “A Theory of Human Motivation,” Psychological
Review, vol. 50, pp. 370–396, 1943.

[17] S. G. Benson and S. P. Dundis, “Understanding and motivating
health care employees: integrating maslow’s hierarchy of needs,
training and technology,” Journal of nursing management, vol. 11,
no. 5, pp. 315–320, 2003.

[18] J. K. Harer, F. L. Schmidt, and T. L. Hayes, “Business-unit-level
relationship between employee satisfaction, employee engage-
ment, and business outcomes: A meta-analysis,” Journal of Applied
Psychology, vol. 87, no. 2, pp. 268–279, 2002.

[19] D. McGregor, The Human Side of the Enterprise. New York:
McGraw-Hill, 1960.

[20] A. Paul and R. Anantharaman, “Impact of people management
practices on organizational performance: analysis of a causal
model,” International Journal of Human Resource Management,
vol. 14, no. 7, 2003.

[21] W. Kiechel, “The management century,” Harvard business review,
vol. 90, no. 11, pp. 62–75, 2012.

[22] P. F. Drucker, Management challenges for the 21st century. Rout-
ledge, 2007.

[23] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software en-
gineering: A definition and systematic literature review,” Journal
of Systems and Software, vol. 107, pp. 15 – 37, 2015.

[24] T. Gilb and S. Finzi, Principles of software engineering management.
Addison-Wesley Reading, MA, 1988, vol. 11.

[25] R. N. Charette, Software engineering risk analysis and management.
Intertext Publications New York, 1989.

[26] W. S. Humphrey, Managing the software process. Addison-Wesley
Longman Publishing Co., Inc., 1989.

[27] T. DeMarco and T. Lister, Peopleware: productive projects and teams.
Addison-Wesley, 2013.

[28] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Mo-
tivation in software engineering: A systematic literature review,”
Information and software technology, vol. 50, no. 9, pp. 860–878,
2008.

[29] B. Fitzpatrick and B. Collins-Sussman, Team geek: a software devel-
oper’s guide to working well with others. ” O’Reilly Media, Inc.”,
2012.

[30] A. S. Grove, High output management. Vintage Books New York,
NY, 1985.

[31] M. Lopp, Managing Humans: Biting and Humorous Tales of a Soft-
ware Engineering Manager. Apress, 2016.

[32] R. E. Kraut and L. A. Streeter, “Coordination in software devel-
opment,” Communications of the ACM, vol. 38, no. 3, pp. 69–81,
1995.

[33] P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society
Press, 2014.

[34] G. James, “The 8 stupidest management fads of all time,”
http://www.cbsnews.com/news/the-8-stupidest-management-
fads-of-all-time/, October 2010, accessed: 2017-08-07.

[35] “4 ways to be a better boss,”
https://www.randstadusa.com/workforce360/workforce-
insights/4-ways-to-be-a-better-boss/229/, accessed: 2016-08-23.

[36] A. Murray, The Wall Street Journal Essential Guide to Management:
Lasting Lessons from the Best Leadership Minds of Our Time, 1st ed.
HarperBusiness, August 2010.

[37] G. C. O’Connor and R. W. Veryzer, “The nature of market vision-
ing for technology-based radical innovation,” Journal of Product
Innovation Management, vol. 18, no. 4, pp. 231–246, 2001.

[38] P. L. Li, A. J. Ko, and J. Zhu, “What makes a great software
engineer?” in Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ser. ICSE ’15. IEEE Press, 2015,
pp. 700–710.

[39] D. A. Garvin, “How Google sold its engineers on management,”
Harvard business review, vol. 91, no. 12, pp. 74–82, 2013.

[40] D. Garvin, A. B. Wagonfeld, and L. Kind, “Google’s Project
Oxygen: Do Managers Matter?” Harvard Business School Case
313-110, Tech. Rep., 01 2013.

[41] A. Edmondson, “Psychological safety and learning behavior in
work teams,” Administrative science quarterly, vol. 44, no. 2, pp.
350–383, 1999.

[42] C. Duhigg, “What google learned from its quest to build the
perfect team,” The New York Times Magazine, 2016.

