
Publications of the University of Eastern Finland
Reports and Studies in Forestry and Natural Sciences

Roman Bednarik, Teresa Busjahn,
Carsten Schulte (Eds.)

Eye Movements in
Programming Education:
Analyzing the Expert’s Gaze

repo
rts a

n
d stu

d
ies | 18 | B

ed
n

a
rik

, B
u

sja
h

n
, S

ch
u

lte (E
d

s.) | E
ye M

ovem
en

ts in
 P

rogram
m

in
g E

du
cation

Eye Movements in Programming

Education:

Analyzing the Expert's Gaze

ROMAN BEDNARIK, TERESA BUSJAHN, CARSTEN SCHULTE
(EDS.)

Eye Movements in

Programming Education:

Analyzing the Expert's Gaze

Proceedings of the First International

Workshop

Publications of the University of Eastern Finland
 Reports and Studies in Forestry and Natural Sciences

No 18

University of Eastern Finland

Faculty of Science and Forestry
School of Computing

Joensuu, Finland
2014

Grano Oy

Joensuu, 2014
Editor Prof. Pertti Pasanen, Prof. Pekka Kilpeläinen,

Prof. Kai Peiponen, Prof. Matti Vornanen
Distribution:

Eastern Finland University Library / Sales of publications
P.O.Box107, FI-80101 Joensuu, Finland

tel. +358-50-3058396
http://www.uef.fi/kirjasto

ISSN (nid): 1798-5684
ISBN (nid): 978-952-61-1538-2

ISSN-L: 1798-5684
ISSN (PDF): 1798-5692

ISBN (PDF): 978-952-61-1539-9

Bednarik, Roman; Busjahn, Teresa; Schulte, Carsten (Eds.)
Eye Movements in Programming Education: Analyzing the Expert's Gaze.
Itä-Suomen yliopisto, School of Computing, 2014
Publications of the University of Eastern Finland. Reports and Studies in Forestry
and Natural Sciences, no 18
ISSN (nid.): 1798-5684
ISSN (PDF): 1798-5692
ISSN-L: 1798-5684
ISBN (nid): 978-952-61-1538-2
ISBN (PDF): 978-952-61-1539-9

Eye Movements in Programming
Education:
Analyzing the Expert's Gaze

Proceedings of the First International Workshop

at the 13th KOLI CALLING INTERNATIONAL CONFERENCE ON

COMPUTING EDUCATION RESEARCH, 2013

School of Computing, UEF, Joensuu, Finland

November 13th - November 14th, 2013

Welcome to the proceedings of the “Eye Movements in Programming Education:
Analyzing the Expert's Gaze” workshop.

Code reading is an essential part of program comprehension and a common
activity in debugging, maintenance and learning a programming language.
Nevertheless, Computer Science Education Research and Teaching mostly focus on
code writing. Better insights in code reading are valuable to support programmers
from novice to expert. The first international workshop “Eye Movements in

Programming Education: Analyzing the Expert's Gaze” is an approach to gain deeper
understanding of the comprehension processes behind observable eye movements
during code reading.

The workshop was organized in association with the 13th KOLI CALLING
Conference in Computing Education and took place November 13th - November
14th, 2013 at the School of Computing, UEF, Joensuu, Finland. A total of 15 people
participated in the workshop, four of them remotely. The event was supported by
the Joensuu University Foundation.

Before the workshop, participants were given two sets of eye movement records of
expert programmers reading Java. The data can be downloaded from www.mi.fu-
berlin.de/en/inf/groups/ag-ddi/Gaze_Workshop/koli_ws_material. We asked the
participants to analyze and code these records with a provided scheme. Based on
this analysis position papers have been written describing the eye movement data
and commenting on the coding scheme, as well as on the application of eye
movement research in computer science education. The coding scheme concerned
code areas in different level of detail, observable eye movement patterns and
presumed comprehension strategies. The scheme was revised following
suggestions given in the position papers and during the workshop. Additionally,
several group members developed visualization tools both for eye movements and
the results of the coding process and provided them in their position papers.

This technical report contains the position papers. Furthermore it includes the
workshop call, the eye movement materials used, the revised coding scheme, and a
list of participants.

We would like to thank all participants for the great work,

Roman Bednarik, Teresa Busjahn and Carsten Schulte

Contents

Eye Movements in Programming Education. Analyzing the
Expert's Gaze
Maria Antropova, Galina Shchekotova

 1

Analyzing Programming Tasks
Andrew Begel

4

ɧnalysis of two eyetracking renders of source code reading
Katerina Gavrilo

7

Towards Automated Coding of Program Comprehension
Gaze Data
Michael Hansen, Robert L. Goldstone, Andrew Lumsdaine

9

Notes on Eye Tracking in Programming Education
Petri Ihantola

13

Eye Movements in Programming Education: Analyzing the
expert’s gaze
Suzanne Menzel

16

Visual evaluation of two eye-tracking renders of source code
reading
Paul A. Orlov

20

Finding Patterns and Strategies in Developers’ Eye Gazes on
Source Code
Bonita Sharif and Sruthi Bandarupalli

24

Eye movements in programming education: Analysing the
expert’s gaze
Simon

27

Workshop call 30
Sample visualizations of gaze data 32
Revised coding scheme 36
List of participants 42

Eye Movements in Programming Education.
Analyzing the Expert's Gaze

Maria Antropova
Research Team Lead at JetBrains

Russia, Saint Petersburg
Universitetskaya nab.7-9-11, k.5, lit.A

+7-921-311-4431
maria.antropova@gmail.com

Galina Shchekotova
Analyst at JetBrains

Russia, Saint Petersburg
Universitetskaya nab.7-9-11, k.5, lit.A

+7-921-763-7648
gshchekotova@gmail.com

ABSTRACT

There are two main strategies of subject behavior during eye-
movement experimental research. The first pattern is based on the
inductive approach and the second one is based on the deductive.

Keywords
Eye-movement analysis, code-reading patterns.

1. SUBJECT DESCRIPTION
1.1 The first subject
The first subject spent much more time on learning the program,
he was unsparing in his efforts for the methods analysis and
matching parameters in methods and constructor.
In the top of patterns behavior for this subject there are many pairs
like:
‘Main’→ 'Height'
'Width' → 'Constructor'
'Constructor' → ' Main '
‘Constructor’ → ‘Height’
'Width' → 'Constructor' → 'Width'
‘Height’ → 'Constructor' → ‘Height’
'Constructor' → 'Width' → 'Height' → 'Constructor'

This means that the subject was trying to actually understand how
the method works and which parameters were used and how they
were used in each method. For the ‘Height’ and ‘Width’ block he
spent 25% of the time. This behavior explains his task description
(to answer on certain question about program output).

It seems like the subject was following combined strategy: Scan
strategy is more valuable than JumpControl and LineScan.

The subject was learning the correspondence between input
parameters and variables in constructor. That is why in the top of
patterns we see a lot of pairs like 'Constructor' → 'Main' and
'Main' → 'Constructor'. Time which the first subject spent for
Constructor block is less than the second subject, because the first
one looked at the Constructor all the time very briefly, only for
understanding of the parameters order.

1.2 The second subject
The second subject spent less time than the first subject for the
task completion (40% less than the first one). The reason is that
second subject had a different task and had to answer multiple-
choice questions. Also he used other technique, which is more
convenient and fast for the short program and this technique is
based on scan strategy. In the top of patterns behavior for this
subject are:
'Constructor' → 'Width'
'Main' → 'Constructor'
'Area' → 'Main'
'Area' → 'Main' → 'Constructor'
'Constructor' → 'Area' → 'Main'

The second subject probably uses Linear or LineScan (or
combined) strategy because of the task description.

1

1.3 Comparison table
Take a look at the table comparison of the two subjects by several
metrics related to the code scheme and the subject’s behavior:
Attributes, Main, Constructor, Height and Width blocks, Actual
Parameter List in Main, Return, Pattern, Duration.

Table 1. Comparison table for considered subjects

Code First Subject Second Subject

Main Often but with
short duration

Rarely but with long duration

Constructor Often and with
long duration in
the first part of
the session. It
needs for the area
calculation

Rarely and not very
intensively, only for
understanding how the object
is created. The second subject
spent on 10% more time for
Constructor block than the
first one.

Height and
Width
blocks

The first subject
spent on these
blocks 25% of
the time.

The second subject spent on
these blocks 13% of the time;
it is 12% less than the first
one.

Actual
Parameter
List
in Main

Learning the
parameter list
close to the end
of the session for
the area
calculation, then
moving to
Constructor and
object methods
for calculation

Looked at the parameter list in
the end of the session to keep
in mind two created objects
(rectangles).

Return Looked at Return
block very often
to calculate the
value of the area

Looked at the Return block
only for understanding how
does method work

Pattern Combined:
more valuable is
Scan strategy,
than
JumpControl and
less LineScan.

The main strategy is LineScan
- the best one for the general
understanding of the short
code.

Duration The first one
spent more time
than the second
one (the reason is
strategy or
experience
difference).

1.4 Eye movement flow
This is an example of eye movement flow, which presents big
difference between subjects behavior. First subject moves
between different code blocks a lot, second one has different
behavior and has not too many jumps.

2. THE CODING SCHEME
In the presented coding scheme there is no Area block.

The presented coding scheme is too detailed for the research of
small code length. For example, researching current two subjects
we didn’t need such tier of the scheme as Strategy (Debugging,
etc).

Based on Block analysis we can conclude that there are two main
strategies of code reading: from the special to general and the
other way around.

The first strategy is more effective in case of big program with
many modules of a code (or in case of specific task), the second
strategy is more effective in case of short code (in this case more
experienced user can guess what is going on in the program). This
is a very important difference that should be taken into
consideration in the experiment design. Other parameters should
be looked in other experiments with code of different length and
with subjects with different strategies.

3. MAIN QUESTIONS
What yields the tagging of “primitive” events? What
ideas/thoughts/associations did arise?

2

It helps to identify general patterns more clearly. Also it gives
some clue about actual cognitive task if we don’t know about it.
Also, probably it helps to follow the order of task stages.

We know about global understanding strategies from
program comprehension research (data flow, control flow,
top-down, bottom-up, as-needed...). Do we find those in the
gaze?
In case of having only gaze data it is possible to find it only if we
have a very simple program on one screen, because it becomes to
be impossible to recognize the strategy if we don’t know anything
about scrolling.

Otherwise it is possible but still difficult because we have to mark
on the gaze file points with coordinates changing (if the program
is more than one screen).

What patterns did you find and what are suitable names for
them?
We have found two main patterns: for the first subject we can call
it inductive approach (from the special to general), for the second
subject it is more deductive way (from the general to special). It
very depends on the task, which the subject has to solve (and
probably depends on subject experience, type of program
paradigm, etc).

How are patterns connected to cognitive strategies? Which
patterns are indicative of which strategies?

Patterns are practical realization of cognitive strategies in process
of task making. Different cognitive strategies probably have
different patterns. For the inductive approach combined strategy
is more typical (mix of Scan strategy, JumpControl and
LineScan). For the deductive strategy LineScan is more typical.

Are there further strategies? And what would be suitable
names for them?
As we mentioned above, the strategy depends on the task. There
are many types of tasks: debugging, code review, refactoring, etc.

3.1 Application of Eye Movement Research in
Computer Science Education
The best way of implication is conscious use of code reading
strategies depending on code size, program structure and other
parameters.

The explication of code reading strategies and deliberate usage of
these strategies depending of situations helps students to make
their strategies more effective.

With high probability, there are also differences in code reading
process due to the approach to programming (OOP, Functional,
Procedural), that should be also considered in the education
process.