[43] A. Saxena and J. Burmann, “Factors affecting team performance
in globally distributed setting,” in Proceedings of the 52Nd ACM
Conference on Computers and People Research, ser. SIGSIM-CPR ’14.
ACM, 2014, pp. 25–33.

[44] T. R. Kayworth and D. E. Leidner, “Leadership effectiveness in
global virtual teams,” J. Manage. Inf. Syst., vol. 18, no. 3, pp. 7–40,
Jan. 2002.

[45] S. Zhang, M. Tremaine, J. Fjermestad, A. Milewski, and
P. O’Sullivan, “Delegation in virtual team: the moderating effects
of team maturity and team distance,” 2006 1st IEEE International
Conference on Global Software Engineering, vol. 00, pp. 62–68, 2006.

[46] M. Q. Patton, Qualitative evaluation and research methods, 3rd ed.
SAGE Publications, inc, 2001.

[47] M. Ben-Akiva, T. Morikawa, and F. Shiroishi, “Analysis of the
reliability of preference ranking data,” Journal of business research,
vol. 24, no. 2, pp. 149–164, 1992.

[48] S. Menon, “Employee empowerment: An integrative psycholog-
ical approach,” Applied Psychology, vol. 50, no. 1, pp. 153–180,
2001.

[49] J. R. Hackman and G. R. Oldham, “Development of the job
diagnostic survey.” Journal of Applied psychology, vol. 60, no. 2,
p. 159, 1975.

[50] M. Sutherland and W. Jordaan, “Factors affecting the retention
of knowledge workers.” Journal of Human Resource Management,
2004.

[51] W. G. Lutters and C. Seaman, “The value of war stories in de-
bunking the myths of documentation in software maintenance,”
Information and Software Technology, vol. 49, no. 6, pp. 576–587,
2007.

[52] S. Merriam, Qualitative research: A guide to design and implementa-
tion. John Wiley & Sons, 2009.

[53] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[54] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,”
in Guide to Advanced Empirical Software Engineering. Springer,
2008, pp. 63–92.

[55] P. Morrel-Samuels, “Getting the truth into workplace surveys,”
Harvard business review, vol. 80, no. 2, pp. 111–118, 2002.

[56] I. Brace, Questionnaire design: How to plan, structure and write
survey material for effective market research. Kogan Page Publishers,
2008.

[57] “Artifacts for the Engineering Manager Study,” https://github.
com/cabird/Engineering Manager Study, 2017.

[58] P. K. Tyagi, “The effects of appeals, anonymity, and feedback on
mail survey response patterns from salespeople,” Journal of the
Academy of Marketing Science, vol. 17, no. 3, pp. 235–241, 1989.

[59] T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting
on-line surveys in software engineering,” in Empirical Software
Engineering, 2003. ISESE 2003. Proceedings. 2003 International Sym-
posium on. IEEE, 2003, pp. 80–88.

[60] J. Cohen, Statistical power analysis for the behavioral sciences. Hills-
dale, N.J: L. Erlbaum Associates, 1988.

[61] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[62] J. R. Hackman and G. R. Oldham, “Motivation through the

design of work: Test of a theory,” Organizational behavior and
human performance, vol. 16, no. 2, pp. 250–279, 1976.

[63] D. Yanow and P. Schwartz-Shea, Interpretation and method: Empir-
ical research methods and the interpretive turn. Routledge, 2015.

[64] G. Ruhe, “Software engineering decision support – a new
paradigm for learning software organizations.” in LSO, ser. Lec-
ture Notes in Computer Science, S. Henninger and F. Maurer,
Eds., vol. 2640. Springer, 2002, pp. 104–113.

[65] T. Dyba, “Improvisation in small software organizations,” IEEE
Software, vol. 17, no. 5, pp. 82–87, 2000.

[66] B. Dagenais, H. Ossher, R. K. Bellamy, M. P. Robillard, and
J. P. De Vries, “Moving into a new software project landscape,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 2010, pp. 275–284.

Page 18 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 19 of 20 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 20 of 20*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