4. ACKNOWLEDGMENTS
Our thanks to Eye-movement workshop organizators for allowing
us to participate in this event.

3

Analyzing Programming Tasks

Andrew Begel
Microsoft Research
One Microsoft Way

Redmond, WA, USA
andrew.begel@microsoft.com

1. INTRODUCTION
In this position paper, I first describe the eyetracking pat-
terns of the two participant videos I watched and coded.
Next, I reflect on the methods and validity of manual coding
and interpretation, and finally, I add my own thoughts on
the utility of eyetracking data for understanding and helping
programmers create and maintain software.

1.1 Task Segment 1
Participants were asked to understand what the area() method
would do. The first participant spent 22 seconds linearly
reading the code from top to bottom. He then went back-
wards and read through the class methods and constructor
for 6 seconds. Then he explored a constructor call from
the main(), and spotted similarly named instance variables
throughout the rest of the code. Then it seemed that he
switched to tracing the code in each of the instance meth-
ods, flipping back and forth from the constructor call to the
instance method in order to figure out which values were
being used in the computations. Finally, he traced through
the execution of the rect2.area() method call, jumping from
the this.width() call to the definition of width() and from
the this.height() call to the definition of height().

Diving a bit deeper from 00:33 – 00:36, the subject explored
the meaning of the width() method. Triggered by the call to
width() in the area() method, he read the width() method
body from start to finish, then traced the definition of this.x1
to the constructor call where this.x1 was assigned. He then
traced that back to the parameter list which contained an
x1 parameter. Then he jumped back down to the Rectangle
constructor call in main() to see which value was passed in
as the first argument to the Rectangle constructor call.

While this could be characterized as a strategy of execution
tracing in reverse (a.k.a. debugging), I think the user was re-
ally executing a pattern by tracing similar words backwards
through the code file. So, he saw x1 in width(), saw it again
in the Rectangle body, and then again in the parameter list.
Afterwards, he used the notion of parameter-argument posi-
tions to find the appropriate value passed into the Rectangle
constructor from the main() method.

If we wanted to identify when the subject was tracing in a
debugging strategy vs. pattern matching words, we could
modify the study instrument and change the Rectangle con-
structor parameter names to be di↵erent than the instance
variable names. Similarly, we could also create a second con-

structor in which the positions of the parameters (and group-
ing) are permuted from the first, to see if actual knowledge
of method calls was being used to spot the correspondence
between the caller and the callee arguments.

1.2 Task Segment 2
The second participant read linearly through the class and
constructor until he reached the width() method. Then he
traced the definition of each used instance variable to the
constructor. He did the same when reading the height()
method, but switched back to linearly reading the code when
he reached the area() method. This took about 25 seconds.
Then he started tracing the first constructor call to see how
each argument was assigned to a particular parameter and
assigned into a similarly named instance variable. Finally,
answering the question, he looked at the rect2.area() method
call, read the definition, and then presuming he understood
the code correctly, computed the math in his head to figure
out the rectangle’s area, and finished the task.

The second participant worked more quickly than the first
to minimize code scanning and concentrate more directly
on the rect2.area() method call. Between 00:40 — 00:55,
he traced the Rectangle constructor call that created rect2.
He first connected the first argument to the first parameter,
then to the first instance variable assignment. Then he read
the next line of the constructor call and worked backwards
to the parameter and to the argument to the constructor call
to validate some internal hypothesis about which argument
values were assigned into each instance variable.

2. REFLECTIONS
The process of coding eyetracking data can be divided into
two parts: segmentation/identification and interpretation.
For programming tasks, the first part is automatable, pro-
vided the subjects’ IDEs can be queried to turn (x, y) pixel
positions o↵ered by the eyetracking device into program con-
structs at various levels of textual, lexical, syntactic, and
semantic abstraction. The second part is subjective, requir-
ing the observer to interpret the rationale behind the user’s
eye movements. This is easiest to do when the user thinks
aloud (and the narration is recorded in sync with the user
data). But, interpretation can easily be biased by the ob-
server’s prior knowledge of programming and pedagogy. We
can mitigate this by having many independent observers in-
terpret the same data, allowing unsupported inferences to
be detected, negotiated, and eliminated [1]. Tailoring the

4

research questions requiring interpretation towards purely
observable phenomena can also help.

After segmenting and coding the data using the observable
measures, I have several thought about the process:

1. ELAN has some awkward user interface constructs that
make it di�cult to process multiple related tiers of
codes. One specific example is that some clearly hi-
erarchical code tiers should have corresponding start
and end time stamps in each tier, but the system does
not automatically align the annotation boundaries for
you.

2. I do not trust my annotation timestamps to be accu-
rate within one second. I would trust an automated la-
beler much more. The implication here is that I would
not feel comfortable trusting many quantitative anal-
yses based on annotation times or lengths. I would
trust an analysis based solely on the order of annota-
tions within a single tier.

3. Without think aloud, I can only o↵er speculations on
the programming strategies employed by the partici-
pants. Even on a smaller time scale, there are so many
things that could be going through the participants’
heads while they code that influence where their eyes
are pointed. Before I would believe anyone else’s spec-
ulations, I would conduct an experiment to confirm the
theories found in the Empirical Studies of Program-
mers workshop series through some carefully designed
code comprehension experiments [3, 2, 4].

With respect to what I found the participants to be do-
ing, it was possible to see what I thought were eye move-
ments (saccades) influenced by various semantic and opera-
tional properties of the code (all timestamps for first video):
data flow (following a single object in memory as its value
changes through the program, e.g. 00:46–00:50), intrapro-
cedural control flow (scanning lines of code in program ex-
ecution order (real or simulated), interprocedural control
flow (following call-chains in real or simulated execution,
e.g. 00:52–00:59), word (pattern) matching (simple visual
pattern matching, e.g. 00:26, 00:27.8–00:28.2), linear scan-
ning at the block level and the line level (reading through
the textual lines of code, e.g. 00:02–00:20, 00:26.3–00:27.6),
and reverse data flow data (tracing assignments backwards
through control flow in service of debugging and/or program
execution comprehension, e.g. 00:23–00:26).

I do not think the two examples we saw were intricate enough
to help us understand much about program comprehension
strategies, and certainly nothing about programming or de-
bugging strategies. I o↵ered suggestions in the previous sec-
tions describing the two segments as to how to alter these
examples to validate any theoretical concepts related to dif-
ficulty, confusion, or fatigue.

One major complaint about the 1980s Empirical Studies of
Programming work is that most of the program compre-
hension theories were derived from experiments on students
reading tiny programs away from a computer where they
could code or run them. Thus, the lowest level strategies

used by experts in real work may appear similar, but there
will be evidence of higher and higher-level strategies and
plans in in situ empirical data (should we have some) that
will confound the simpler theories.

3. THE BIGGER PICTURE
Software developers continue to make mistakes when writ-
ing code, despite improvements in programming languages,
high-level abstractions, better development tools, better com-
munication tools, more responsive development methodolo-
gies, and even the availability of Internet search. Mining
software repositories (MSR) research correlates empirical
data about the software and the process by which it was de-
veloped to discover attributes that indicate poor code qual-
ity and/or poor productivity. However, this research does
not explain why mistakes are made, but only where they
occur most often.

Developers do take steps to mitigate the risk pointed out
by MSR analyses. For example, they might more rigorously
test code that has been implicated in prior bugs. However, I
feel that to improve the basic situation, we need to go to the
root of the problem, when developers are actively reading,
writing, and modifying code. In a pilot study I conducted
last year with my colleague, Thomas Fritz, from the Univer-
sity of Zurich, we recorded 6 Microsoft software engineers
working for five minutes to modify some code we gave them
and for five minutes on their own task they had that day.
We found each developer expressed (via think aloud proto-
col) temporary confusion, and got lost (re: navigation) in
their code several times in that short time span, even when
working on their own code with which they were very fa-
miliar. Perhap, developers make more mistakes when they
are confused or lost (and do not make mistakes when they
are not). Thus, if we could detect and/or stop them from
programming in these emotional states, we could improve
code quality and productivity.

In the last year, I have been using eyetracking, electro-
dermal activity sensors, and EEG sensors with professional
programmers doing comprehension tasks (very similar to the
ones in this workshop) to identify correlations between the
biometric sensor readings and programmer confusion, task
di�culty, and surprise. My goals are to discover which sen-
sors correspond most precisely to these emotional attributes,
which combination of sensors are easiest to deploy and o↵er
the best online prediction accuracy, and correlate the sensor
readings to areas of the code where developers cause bugs
or experience lowered productivity.

Ultimately, I would like to use instantaneous measurement
of biometric data and design an appropriate analysis to en-
able the design of IDE-based programmer interventions that
could stop developers from making bugs before they make it
into the source code. For instance, EDA readings can help
determine when someone is not paying attention to their
work (e.g. they just had lunch) and warn them if they try
to edit a region of the code known to be at high risk for
bugs.

During my work, I have had to learn a lot about experimen-
tal design of small comprehension tasks, biometric sensor
measurements, analysis of noisy human-sourced data, and

5

still find ways to discover significant results with non-trivial
e↵ect sizes. I hope to find others at this workshop to trade
tips and tricks for this experimental data, and develop a set
of practical methods for design and implementing experi-
ments and analyses. I would also like to find out how best
to adapt experimental methods and analyses from the med-
ical and cognitive psychological fields for tasks that involve
many fewer, yet much more complex (related to more areas
of the brain) activities that are representative of computer
science tasks and skills.

4. REFERENCES
[1] B. Kitchenham, D. I. K. Sjøberg, O. P. Brereton,

D. Budgen, T. Dyb̊a, M. Höst, D. Pfahl, and
P. Runeson. Can we evaluate the quality of software
engineering experiments? In Proceedings of the 2010

ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, ESEM ’10,
pages 2:1–2:8, New York, NY, USA, 2010. ACM.

[2] G. M. Olson, S. Sheppard, and E. Soloway, editors.
Empirical studies of programmers: second workshop.
Ablex Publishing Corp., Norwood, NJ, USA, 1987.

[3] E. Soloway, B. Shneiderman, and S. Iyengar, editors.
Empirical Studies of Programmers: First Workshop.
Greenwood Publishing Group Inc., Westport, CT,
USA, 1986.

[4] S. Wiedenbeck and J. Scholtz, editors. ESP ’97: Papers

presented at the seventh workshop on Empirical studies

of programmers, New York, NY, USA, 1997. ACM.
608977.

6

Аnalysis of two eyetracking renders
of source code reading

Katerina Gavrilo
Saint-Petersburg, Russia

katrinaalex@gmail.com

ABSTRACT
In this paper, the specific and subjective description of two short
segments of data is given. Author proposes some thoughts on the
usage of the eye movement data in computer science education
research.

Keywords
Eye movement, source code review, eye-tracking metrics,
cognitive strategies, program comprehension, pattern

1. INTRODUCTION
Connection between comprehension processes and eye movement
data has been analyzed for many years now. Although this field of
computer science is rather young, we should not underestimate the
results we have already got. A lot of different researches have
been made in this field. Some studies have more physical
specification [1], another ones — cognitive [2]. Recently
a number of programming orientation works has been written
[3,4].

Having initial data (two subjects per program) and various
annotations to program, a number of particular observations is
given as a result of assignment.

2. GENERAL INTERPRETATION
According to our goal, which is to find existing connection
between eye movement data and cognitive processes during
programming, we analyzed data we have. For a review at our
disposal we have one Java program and two subjects. To each of
them two different comprehension questions about the same
program were given. As a result we recorded two video fragments
with different subjects.

3. DATA, PATTERNS, STRATEGIES
As raw material we have two videos from where we get
information about subjects’ eyes behavior, several characteristics
(fixations, location and duration of those fixations) and saccades
amplitudes.

For making the analysis we apply a number of given rules which
describe some of the eye-movements. These rules represented as
digest of attributable patterns for eye gazes and also strategies,
which are based on existing patterns.

In our research we address to some patterns as scan pattern, liner,

retrace declaration pattern [4], retrace reference pattern [4]. As for
strategies we will try to derive them from patterns we found.

Even though the source code for two participants is the same,
patterns and strategies are noticeably different. That occurs
because comprehension task, which were given to the subjects
before the source code was shown, are not the same. Let us
discuss the gaze data step by step.

3.1 Figure 1
The task for this figure was to say the return value of
‘rect2.area()’ after the program was executed. The whole fragment
takes 1,5 minutes.

First 19 seconds we consider as a scanning process through the
whole source code. During this part time participant becomes
acquainted with it. At the end of the program probationer facing
finds the line with where he find ‘rect2.area()’, the — data he has
to know the value of. So then he is going back to place where
variables for x’s and y’s were declared. From that place he
descends reads the code again. And again the moment participant
he reaches the ‘area()’ method description participant he looks
step by step “go” through the previous places where the variables
has have been recently referred. For example he faced the ‘area()’
method and sees there ‘width()’ and ‘height()’ methods, so he
goes to them returns to them. After he gets what is in there the
values of these variables, next gaze he stops his sight is at the
constructor, where x and y values are defined. This route is
repeated a number of times with some insignificant deviations.

At some point we have three blocks of code between which gazes
are travelling. These are area with given parameters (5, 5, 10, 10),
which have to be counted for having output value, area between
where width and height methods are described and constructor
with parameter definitions. After a sequence of brief fixations
longer fixations appear. That is caused by some cognitive
processes. Presumably there the participant counts the result,
because he is looking at the entering parameters (5, 5, 10, 10).

3.2 Interpretation of Figure 1
We found scan pattern in the beginning of the video. For the most
part of the whole test there were a lot of oft-recurring saccadic
eyesight jumps between places where variables had been recently
referred to or declared. Those patterns we call retrace
declaration[4] pattern and retrace reference pattern[4]. As for
strategies, we would define here DesignAtOnce and Trial&Error.

We would propose to describe the mix of patterns and strategies
as a process when you first check the risk of any deal. Like before
transport some goods through the unknown route, first one go
there without merchandise and see where to turn and where the
traffic lights are. And when one is sure about everything he takes
the goods with him to finish the deal. Comparing this example
with our task, the route here is the algorithm while the goods are
the parameters. This strategy is called touchstone.

7

3.3 Figure 2
The task for this figure was to find a way to give an answer to a
multiple-choice question about the algorithmic idea. The whole
fragment takes 56 seconds.

First 25 seconds we can define as detailed and thoughtful
scanning. During scanning the participant equally pays attention
to signatures, lists of parameters, body of functions. We can
notice that when the similar description of a method or a variable
appears, fixation time is much shorter. For example after the
participant has examined the width method long enough he did
not spend much time examining the height method, because they
are similar. When probationer reaches output commands he
spends there quite a long period of time (the sum of fixation
intervals is bigger compared to other blocks), thinking and
analyzing the type of information he will have as an output. Also
we can see a moment when the participant was comparing the
‘rect1.area()’ to ‘rect2.area()’. Next “block” of his action is
juxtaposition of entered parameters (5, 5, 10, 10) to how they are
described in the constructor. Afterwards eyesight is coming back
to ‘public static void main’ with predominant attention on line 20.
The fixation duration is getting noticeably longer. Then
participant has his eyes directed to the ‘area()’ method. This part
seems like he is attentively investigating what the method is
doing. After all sights are going back to the ‘public static void
main’ zone and last 6 second we observe that the fixations are
longer and they gathered just near the end of the code.

3.4 Interpretation of Figure 2
It is uncertain if the scan pattern is appropriate in this case,
because usually it means that the participant is briefly looking
over the source code and then coming back to parts, which he
thinks deserve more attention. It could be perceived as slow
motion scan pattern. Beside that we can distinguish the linear
pattern. So we come to strategies DesignAtOnce and
ProgrammFlow, when the subject’s intention is to understand the
general idea of algorithm and figure out the outcome of the
program.

3.5 Comparison between figures
Compared to the Figure 1, Figure 2 was more consistent, regular
and calm, so to say. In the Figure 1 the whole picture was
assembled by the participant from the pieces, which where all
around the code in random places. The participant of Figure 2
made his picture very accurate. It seems that the second

participant was memorizing information during the reading the
code, from the first step. That is logically explained by the task he
was given.

4. POTENTIAL USE
Each person has their own model of cognitive comprehension and
by studying them we can individualize the material we have. That
could be used in computer science education to improve quality of
studying materials.

There are several areas of application for the eye movement data
analysis, if it were researched more thoroughly. For example, that
could be used for finding “bugs” in the code. This can be
observed and as the results we could have some rules of
differences between novices and professionals (which are actually
already observed) with which it is possible to check the candidates
for some job for example.

Also this method could be used as a great base in education. For
instances, as some special aspects for IDE interface design, that
could be even auto-tuned with live eye-tracking data. If some
parameters are getting too low or too high that means that the
person has some problems in this particular block of code,
therefore some tooltips, hints or buttons could appear. So that
certainly could be used for creating IDE for learning
programming. No doubt that this field has a great potential for
educational field.

5. REFERENCES
[1] Gippenreiter Y.B. (1978) Movement of human eye. Moscow:

Moscow University publisher (in Russian).

[2] Velichkovsky B.M. (2006) Cognitive Science: The
Foundations of Epistemic Psychology. Moscow: Smysl/
Academia (in two volumes, in Russian).

[3] CROSBY, M. E., AND STELOVSKY, J. 1990. How Do We
Read Algorithms? A Case Study. IEEE Computer 23, 1, 24–
35.

[4] Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.
(2006) Analyzing individual performance of source code
review using reviewers' eye movement. In Proceedings of the
2006 Symposium on Eye Tracking Research &Amp;
Applications (San Diego, California, March 27 - 29, 2006).
ETRA '06. ACM, New York, NY, pp. 133–140.

8

Towards Automated Coding of Program Comprehension

Gaze Data

Michael Hansen
Indiana University

School of Informatics and
Computing

2719 E. 10th Street
Bloomington, IN 47408 USA
mihansen@indiana.edu

Robert L. Goldstone
Indiana University

Dept. of Psychological and
Brain Sciences

1101 E. 10th Street
Bloomington, IN 47405 USA
rgoldsto@indiana.edu

Andrew Lumsdaine
Indiana University

School of Informatics and
Computing

2719 E. 10th Street
Bloomington, IN 47408 USA

lums@indiana.edu

ABSTRACT
Gaze data collected during program comprehension provides
insight into programmers’ thought processes. Manual coding
of this data, however, can be tedious and subjective. We de-
fine and demonstrate an automated coding scheme for most
categories in this workshop’s coding scheme. We discuss
potential sources of error when abstracting from fixations
to areas of interest and patterns, and consider alternative
definitions for some codes. For the high-level Strategy cat-
egory, we inform coding decisions with metrics computed
over a rolling time window.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
software psychology

1. INTRODUCTION
Gaze data collected during program comprehension provides
an insight into programmers’ thought processes that is dif-
ficult to gain using common performance measures [1]. The
process of interpreting and coding this gaze data, however,
is tedious and highly subjective. To aid in the discovery
of strategies for use in programming education, automated
coding can be done with fixation data obtained directly from
the eye-tracker. By building on the abstraction gained from
lower-level automated coding – e.g., from fixations to blocks,
lines, parameter lists, etc. – we demonstrate that codes from
most categories in this workshop’s coding scheme can be au-
tomatically and reasonably assigned.

Automated coding requires precise definitions of each cat-
egory and code. At a low level, this means defining areas
of interest (AOIs) based on syntax or semantics, and then
deciding to which AOI (if any) each fixation belongs. Sec-
tion 2 discusses the details of AOI creation and fixation as-
signment. These details must be explicit because the process

of quantizing fixations introduces new potential sources of
error. Section 3 defines all automatically-assigned codes in
terms of AOI rectangles or lower-level codes. These defini-
tions fit the authors’ intuitions, but should not be taken as
absolute or final. To aid in the manual assignment of Strat-
egy codes, we make use of several fixation metrics computed
over rolling time windows in each trial (Section 4).

2. QUANTIZING FIXATIONS
Fixations are quantized gaze positions over time. To ab-
stract further, we draw rectangles around areas of interest
(AOIs) and assign each fixation to zero or more AOIs. For
simplicity, we assume the AOI rectangles in the Block, Sub-
Block, Signature, and MethodCall categories do not over-
lap. Codes in these categories, therefore, are mutually ex-
clusive (not the case for Pattern).

Figure 1: Example assignment of a fixation to an
AOI. A circle is drawn around the fixation point,
and the AOI with the largest overlap is assigned.

To determine whether or not a fixation belongs to an AOI,
we do the following: (1) draw a circle around the fixation
point with radius R, and (2) choose the AOI rectangle with
the largest area of overlap (Figure 1). The choice of R de-
pends on the size of the experiment screen and how far away
the participant was sitting. Using R = 20 pixels, Figure 2
shows a timeline for subject 1’s trial where each fixation has
been quantized by line. Particular high-level patterns, such
as Scan (highlighted), become readily apparent with such
plots. Caution must be exercised, however, because noise at
the lowest levels (raw gaze data) may result in a wrong AOI
or code assignment.

3. CODING SCHEME DEFINITIONS
To facilitate automation of the coding process, we must pre-
cisely define each portion of the coding scheme. Even for
very basic codes, such as Body from SubBlock, di↵erent rea-
sonable definitions are possible. For example, should a fixa-
tion be coded as Body if it hits an opening curly brace ({)?
For functions defined with K&R style braces, the opening
brace is part of the signature line, and would likely not be
considered part of the body:

9

Figure 2: Timeline of line fixations for subject 1 (en-
tire trial). The automatically identified Pattern:Scan
portion is highlighted (2.034-18.642s).

public Rectangle(int x1, int y1, int x2, int y2) {

// constructor body

}

With more compactly defined functions, such as width(),
the separation between body and signature is not as clear:

public int width () { return this.x2 - this.x1 ; }

We suggest the following definitions for SubBlock. The open-
ing brace is counted as part of the signature, whether or not
the function is defined on a single line. To be consistent,
the closing brace (}) is never considered part of the body.
Figure 3 shows areas of interest overlaid on the rectangle
program according to these definitions.

Figure 3: SubBlock areas of interest for constructor
and width method. Signature and body are consis-
tently separated.

3.1 Signature and MethodCall
Both Signature and MethodCall have Name, Type, and pa-
rameter list codes. For a signature like main’s:

public static void main (String [] args) {

// ...

}

we consider public static void to be the type, main to be
the name, and the arguments plus surrounding parentheses
to be the formal parameter list. When coding method calls,
however, we only consider Name and ActualParameterList.

While the type and name of a method call are distinct lin-
guistically (e.g., System.out and println), they are phys-
ically combined as a single “word” (System.out.println).
Unlike signatures as well, the types and names of method
calls are both in the same grammatical category (identi-
fiers), as opposed to being in separate categories (keywords
and identifiers). For these reasons, we do not separate type
from name for MethodCall (Figure 4). Lastly, we do not
code nested calls hierarchically (e.g., foo(bar())) because
it would cause within-category overlap of the AOIs.

Figure 4: MethodCall areas of interest for main
method. We do not distinguish between Name and
Type.

3.2 Pattern
The most basic pattern, Linear is defined as the subject fol-
lowing at least 3 lines in text order. We follow this definition
with one caveat: blank lines are not taken into account. For
example, fixations on lines 1, 2, then 4 for the rectangle
program are coded as Linear because line 3 is blank.

The JumpControl pattern, while seemingly simple, hides a
great deal of complexity. Whether or not a transition be-
tween two lines follows execution order depends on where
the subject is in evaluating the program! For example, a
transition between line 11 (width() definition) and line 15
(area() definition) follows execution order only if the sub-
ject is currently evaluating the call to this.width() in the
body of area(). For now, we code any line transition that
could follow execution order as JumpControl. Future defini-
tions of this code should take previous fixations into account
in order to guess where the subject is in the call stack.

LineScan is defined in English as the subject reading the
whole line in “rather equally distributed time.” For simplic-
ity, we operationalize this definition by splitting each line
into a set of equally-sized rectangles (Figure 5). A LineS-
can is coded for any set of consecutive fixations that hit at
least 3 distinct rectangles on a single line. While this does
not explicitly address the “equally distributed time” portion
of the English definition, it assigns codes that match the au-
thors’ intuitions for the sample data. Another option would
be to use the rolling metrics discussed in Section 4 – e.g.,
fixation spatial density and duration.

Building on LineScan, we can simply define Signatures as
a line scan of a signature line (SubBlock:Signature) im-
mediately followed by a fixation inside the corresponding
function/constructor body (SubBlock:Body). With this def-
inition, we identify two instances of the pattern in subject
2’s trial (width starting at 7 seconds and the constructor
starting around 26 seconds).

The Scan pattern, inspired by results from Uwano et al. [4],
can be operationalized using two sets of constraints. A Scan

10

starts the first time a fixation moves down the screen rel-
ative to the previous fixation, and stops when one of two
conditions is met: either (1) more than 3 fixations move up
the screen, or (2) more than 1.5 seconds are spent on the
same line. The highlighted portion of Figure 2 has been
identified using this definition, and matches well with the
authors’ intuitions.

Figure 5: A single line split into equally-sized rect-
angles. We code a LineScan if 3 or more distinct
rectangles are fixated consecutively.

4. STRATEGIES & ROLLING METRICS
Codes from the categories described above can be assigned
based (mostly) on observation. The Strategy category of
codes, however, requires more interpretation. To aid in the
identification and interpretation of strategies, we compute
three fixation metrics over the course of each trial using
a rolling window. Windows are 4 seconds in size and are
shifted by 1 second during each step. On average, a single
time window will contain about a dozen fixations.

Our first two metrics are simply fixation count and mean
fixation duration [3]. Respectively, they are the total num-
ber of fixations in a time window and the mean duration
of those fixations. Our third metric, fixation spatial den-
sity [2], is computed as follows: (1) divide the screen into
a grid, and (2) calculate the proportion of cells in the grid
which contain at least one fixation. We divide the portion
of the screen containing code vertically into 10 equally-sized
rectangles. A spatial density of 1, therefore, means that all
10 rectangles were fixated at least once in a time window.

Figure 6 shows our three rolling metrics computed for sub-
ject 1’s trial (time windows with no fixations were dropped).
Troughs in spatial density (solid blue line) correspond to
windows in which subject 1 was concentrating on one or two
lines. In some cases, this was correlated with an increase in
fixation count (dashed green line), which may be useful for
distinguishing between the Debugging and TestHypothesis
strategies. The sharp increase in mean fixation duration
just after the 70 second mark (dashed-dotted red line) cor-
responds with the subject focusing on the final line of the
program:

System.out.println(rect2.area ());

The subject’s task in this trial is to obtain the value of
rect2.area(). Given the increased fixation duration and
drop in both fixation count and spatial density at this point
(at approximately 65-75 seconds), we hypothesize that the
subject is performing the necessary mental calculation to
compute the area of rect2. There are several o↵-screen fix-
ations at 70-75 seconds in the video, supporting this hypoth-
esis. While we may not be able to pinpoint shifts in strategy
using this kind of visualization, we can quickly identify in-
teresting time windows to investigate further.

Figure 6: Rolling fixation metrics for subject 1 (en-
tire trial) with a window size of 4 seconds and a step
size of 1 second.

5. CONCLUSION & FUTURE WORK
We have defined and demonstrated an automated process for
coding non-Strategy categories from the workshop’s coding
scheme. In most cases, this process assigns codes that match
well with the authors’ intuitions. In the context of pro-
gramming education, automated coding helps researchers
quantify di↵erences between experienced and novice pro-
grammers. Such di↵erences could inform the design of an
automated tutor capable of providing highly-contextualized
feedback to a student. For example, alternative strategies
could be presented to students who fail to locate a bug in
an exercise.

Automated coding also forces the coder to think precisely
about areas of interest and how to define high-level codes,
increasing confidence in subsequent analyses. Because the
process is automated, it can be run with di↵erent, compet-
ing code definitions. Multiple quantitative cognitive mod-
els could also be used to inform coding (e.g., JumpControl),
with deviations from expectations helping to refine the mod-
els.

For future work, we would like to achieve automated cod-
ing of the Strategy category in a way that agrees with hu-
man coders. This may not be possible without more precise
definitions of Debugging, DesignAtOnce, etc. Previous psy-
chology of programming research, combined with focused
eye-tracking studies where only one strategy is likely to be
used, will be crucial to achieving this goal.

6. ACKNOWLEDGMENTS
We would like to thank the workshop organizers for their
e↵orts in constructing the coding scheme and providing the
gaze data. All software will be made available online af-
ter the workshop. Grant R305A1100060 from the Institute
of Education Sciences Department of Education and grant
0910218 from the National Science Foundation REESE sup-
ported this research.

11

7. REFERENCES
[1] R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen.

Program visualization: Comparing eye-tracking
patterns with comprehension summaries and
performance. In Proceedings of the 18th Annual
Psychology of Programming Workshop, pages 66–82,
2006.

[2] L. Cowen, L. J. Ball, and J. Delin. An eye movement
analysis of web page usability. In People and
Computers XVI-Memorable Yet Invisible, pages
317–335. Springer, 2002.

[3] A. Poole and L. J. Ball. Eye tracking in
human-computer interaction and usability research:
Current status and future. In Prospects, Chapter in C.
Ghaoui (Ed.): Encyclopedia of Human-Computer
Interaction. Pennsylvania: Idea Group, Inc, 2005.

[4] H. Uwano, M. Nakamura, A. Monden, and K.-i.
Matsumoto. Analyzing individual performance of
source code review using reviewers’ eye movement. In
Proceedings of the 2006 symposium on Eye tracking
research & applications, pages 133–140. ACM, 2006.

12

Notes on Eye Tracking in Programming Education

Petri Ihantola

Aalto University

Department of Computer Science and Engineering

Finland

petri.ihantola@aalto.fi

ABSTRACT
Eye tracking is an interesting approach to trace how pro-
grammers read source code. Although it is relatively straight-
forward to find out where a programmer focus his or her eyes
and how focus travels, interpreting this is much more di�-
cult. Why a programmer looks at something and why his
eyes move to something else? In this report, I describe my
interpretations of two short eye traces where experienced
programmers have read a short Java program to find out
what it does. I briefly discuss potential pitfalls of interpret-
ing eye tracking data and possible avenues of future research.

Categories and Subject Descriptors
K.3.4 [Computer and Information Science Education]:
computer science education, information systems education

General Terms
Experimentation, Human Factors

Keywords
eye tracking, code reading, computing education

1. INTRODUCTION
Eye tracking is measurement of eye activity combined

with information about the surrounding reality. This in-
cludes measuring where a person looks at, how his or her
gaze travels as a function of time, and even how the diame-
ters of pupils reacts to di↵erent stimuli. Eye tracking data is
gathered with eye tracking devices. These can be divided be-
tween head mounted (e.g. special glasses) and remote ones
(e.g. a monitor with with an accurate camera measuring
users eye focus).

In programming education, eye tracking has been used
to analyze both novice and expert programmers since early
90’s. Since that, as illustrated in Figure 1, an increasing
number of studies has been carried out.

Copyright held by the authors.

Eye traces are rarely su�cient by themselves. Thus, to
better support reasoning about the cognitive processes re-
lated to reading source code, eye tracking data is often ac-
companied with, for example, think aloud and retrospective
think aloud information. The latter is created by replay-
ing the eye tracking videos to the subjects after they have
been recorded and asking participants to explain what they
did, why they looked certain parts of the code, why they
navigated the source code with their gazes as they did, etc.

In this short essay, I have analyzed two eye tracking record-
ings where experienced programmers read code in order to
understand what it does. Recordings were created by using
a mobile eye tracking device attached to a monitor. This re-
sults to a video where the screen view is on the background
and eye traces are drawn on top, as illustrated in Figure 2.
Because of the setup, there is no information what partic-
ipants look at when they do not look at the screen. The
original data did not include any think aloud information or
other interpretations about what the participants eye gazes.

2. DESCRIPTIONS OF THE TRACES
In this section the behavior of both participants is briefly

described. Before diving into the stories, I advice my readers
to read the program in Figure 1 by themselves, and find out
what it does.

2.1 Participant A
Participant A started by skimming through the defini-

tions of instance variables and the constructor. After that,
he or she went straight into the main method and skimmed
through it. Perhaps the participant found out from the main
method that reading the whole would be beneficial, as he
or she next linearly skimmed through all the methods (de-
clared before the main). After the last method, the partic-
ipant started to refer back to the code what he just went
through. First, perhaps because the area method, that was
the last method, uses width and height methods, the par-
ticipant went to look at them. After that, perhaps because
width and height methods used the instance variables, the
participant went back to the constructor.

Towards the end of the session, the participant does more
and more jumping and looking back and forth in the code.
It may be that he starts tracing the creation of the rectangle
from main method, but after tracing what the constructor
does, he or she continues to other method definitions instead
of returning to the main method, as the execution does. This
could be to find out what the methods will return with this
particular rectangle object. This is possible to find out al-

13

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year

#P
ub
lic
at
io
ns

0
50
0

15
00

25
00

Figure 1: Number of publications per year matching to “eye tracking” and “programming” query in Google

Scholar. Numbers are not accurate because the search engine may misclassify publication years, not all

publications (especially older ones) are digitally available, etc.

Figure 2: A screenshot from the eye gaze data an-

alyzed in this study. The red circle shows where

the participant looks at the moment. Blue lines and

circles provide information about the history where

the participant looked at before.

ready at this point because there are no methods that would
change the state of an object. Indeed, when the participant
returns to the main method, he or she does not need to start

tracing when the area method is called.

2.2 Participant B
Participant B starts reading the code linearly from the

first line, that is the class definition. During the first 8
seconds he or she goes briefly and linearly through defini-
tions of the instance variables and the constructor. After
that, during the next 6 seconds, he or she goes through the
width method. While reading this one line method, parti-
pant scans the line back and forth and also quickly checks
how the variables used in this method were initialized ear-
lier in the constructor. The next method (i.e. height()) is
almost the same as the previous width method and the par-
ticipant just skims it though very briefly. The participant
actually starts reading the method backwards from the end
of the line – perhaps because the the two consecutive lines
are so similar that it is su�cient to check how the variables
used in this height method di↵er from the previous width
method. The next method (i.e. area()) is di↵erent than the
previous two methods methods and the participant spends
a couple of seconds on scanning this line back and forth.

Finally there is the main method from where the execution
starts. This main method has two very similar segments
where a rectangle object is first created and then the area
of that rectangle is printed on the screen. The participant
first goes back and forth the lines inside the main method –
perhaps to ensure that there is nothing wrong locally in that
method. Finally, perhaps to ensure that the Rectangle really
works as the participant expects, he or she seems to trace
the execution related to the creation of one of the rectangles
and calling the area method of that object.

3. DISCUSSION

3.1 Different Strategies in Reading the Code
As described in the previous section, participants A and

B used slightly di↵erent methods in reading the code. In
addition to di↵erences in what participants looked at, the
time they needed to find out what the program does di↵ered.
Participant A spend about one and a half minutes reading
the code, whereas B read did that in about a minute. A

14

significant di↵erence between the approaches of participants
A and B is that A did a lot more long jumps and backwards
referencing in the code. At some point, participant A seems
to look almost everything at the same time. Participant B’s
approach, on the other hand, was very linear. He started
from the beginning and he or she referred back to previously
read sections only a few times – typically not more than once
to same blocks.

At the end of the sessions, both participants started trac-
ing what happens when an object is created. After that,
participant B continued the tracing by returning to main
and after that to the area method as it was called. Par-
ticipant A did not return to main method but continued
directly to other methods from the constructor.

3.2 What is the Task
There are di↵erent use cases when programmers read source

code. For example, programmers read code of their own and
code written by others. In the latter case, programmer may
or may not know who has written code. In addition, pro-
grammers may or may not have some trust on that person. I
argue that when reading code of others, it makes a di↵erence
if an experienced programmer is reviewing a patch from an
unknown source, if he or she is reviewing code from someone
trusted. This is why all eye tracking studies should report
the context in details. It is an interesting avenue for future
research to study how much and how the contex a↵ects code
reading strategies of experts.

I also assume that size of the code base a↵ects to how
(experienced) programmers start reading it. However, it
looks like that so far most eye tracking research has focused
on small programs only.

4. CONCLUDING REMARKS
I analyzed two short recordings of eye gaze data where ex-

perienced programmers were asked to find out what a small
Java program does. I did not have previous experience from
this kind of manual annotation of eye traces and I found the
task quite laborious. Some of my tasks were something that
should be automated. However, despite my lack of experi-
ence in analyzing eye tracking data, I found it possible to
observe di↵erences, but also similarities, in how participants
read the code. As there were only two samples, I did not
find annotating the data as useful as viewing them side by
side.

15

Eye Movements in Programming Education:

Analyzing the expert’s gaze

A position paper for a workshop at

Koli Calling 2013: International Conference on Computing Education Research

Suzanne Menzel

School of Informatics and Computing

Indiana University

150 S. Woodlawn Ave.

Bloomington, IN 47405

menzel@indiana.edu

ABSTRACT
This position paper describes the author’s experience with
the ELAN tool for annotating the recorded eye movements of
two expert programs during a code-reading exercise. From
observable patterns in the gaze, strategies that the subjects
may have been employing are inferred. Ideas for future re-
search directions and the possible applications to improving
Computer Science education by explicitly teaching reading
skills to novices is discussed.

1. INTRODUCTION
This project attempts to infer the high-level cognitive pro-
cesses at work during the reading of a simple Java program
by an expert programmer, where the reading behavior is en-
coded as eye movement data. For this phase, the data for
two subjects was provided as an animation.

Both subjects read the same simple 18-line Java program,
but were given di↵erent instructions regarding the question
they would be asked following the reading. The first subject
read for 1 minute and 32 seconds, with the knowledge that
the follow-up question would involve the return value of a
specific method call. The second subject read for only 56
seconds, and expected to be asked a multiple choice question
regarding the algorithmic idea. Both subjects were told that
the code was free of errors, thereby eliminating the need to
verify “compiler level” details.

2. ANNOTATIONS
Time segments in each animation were coded, using mul-
tiple tiers, in the ELAN Linguistic Annotator tool [1]. A
controlled vocabulary was used to limit the set of possible
annotations appearing in a given tier. From the observable
positions and patterns, the author attempted to infer the

problem-solving strategy being employed by the program-
mer, i.e., to see what was going on “behind the eyes”.

3. EXPERIENCE WITH ELAN
The tiers and vocabulary were created by the workshop or-
ganizers and provided to the participants, although we were
encouraged to adapt the template to our needs. Thus, my
primary interaction with ELAN was to “mark up” time seg-
ments in the given animations with given annotations. Al-
though there is ample documentation of the system available
online, the acclimation to the system could have been faster
and easier had a brief tutorial of the annotation procedure
been provided.

Initially, I was unclear as to how detailed the annotations
should be, how much coverage was reasonable, and how ex-
acting should be the start and end points. Also, I wanted to
complete the annotations for one subject in a single sitting,
so I desired a ballpark estimate of how much time it could
be expected to take. I sought guidance from one of the or-
ganizers, Teresa Busjahn, who shared with me her personal
approach to doing the annotations and told me that it took
her about two hours per video. I gratefully adopted her pro-
cedure. This was to proceed in two passes. During the first
pass, only Blocks are annotated. This identifies the basic
code segment the reader is concerned with during each time
period. The remaining levels were covered in the second
pass.

The tiers for SubBlock, Signature, and MethodCall allow for
fine-tuning the description of the observable events. Gener-
ally, I didn’t find these helpful, especially those that distin-
guished between Name and Type. This was largely due to
a lack of confidence that developed in knowing the precise
word corresponding to the gaze point. In the instructions to
participants, we had been warned by the organizers that“the
gaze point might be somewhat askew (due to head move-
ments etc.) and that an area of several characters around
the middle of the fixation can be perceived. The perceived
information may span about a thumbnail around the cen-
ter of the fixation.” There were times when I debated my
decision about the line of text that was being scanned, and
making a contingent decision regarding the word on the line

16

seemed like a stretch.

Each video was annotated in a single session. The first took
about four hours. The second video was shorter, had fewer
high-level transitions, and I was more practiced with the
ELAN system, so it took me under three hours.

The most interesting and important tiers are Pattern and
Strategy, as this is where I relied on my intuition (garnered
over three decades of teaching programming) to speculate
on how the subject had decided to go about the task of
comprehending the program. I am sure that I relied, at
times, on my own expectation of how I would have read
the program myself and where I would have proceeded next
from a given point. Because there were times when it seemed
that there were overlapping strategies in play, I added two
additional tiers, SecondaryPattern and SecondaryStrategy.
I had no trouble selecting one strategy as the dominant force
guiding the subject, which is why I labeled the recessive
strategy as Secondary.

4. INTERPRETATIONS
It is likely that the prompt influenced the subjects’ approach
to the reading, with the first person focused entirely on pro-
gram execution and output, whereas the second needed to
recognize the program’s algorithm. In some real sense, the
cognitive load on the first subject was less than that on the
second. It is a mechanical process to trace a given program
(to “be the computer”), whereas the second subject had the
additional burden of formulating an abstract understanding
of the code.

The two subjects exhibited vastly di↵erent behaviors, most
notably in the duration of time spent in one area before
moving on. An interesting statistics might be to calculate
the total distance traveled by each subject.

4.1 Impressions of Subject1
This subject was “all over the place”, with many sporadic
jumps and short visits to code blocks. This is evidenced by
the comparatively large number of Block annotations (92)
and the frequent use of the Trial&Error strategy.

Given the concrete “what does this Area method return”
prompt, I was surprised at the small amount of time spent
tracing the code and viewing the Area method. This subject
seemed to be overly concerned with syntax. A good deal of
time was spent reading the Height method, and wandering
from place to place. The e↵ort exerted on a Debugging
strategy is surprising given that the subject was informed,
in advance, that the program contained no syntactic or run-
time errors.

4.2 Impressions of Subject2
This subject’s gaze was characterized by a careful, methodi-
cal, top-down scan of the code, followed by a DesignAtOnce
and ProgramFlow strategies. Compared to the first subject,
the gaze is more controlled and less fragmented. The to-
tal number of Block annotations is just 21. The systematic
top-down reading is broken with the occasional brief TestHy-
pothesis, which appear to be used to reinforce or confirm
prior assumptions.

After the initial line by line reading, the transitions generally
seem to follow the program execution. The gaze seems to
pick up where it left o↵ in the reading when returning to a
code block for further review. Some annotations are clearly
just stops on the way to someplace else, which would be
better coded as JustPassingThrough.

This subject exhibited concentrated and localized e↵ort. Not
only were the Block annotations longer, the gaze would
linger on a single line for a sustained period.

Sometimes the gaze would indicate close reading of whites-
pace. For example, from about 0:52 to the end shows the
subject studying a blank area in the lower right. This makes
me wonder if the calibration is too error prone to allow re-
liable coding of tokens within a line. Perhaps this could be
mediated by using a larger font and smaller code segments.

5. VISUALIZATIONS
Mike Hansen, one of the workshop participants, created
some wonderful visualizations of the eye movement data,
showing which program lines the subjects fixated on.

It might be interesting to overlay a “heat map” on top of the
code that shows the fixations. In cases where the subject is
given a prompt to evaluate an expression, one might expect
a more uniform coating than if the subject was trying to
extract algorithmic meaning from the code.

6. FUTURE EXPERIMENTS
Java has a lot of“noise”. It might be more interesting for run
experiments using a language such as Scheme, which packs
an algorithmic punch in a small amount of code. I would
rather identify successful readership skills to discern the “al-
gorithmic gist” of a program, as opposed to the syntactic
structure.

Consider, for example, the following simple recursive proce-
dure. The reader would be asked to evaluate, say, (mystery
’(4 7 3 8 5 2)), and also told that the evaluation does
not result in an error (so as to lighten the cognitive load).
It would be interesting to note whether subjects notice the
cddr in the else clause.

(define (mystery ls)

(cond

[(null? ls) ’()]

[(even? (car ls)) (mystery (cdr ls))]

[else (cons (car ls) (mystery (cddr ls)))]))

Another interesting possibility is to ask the subject to em-
ploy a Think Aloud strategy, as much as possible, and then
collect audio during the reading, as well as the gaze data.
This could be used in a control group to help refine the cat-
egories in the Strategy tier.

7. CODING SCHEME
Some observations about the coding scheme:

1. The coding scheme provided by the organizers, and the
corresponding ELAN template, omitted a code inside

17

the Block tier for Area. I was certain this was an
oversight, so I just added that tag to the vocabulary.
Also, the organizers described a TestHypothesis code
for the Strategy tier in their provided materials. This
was inadvertently omitted from the ELAN template.

2. The Type code in the MethodCall tier is confusing be-
cause method calls do not include type information.
If the intent is to annotate the time when the gaze
is over a declaration, then Decl is a better identifier.
However, it seems that the assignment is the more in-
teresting artifact, as in Rectangle rect1 = new ...,
and in that case I’d suggest the code Assignment.

3. ProgramFlow was perhaps the easiest strategy to iden-
tify with confidence.

4. When I performed the annotations, I was unaware
of the fact that participants had been assured of the
error-free nature of the code they were reading. Thus,
I made an assumption about them being in Debugging
mode when they appeared to be carefully checking a
line character by character or when they flickered from
one place to another, quickly, as if verifying a small de-
tail. In retrospect, some of these later cases may have
been better categorized as TestHypothesis.

5. It is interesting to speculate how the subjects may have
altered their usual reading strategies to accommodate
for the fact that they knew the code was error-free.
Professional programmers hardly ever have this luxury
and it is probably second nature for them to verify
syntax during reading. I suspect that they would not
have been able to entirely suspend this behavior.

It seems a bit of a misnomer to classify this activity
as Debugging. After all, there are no bugs! I would
call this AttentionToDetail. In most cases, there is a
slowness to AttentionToDetail, but the subject could
also be verifying a global property, such as that argu-
ment/parameter types agree or that the semi-colons
are present in the right places.

6. The Debugging strategy seems to be characterized by
very small jumps, where the subject is presumably val-
idating the syntax. In contrast, DesignAtOnce is cap-
turing high-level algorithmic thinking, thus, features
rather large steps as the gaze sweeps over the text.

7. I associated the TestHypothesis code with Worry. I
imagined that subject might have found the need to
corroborate some assumption, as in “Wait, did I un-
derstand that correctly...”. This is di↵erent from De-
bugging (or the proposed AttentionToDetail) in that
there is a connection between what was being read pre-
viously and what is being checked, and that the gaze
will return to the original point.

8. I found the Trial&Error identifier a bit di�cult to
grasp. At some point, I translated this in my mind
to Wandering, and that seemed to help, although it
might be better to have this be a separate strategy.
I used this code for times when it appeared that the
subject was backtracking, seemingly searching for a
point to resume the reading after a particular path of
reasoning had been exhausted—essentially a transition
period or a brief rest between bursts of e↵ort.

8. REFLECTION
I am reminded of the work done by Matt Jadud to try to
extract students’ cognitive processes from their compilation
behaviors [2].

If we can gain insights into how experts read code, per-
haps those concrete code-reading skills could be explicitly
taught to learners in CS1. Using observable low-level be-
havior avoids the pitfalls of relying on human testimonials.
In many cases, the strategies being employed by the expert
may be so ingrained and practiced that the person is not
even aware of them on a conscious level.

The idea that expert knowledge sometimes needs to be teased
out and made concrete is something that has been studied,
in the context of undergraduate education, for some time
at Indiana University. A technique known as “Decoding the
Discipline” was developed, initially for History [3][5], but
later applied to other disciplines including Computer Sci-
ence. In [4], the authors state that “Since faculty did not
learn to think like historians through explicit instruction,
they find it di�cult to articulate what it means to think like
historians.” and “We present history as a model for other
disciplines. They too need to uncover their ways of knowing
and to teach them explicitly to students”.

The cornerstone of the technique involves an intelligent non-
expert interviewing the expert to discern the “tacit knowl-
edge” that is inherent in the field, thereby bringing it to the
surface. Once the hidden knowledge is made concrete, ap-
propriate ways of developing similar skills in the new learner
can be addressed. The interesting aspect of this project with
the eye movements is the prospect of taking the human out
of the loop because, many times, the human is unable or
unwilling to honestly self-reflect. I suspect that expert pro-
grammers may have a di�cult time articulating exactly how
they go about reading a program, even while they are doing
it, because they are so skilled at the task that they make
many rapid, unconscious decisions and may fail to discern
the discrete steps that form their overall strategy. They may
also fail to report the “dead ends” or “false starts” in their
lines of reasoning, something that would be preserved in the
gaze data.

I find this to be a very exciting and rich research direction.
I am eager to hear what others at the workshop think about
the potential application to Computer Science education. I
can imagine that this work might lead to the creation of a
tool for teaching reading skills that shows the student where
to look.

9. REFERENCES
[1] ELAN. http://tla.mpi.nl/tools/tla-tools/elan/. A

professional tool for the creation of complex
annotations on multimedia resources.

[2] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. ICER, September 2006.

[3] J. K. Middendorf and D. Pace. Decoding the
disciplines: A model for helping students learn
disciplinary ways of thinking. New Directions for
Teaching and Learning, (98), Summer 2004.

[4] L. Shopkow, A. Diaz, J. K. Middendorf, and D. Pace.
From bottlenecks to epistemology in history. Changing

18

the Conversation about Higher Education, pages 17–37,
2012.

[5] L. Shopkow, A. Diaz, J. K. Middendorf, and D. Pace.
The history learning project “decodes” a discipline: The
union of research and teaching. Scholarship of Teaching
and Learning In and Across the Disciplines, 2012.

19

Visual evaluation of two eye-tracking renders
of source code reading.

Paul A. Orlov
University of Eastern Finland
Yliopistokatu 2. P.O. Box 111
FI-80101 Joensuu, Finland

paul.a.orlov@gmail.com

ABSTRACT
In this paper, I describe the reading process of source code. By

analyzing gaze data during code reading processes, were defined

eye-movement patterns which are essential part of programming

comprehension. Software Visual Evaluation Tool (VETool) was

developed for visual evaluation of eye-tracking data and renders.

Two general patterns of eye-movements were found. The Jump

Control pattern was at the beginning for both subjects. And for

second subject was normal to use the Line Scan pattern.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and

Features – abstract data types, classes and objects, control

structures. H.5.2 [User Interfaces] : Interaction styles, Theory

and methods.

General Terms
Human Factors, Measurement, Languages.

Keywords
Eye-tracking, source code reading, data visualization, pattern,

strategy.

1. INTRODUCTION
The analysis of eye - movements is used for understanding of

human behavior and different psychological aspects. In his basic

work Yarbus describes, that eye-movement patterns and vision

strategy depend on the task (Yarbus, 1965). His thesis actual not

only for strong visual tasks like visual searching or reading. More

abstract tasks also determined visual strategy. For example, when

experimenter gives first task about age evaluation of the person

and second task about evaluation of emotional conditions of the

person on picture. In that two tasks both visual strategy and eye-

movements patterns are different.

The measurements of eye movements are very common for

understanding of humans activity, visual information processing

and comprehension of objective reality. And the problem is how to

interpreted eye movements. In psychology of programming (PoP)

eye-movements patterns mostly corresponds with the meaning of

stimuli. It means that we should assume, that if subject look at the

source code element, like variable definition, he should think

about this variable. This hypothesis plays vital role if we try to

understand mental process through eye-movements, for example,

source code comprehension.

2. OBSERVATIONS AND

INTERPRETATIONS
In two video renders subjects have to understand a Java program

and to answer questions about them. Eye movements (gaze

fixation, saccades and gaze path) were visualized for evaluation.

Both participants are experts in programming. First part of task

context was the instruction. How often programmers should

answer questions about source code in real live? The physical

experiment context rebuild usual Integrated Development

Environments (IDE) view, size, colors and formatting of source

code. In definition of “task” we have to agree that current

conditions relevant only for laboratory study.

For visual evaluations were used ELAN software and were build

new software tool for dynamic visualization of ELAN and eye-

tracking data Visual Evaluation Tool (VETool). VETool is an open

source software. Source code of VETool can be found here:

https://bitbucket.org/orlovpa/visual-evaluation-tool-vetool .

2.1 Comparing by “primitive” events

2.1.1 Attributes (Block), Type (Signature

annotations), Formal Parameter List (Signature

annotations), Name (Signature annotations)
Both subjects looks at these elements at the beginning of reading

and rarely after middle of total time. First points of fixation are in

the physical center of stimuli, but then, both subjects moves their

gaze to class attributes. Also duration of looking at class attributes

and at the name of signature are quite same. Times for each block

are different.

Attributes and Type elements are shown on Figure 1.

2.1.2 Constructor
Similar situation could be found in duration of seeing on

Constructor block. For this block of source code there are two

activity intervals: at the 5 sec (at the beginning) and at 25 - 40 sec.

First subject looks more often back to this block than second one.

Constructor element shown on Figure 2.

2.1.3 Area
Participants look at this block first time at about 20 sec and then,

they back to this block once or twice.

2.1.4 Width
This block shows different looking times and in different time

intervals. First subject backs here several times for about 1 sec

each. Second subject looks here twice and first time quite long.

But total time of looking on this block could be similar.
Workshop at the 13th KOLI CALLING INTERNATIONAL
CONFERENCE ON COMPUTING EDUCATION RESEARCH.
Joensuu, Finland, November 13th - November 14th, 2013

20

2.1.5 Main (Block), Body (Sub-Block), Actual

Parameter List and Names (Method calls) and

Method returns element.
The Main block is the popular for looking for both subjects. And

the similarity is in the interval of seeing, both subject looking here

from the middle time. They spend at this block much time (more

than 20 sec). In the Main block they look at Body sub-block and

at method calls inside sub-block. That is why these three elements

are very similar for total time and interval. All these blocks are

interesting for subjects gaze after the middle of total spending

time and at the end. Main element shown on Figure 3.

Figure 1: Time cyclogram for Attributes and Type elements.

Letter A shown first subject. Letter B shown second subject.

Figure 2: Time cyclogram for Constructor element.

Letter A shown first subject. Letter B shown second subject.

21

In other “primitive” events I could not find any interesting

moments. All of them are quite individual for participants.

2.2 Comparing by patterns
I found two general patterns that were used by subjects. The Jump

Control pattern was at the beginning. This situation is the same for

both subjects. And for second subject was normal to use the Line

Scan pattern. One interesting moment could be the way of Line

Scan. There are reading from right to left also. This “back”

reading should not be the same with backwards saccades

(regressions) in normal reading. Line scan patterns shown on

Figure 4.

Figure 3: Time cyclogram for Main element.

Letter A shown first subject. Letter B shown second subject.

Figure 4: Time cyclogram for Line Scan pattern.

Letter A shown first subject. Letter B shown second subject.

22

3. INTERPRETATIONS AND

DISCUSSION

In PoP eye-movements patterns should also depend on task. The

term “task” should be given a definition. The task is a mental

construction in humans mind that formed by instruction and

context (Gippenreiter, 1978; Rayner, 1998). Humans can be

instructed in different forms, like verbal or visual. Instructions

comes from objective reality, but human does their interpretation

through the individual context. Context can be influenced by

subjective emotional factors, previous experience, social and

physical factors (Muller et al., 2012). In PoP there are different

aspects of context also, but numerous papers skips context (except

studies with gaze controlled systems and gaze contingent

systems).

Visual evaluation of these two eye-movements shows that there is

not one significant picture. Even though subjects are both experts

in programming, they have mostly different eye-movements

patterns. Only at the beginning of reading (working) they have,

may be, Jump Control, but then they go in individual ways. It

seems, that it is necessary to take into consideration more factors

to determine the context of the task.

Finally, if we would like to identify the Strategy, we have to go

back to the Task definition. In current study subjects are expert in

programming, and they decide (may be at first gaze fixation),

what kind of strategy is necessary to use. If they got instruction

like this: “There is a bug, find it!”, they will use different strategy.

Subjects were informed about the task, before they read the code.

Subject1 was told, that there will be a question about the return

value of “rect2.area()” after the program was executed. And for

subject2 the information was, that there will be a multiple-choice

question about the algorithmic idea. So, they both use Program

Flow and both try to not only understand, but remember this

program to answer questions. Of course, that kind of task and

problems in real professional life are not exactly the same.

This situation shows that there are so much interesting finding in

this field of science in future!

4. ACKNOWLEDGMENTS

I thank all organizers (Roman Bednarik, Teresa Busjahn &

Carsten Schulte) of Workshop at the 13th KOLI CALLING

INTERNATIONAL CONFERENCE ON COMPUTING

EDUCATION RESEARCH. I like to express profound gratitude

to Teresa Busjahn for the idea to build such interesting materials

for the workshop.

5. REFERENCES

[1] Gippenreiter, Y. B. (1978). Движения человеческого глаза

[Movements of the human eye] (p. 256). Moscow: Изд-во

Московского государственного университета.

[2] Muller, M. G., Kappas, A., & Olk, B. (2012). Perceiving

press photography: a new integrative model, combining

iconology with psychophysiological and eye-tracking

methods. Visual Communication, 11(3), 307–328.

doi:10.1177/1470357212446410

[3] Rayner, K. (1998). Eye Movements in Reading and

Information Processing : 20 Years of Research. Psychological

Bulletin, 124(3), 372–422.

[4] Yarbus, A. L. (1965). Роль движений глаз в процессе

зрения [Eye movements and vision]. (p. 173). Moscow: Изд-

во “Наука.”

23

Finding Patterns and Strategies in Developers’ Eye
Gazes on Source Code

Bonita Sharif and Sruthi Bandarupalli
Software Engineering Research and Empirical Studies Lab
Department of Computer Science and Information Systems

Youngstown State University
Youngstown, Ohio 44555

bsharif@ysu.edu, sbandarupalli@student.ysu.edu

Abstract—This paper presents observations on patterns and
strategies expert developers use while reading source code. An
interpretation of two code segments of two expert developers is
given in the context of a coding scheme. Results indicate that the
method of reading source code varies based on the task however
some similarities are noted. Implications of these results to
Computer Science education are presented.

Keywords—eye tracking, source code reading, program
comprehension strategies, computer science education

1. INTRODUCTION

Computer Science is currently being taught at most major
Universities with a focus on code writing without really
introducing methods on how to first read the code. Reading
code is important because it is the first thing developers do as
part of most software tasks such as bug fixing and impact
analysis. Glass [1] states that we should approach learning a
programming language the same way we learn any other
language. First, a child learns how to read a language and later
develops writing skills.

How do we read and comprehend code? In order to answer
this question, a group of researchers at Freie Universitat Berlin
and the University of Eastern Finland conducted a workshop at
the Koli Calling 2013 conference dedicated to provide some
insight into this question. They provided workshop
participants with a two short videos of expert developer’s eye
gaze and a coding scheme. The workshop participants were
required to annotate the eye gaze using ELAN and find patterns
and strategies based on their annotations. Table 1 gives the task
given to each subject. The subjects were expert developers.
These tasks were given to the subjects before the source code
was even shown to them. Both subjects were given the same
23 lines of source code.

In order to answer the above question on how programmers
read and comprehend code, we introduce specific research
questions based on the types of activities software developers
are engaged in while they are reading the code. The research
questions we attempt to address are:
x RQ1: What specific parts of the program do programmers

look at most/least?
x RQ2: What comprehension strategies are used together?

x RQ3: Does the eye movement depend on the task being
solved?

x RQ4: What are the similarities and differences in eye gaze
between different tasks?

We do not generate any hypotheses for the above research
questions since this is a purely observational study and
reflection of our interpretation of the results. The videos are
qualitatively assessed in a somewhat structured manner based
on the coding scheme given.

The next section gives our interpretation of the eye gaze in
the two code segments. In Section III, we present some
discussion about the coding scheme used and modifications we
made. Finally we conclude with how eye movements can be
used in computer science education.

2. SOURCE CODE INTERPRETATIONS AND OBSERVATIONS

The coding was done by the second author of the paper
using the coding scheme provided to the workshop participants.
The ELAN files that represent our coding can be downloaded
from http://www.csis.ysu.edu/~bsharif/koliworkshop13/.

The main coding events fall into four main categories:
Block, SubBlock, Signature, and MethodCall. Each of these
categories are further decomposed into codes based on the
identifiers, methods, and functions in the program given to the
two programmers.

A. Subject 1 – Specific Task
The first subject was told that they would be asked about

the return value of rect2.area() as shown in Table 1. We
categorize this as a specific task because they knew about a
specific method that they would be asked about.

The subject spent the first 20 seconds scanning [2] the
program from top to bottom. The latter part of the time was
spent reading the constructor and the three methods and
mapping actual parameters to the formal parameters for the
rect2 object. The highest number of fixations were on the rect2
object and the height() method. We could come to the
conclusion that the subject was trying to calculate the area of
rect2 based on his/her eye gaze. This is indicative of the task
given. In other words, the subject was trying to trace the
program and the eye movements were scattered between the
main function and the methods called from main showing that
the subject was trying to mimic the behavior of a compiler.

24

Table 1. Tasks, Patterns, and Strategies

Subject Task Time Scan
Time

Patterns Strategies

Subject
1

Asked about the return value
of rect2.area()

92 secs 20 secs First 20 seconds: LineScan,
Linear
Later: JumpControl, LineScan

First 20 seconds: DesignAtOnce,
Trial&Error
Later: DesignAtOnce, ProgramFlow,
Debugging

Subject
2

Multiple choice question
about the algorithm

56 secs 26 secs First 26 seconds: LineScan,
Linear
Later: JumpControl, LineScan

First 26 seconds: DesignAtOnce,
TestHypothesis
Later: ProgramFlow

The pattern evident in the first 20 seconds was mainly
LineScan and Linear. In the latter part of the eye gaze, the
patterns that emerged were many alternating JumpControl and
LineScans. The strategy evident in the first 20 seconds was
DesignAtOnce and Trial&Error. In the latter part of the video
the strategy that emerged were DesignAtOnce, ProgramFlow,
and Debugging in that order.

Subject 1 was asked afterwards: “What is the return value
of rect2.area()?” and gave the correct answer – 25.

B. Subject 2 – General Task
The second subject was told that they would be asked about

the algorithmic idea in multiple choice form. We categorize
this as a general task because they were not told about anything
specific to look for a priori.

The subject spent the first 26 seconds scanning the program
from top to bottom. We do not observe any mapping of actual
to formal parameters. The number of fixations on the rect2
object was the highest. There was equal emphasis with respect
to number of fixations on the width() and area() method
definitions. From the latter part of the eye gaze after the first
scan, the subject focused again on the Rectangle constructor,
looked at how rect2 was being instantiated, and checked the
area method again before looking at the rect2 object. We
believe that this subject focused more on rect2 because it was
the last object in the program.

The pattern evident in the first 26 seconds was also mainly
LineScan and Linear. In the latter part of the eye gaze, the
patterns that emerged were also JumpControl and LineScan
with very little context switching between the two patterns.

The strategy evident in the first 26 seconds was
DesignAtOnce and TestHypothesis in that order. In the latter
part of the video the strategy that emerged was ProgramFlow.
Each of these patterns and strategies are mentioned in Table 1.

Subject 2 was asked the following multiple choice question
and chose a, which was incorrect. The correct answer was b.
This program

a) computes the area of rectangles by multiplying their
width (x1-x2) and height (y1-y2)

b) computes the area of rectangles by multiplying their
width (x2-x1) and height (y2-y1)

c) computes the area of rectangles by multiplying their
width (x1-y1) and height (x2-y2)

d) I'm not sure.

C. Other Observations and Caveats
This small experiment on two subjects shows that if the

subject does not know what to look for it is difficult for them to
remember details like parameter ordering as seen by the answer
given by Subject 2.

The differences in strategies begin to appear after the initial
scan. It could be possible that small differences in the initial
scan could cause the second phase to follow different
strategies. However, since we only got one video for each task,
we were not able to consider this possibility.

We noticed that the eye movements of Subject 2 were much
more focused compared to Subject 1. In other words, we did
not detect many stray glances in Subject 2’s data. We define a
stray glance as something they look at that does not necessarily
involve comprehension or something that we cannot explain.
Subject 2 quickly read the code and tried to trace it. There
were not many places where Subject 2 re-reads the lines
(regressions) – at 7 seconds through 10 seconds the subject re-
reads the width method. We also have to point out that Subject
1 did have three sections of the video where the eye data was
not available so the above observation should be considered
with caution.

With respect to the two videos in question, it is not possible
to generalize or come to any conclusions without more data
about how the number of fixations might relate to how difficult
the task is. We could conjecture that the more fixations a line
has, the more difficult it is to comprehend but more studies are
needed to validate this claim. It is also possible that fixation
duration or pupil diameter might be a better alternative.
Another possibility could be to look at smaller time windows
of 10 or 15 seconds instead of looking at fixations in the entire
dataset.

D. Possible Threats to Validity
First, we cannot come to any general conclusions based on

only one data point for each task. Both subjects had a high
number of fixations on the object rect2 (line 20). It would be
interesting to see how the fixations would change if subject 1
was asked about the return value of rect1 instead of rect2. A
possible explanation here would be that because rect2 is the last
object in the program, subject 2 also focused on it more than
rect1. The specific durations of the fixations were not provided.
It is possible for a method to have few fixations but have longer
durations of them indicating higher cognitive load.

25

E. Preliminary Insights into Research Questions
We give some preliminary insights and start to answer the

research questions posed in the Introduction based on the two
videos. These will be further refined in future work.
x RQ1: What specific parts of the program do programmers

look at most/least? – The programmers looked at private
member variables sparingly and only in the beginning.
They focused mainly on the constructor and the main
function body. All the methods in this program were a
single line and the programmers looked at each of those as
well although with less frequency.

x RQ2: What comprehension strategies are used together? –
We answer this question based on the coding scheme
given. The DesignAtOnce was used during the scanning
phase along with (Trial&Error and TestHypothesis). In
the latter phase DesignAtOnce, ProgramFlow, and
Debugging were observed.

x RQ3: Does the eye movement depend on the task being
solved? – Yes it is very evident from the two videos that
the low-level eye gaze behavior follows different trends
for the two tasks involved.

x RQ4: What are the similarities and differences in eye gaze
between different tasks? – Both the programmers first
scanned the entire code from top to bottom indicated by
the DesignAtOnce strategy. Both also tried to understand
how the program executes (ProgramFlow). The
differences were evident in the period after the initial scan.
The subject with the specific task focused on trying to find
the answer to the method call area() whereas the subject
with the general task focused on understanding the
Rectangle constructor and the area() method without a
need to find the specific result of the method calls.

3. MODIFICATIONS TO CODING SCHEME

It is highly possible that two different coders will code the
same video in entirely different ways. There are some subtle
differences between the strategies presented. With respect to
Trial&Error, it is hard but not impossible to gauge the reading
speed from the videos.

We found the coding scheme quite comprehensive overall
covering all scenarios found in the two videos. We made some
modifications to the coding scheme and list them below.
x Added class, main, area codes to the Block Tier.
x Added visibility code to the Signature Tier. This will

determine if they looked at the visibility of the methods
such as the keyword public or private.

x Added PrintLine code to the MethodCall Tier.
x We added a child tier FormalParameterList for Signature

to be more specific when a person looks at the formal
parameter list. This child tier has four codes x1, x2, y1,
and y2.

x In order to annotate two patterns at the same time we
added two child tiers to Pattern (Pattern1 and Pattern2)

We did not find the Pattern Signatures in the two videos
provided. Note that we did not specifically comment on the
use of the PrintLine or visibility code that we added in the

strategies above, leaving that as future work. This does not
mean that they will not be useful in another type of task such as
a bug fixing task, an impact analysis task or new feature task.

In future work, we plan to have the videos coded by another
coder, compare the findings and calculate the inter coder
reliability rating.

4. FUTURE WORK ON EYE MOVEMENTS IN COMPUTER
SCIENCE EDUCATION

The use of eye movements has tremendous potential in
Computer Science education. First, beginning programmers
can be shown eye tracking videos of expert programmers
performing tasks such as the ones presented here. The novices
get to see firsthand how code is supposed to be read. This
increases their awareness while they read code by themselves.

Second, beginning programmers can track themselves
while they are solving a task and later analyze in retrospect
what they were thinking while solving the task. All this builds
self-awareness that eventually teaches a beginner how to learn
to read code efficiently. Of course an eye tracker would be
required for this purpose.

There are several research questions we pose with respect
to using eye tracking for Computer Science education:
x What task is the most difficult for beginning

programmers?
x How do beginning programmers write code after they read

and comprehend it?
x What strategies are used in program debugging?
x What tools could help beginning programmers increase

their productivity?
In order to answer the above questions, a systematic family

of empirical studies need to be carried out in a way that they
can be replicated in the future thereby adding to the body of
knowledge and evidence of computer science education.

REFERENCES
[1] R. L. Glass, Facts and Fallacies of Software Engineering:

Addison-Wesley Professional, 2002.
[2] H. Uwano, M. Nakamura, A. Monden, and K.

Matsumoto, "Analyzing individual performance of source
code review using reviewers' eye movement," in 2006
symposium on Eye tracking research & applications
(ETRA), San Diego, California, 2006, pp. 133-140.

26

Eye movements in programming education: analysing the
expert’s gaze

Simon
University of Newcastle, Australia

simon@newcastle.edu.au

ABSTRACT
This is Simon’s contribution leading up to the workshop on eye
movements in programming education that is to be held in
conjunction with Koli Calling 2013. It encompasses brief
descriptions of two short segments of gaze-tracking data,
thoughts about the coding scheme, and general thoughts about
the use of gaze tracking in computing education research. The
contribution has been revised in response to comments by the
workshop leaders.

Categories and Subject Descriptors
K3.2 [Computers and education]: Computer and Information
Science Education – computer science education

General Terms
Measurement

Keywords
Gaze analysis, computing education, programing education, eye
tracking

1. INTRODUCTION
Two expert programmers were invited to read the same short
piece of code in the expectation of being asked a question about
it. The code is a class representing a rectangle, with two pairs of
x-y coordinates as its attributes, and methods to return its length,
width, and area. The main method declares two rectangles and
prints the area of each.
There are clear differences between the approaches of the two
participants. They were in fact told to expect different questions,
one involving tracing the code and one involving the algorithm.
However, the differences in gaze appear deeper than this
difference in what they were expecting to be asked, and suggest
that different readers read code in markedly different manners.

2. SAMPLE DESCRIPTIONS
Reader 1’s gaze might politely be described as erratic.
Considered in real time, it flashes wildly about the code,
generally spending very little time on any one point. Viewed
over time, there is a clear pattern of returning to certain focal
points, points that are pertinent to the question that the reader
was told to expect; but the gaze fixations are so brief as to leave
the analyst wondering whether it is possible to gain any
comprehension of the code. For example, in the ten seconds
between about 52s and 1m02s, gaze shifts more than a dozen
times between the main method, the constructor, and the width,
height, and area methods, typically spending less than a second
on each point of interest.
Reader 2, by contrast, appears to read the code slowly and
methodically. There are elements of linear scanning, and gaze
remains far longer on areas of interest. By contrast with the ten-
second span described above for reader 1, between about 34s
and 44s reader 2 focuses on just one line of code, the declaration
of rectangle2. After one-second glances at height and width,
there is a steady four seconds on area followed by another eight
seconds on the declaration of rectangle2. The impression is of a
slow and deliberate analysis of the code, suggesting that most of
it is understood the first time it is considered.
It is tempting to suggest that reader 1 is unlikely to have
understood the code in the time during which the gaze was
recorded. However, both readers are professional programmers,
so this seems unlikely – unless it turns out that this reader was
unable to correctly answer the subsequent question.
Reader 1 was expecting a question about the output of
rect2.area(). It is clear that the scanning was indeed addressing
this particular question: for example, the gaze returns frequently
to the declaration of rect2, and very seldom to the declaration of
rect1. The gaze also frequently returns to the area() method, and
to the height() and width() methods that are called by area. The
reader has clearly identified the relevant parts of the code and is
working on absorbing them; yet there is no hint of the
methodical linear (or rather, flow of control) reading that one
might expect to be associated with code tracing.
On the other hand, reader 2 was told to expect a question about
the overall algorithm. This is a broader question that would
entail comprehension rather than tracing; yet reader 2 displays
more of the flow-of-control reading style that one might think
would be associated with tracing.
It is clear that these two expert programmers have markedly
different code-reading styles. As a code reader myself, I have no
difficulty seeing how reader 2’s approach could lead to program
comprehension; for me the challenge is to hypothesise a way in
which reader 1’s erratic reading can lead to the same outcome.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Koli Calling ’13, November 14-17 2013, Koli, Finland.
Copyright 2013 ACM 978-1-4503-2482-3/13/11…$15.00.
http://dx.doi.org/...

27

After making these observations I learnt that reader 1 was asked
‘What is the return value of rect2.area()?’, and gave the correct
answer of 25. Reader 2 was given the multiple-choice question:

This program
a) computes the area of rectangles by multiplying their

width (x1-x2) and height (y1-y2)
b) computes the area of rectangles by multiplying their

width (x2-x1) and height (y2-y1)
c) computes the area of rectangles by multiplying their

width (x1-y1) and height (x2-y2)
d) I'm not sure.

In response to this question, reader 2 chose option a, whereas
the correct answer is option b. Option a expresses a correct
outcome, but not the exact implementation that leads to that
outcome. A generous interpretation would be that reader 2
understood the nature and purpose of the algorithm, but did not
remember its detail.
By contrast, reader 1’s wild flashing about the code does seem
to have taken it in, as reader 1 correctly answered the question.

3. THE CODING SCHEME
The coding scheme consists of a number of ‘tiers’, each of
which can be coded with a choice of values. The tiers are
summarised below.
Block indicates in which block of code the participant’s gaze is
working. The simple code used for this example has six basic
code blocks: the (rectangle) class attributes, the constructor, the
main method, and three further methods, height, width, and area.
Therefore Block has six possible coding values, one for each of
these.
SubBlock: some of the blocks have identifiable sub-blocks in
which a reader’s gaze might rest. The sub-blocks that have been
coded are Signature, Body, and Return. While the return
statement is part of the body of a method, its particular
importance means that it is likely to be the focus of some
concentration by the reader. Another part of the body that is
similarly likely to receive attention is method calls, which are
coded in a separate tier. It is interesting that a method signature
is coded as a sub-block and additionally in its own tier, whereas
method calls are coded just in their own tier. I can see the
benefit of the separate tier, which permits the coding of which
part of the signature is occupying the reader’s gaze. But at the
same time I fell that body is potentially a huge sub-block, if we
analyse gaze on more substantial code, with many other
statement types that would each merit their own tier, types such
as assignment, iteration, selection, and more.
Perhaps my confusion here is that this is a coding scheme
specific to this single piece of code, whereas I have been trying
to envisage it applied to bigger and more varied code passages.
When I do see it applied to different passages, I expect that my
confusion will dissipate.
Signature: when gaze rests on the signature sub-block, this tier
further indicates whether it dwells on the method name, its type,
or its formal parameter list.
MethodCall: when gaze rests on a method call, this tier is used
to indicate whether it is focusing on the method name or its
actual parameter list. The method’s type is also included in this
tier, but we note that this information is not included in a

method call, so this value will never be used, and should be
removed from the scheme.
Pattern attempts to describe the gaze sequence by associating it
with similar sequences that have been previously identified. The
sequences identified to date are JumpControl, in which gaze
follows the order of code execution; Linear, in which the gaze
follows at least three lines (of any type) sequentially, regardless
of order of execution; LineScan, in which gaze concentrates on a
single line in it entirety; Scan, in which gaze reads a sequence of
lines briefly, then returns to concentrate on points of interest;
and Signatures, in which gaze covers a number of method
signatures before moving to the bodies of the methods. There
would seem to be scope for many further patterns. Two possible
patterns that I have identified are Flicking, in which the gaze
moves back and forth between two related items, such as the
formal and actual parameter lists of a method call; and
Thrashing, in which the gaze moves rapidly and wildly in a
sequence that appears to make no particular sense.
Strategy is the crux of the analysis. It is in this tier that the
analyst tries to determine what the reader was thinking while
reading the code. DesignAtOnce, typically associated with
Linear and Scan patterns, suggests reading through part or all of
the code in a linear manner, intending to acquire an overall
understanding of it. Debugging is similar, but with gaze time
more evenly distributed over the elements, and suggests a search
for syntactic or semantic errors. ProgramFlow follows the
expected sequence of program control, with the apparent
intention of simulating program execution. TestHypothesis
involves repetition of a pattern of gaze, and suggests further
concentration in order to better understand a particular detail.
Trial&Error, somewhat like DesignAtOnce but with faster
reading, irregular jumps, and repetition, suggests a search for
some part of the code that will lead to an initial understanding.
As with patterns, there would seem to be scope for further
strategies. For example, I could envisage a use for a FlowCycle
strategy, in which the same program flow sequence might be
followed several times; the intent might be to gain a first
understanding of the flow, strengthening an reinforcing it with
repeated examinations of the same code. The Flicking pattern
might then suggest the simplest level of the FlowCycle strategy.
In addition, the Debugging strategy might in fact be broader
than its name suggests, as we might see similar gaze patterns
(but infer different intentions) in readers who are trying to
comprehend a piece of code that is not believed to contain bugs.

4. REFLECTIONS
The two gaze-tracking examples considered here lead to the
observation that different experts have markedly different code-
reading styles.
How would one use gaze tracking in computing education – for
example, in the teaching of introductory programming? One
approach might be to examine the gaze of programming novices
and determine how closely it resembles that of experts: the more
expert-like the novice’s gaze, the more expert-like the novice
would appear to be. Unfortunately, the very small sample of
expert programmers examined in this work suggests a major
flaw: that experts do not examine code in the same way; that
there are at least two, and possibly many more, different ways of
examining code in order to successfully comprehend it.
While there is much literature linking the ability to read and
comprehend code with the ability to write it, there is also

28

substantial evidence that many programming novices have not
yet acquired the ability to read and comprehend program code.
This suggests another weakness in the idea of comparing the
gaze of novices with that of experts: the experts are presumed to
be able to read code, whereas novices are not.
There is still clearly value in analysing students’ patterns of
gaze. This technique could be used, for example, to determine
when students are looking at entirely the wrong section of code,
or to determine that they are looking wildly all over the code
without ever settling on any particular piece. But this is not
necessarily the same as comparing their gaze with that of
experts.

5. ACKNOWLEDGEMENTS
This work would never have been done without the impetus and
inspiration of Teresa Busjahn, Carsten Schulte, and Roman
Bednarik. For this I am deeply indebted to them.

6. REFERENCES
[1] None at this point . . .

29

Eye Movements in Programming Education
Analyzing the Expert's Gaze

Workshop at the 13th KOLI CALLING INTERNATIONAL CONFERENCE ON
COMPUTING EDUCATION RESEARCH

Joensuu, Finland, November 13th - November 14th, 2013

Organizers: Roman Bednarik (University of Eastern Finland), Teresa Busjahn &
Carsten Schulte (Freie Universität Berlin)

Computer Science Education Research and Teaching mainly focus on writing code,
while the reading skills are often taken for granted. Reading occurs in debugging,
maintenance and the learning of programming languages. It provides the essential
basis for comprehension. By analyzing behavioral data such as gaze during code
reading processes, we explore this essential part of programming.

This first workshop gives participants an opportunity to get insights into code
reading with eye movement data. However, as this data only reflects the low level
behavioral processes, the challenge to tackle is how to make use of this data to infer
higher order comprehension processes. We will take on this challenge by working
on a coding scheme to analyze eye movement data of code reading. The links
between low and high level behaviors will help computing science educators to
design, realize and reflect on the teaching of code reading skills.

Furthermore, we aim to open discussion about the ways of explicit teaching of
readership skills in computing education. Therefore we will discuss the role of
reading skills in teaching programming, facilitated by position papers of each
participant.

To participate send a mail to teresa.busjahn@fu-berlin.de. It is possible to
participate independent of attending Koli Calling. Participants will get eye
movement data of reading and comprehension processes of expert programmers,
and a coding scheme for annotating the process. You will annotate the video, and
reflect on the (perceived) intentions behind the visible pattern. Applying and
refining the coding scheme on the data gives insight into the higher order
comprehension strategies of the reader.

 30

A short individual reflection and position paper of the results and perspectives for
teaching programming is required by the participants [max. 2-3 pages]. As a result,
participants will jointly prepare a paper with the data and the refined coding
scheme.

IMPORTANT DATES
x Making data and tools available for participants, as well as instructions for
 coding and position paper: beginning of September 2013
x Deadline for submissions: October 14, 2013
x Workshop: November 13th (evening) – November 14th

Visit www.mi.fu-berlin.de/en/inf/groups/ag-ddi/Gaze_Workshop/expert/ for details.

 31

Sample visualizations of gaze data

The eye movement data was recorded using Ogama (www.ogama.net) and an SMI
RED-m Tracker (120 Hz). Visualizations were done with eyeCode
(http://eyecode.synesthesiam.com/stories/koli-calling.html).

SUBJECT 1
Instruction given to participant before the source code was shown:

You will be asked about the RETURN VALUE of 'rect2.area ()' after the program
was executed.

Comprehension task given after the source code was shown:

What is the return-value of 'rect2.area ()'?

Subject's answer: 25

Scanpath - Subject 1

 32

Fixations per lines - Subject 1

Timeline - Subject 1

 33

SUBJECT 2
Instruction given to participant before the source code was shown:

You will be given a MULTIPLE CHOICE question about the algorithmic idea.

Comprehension task given after the source code was shown:

This program

a) computes the area of rectangles by multiplying their width (x1-x2) and
height (y1-y2)

b) computes the area of rectangles by multiplying their width (x2-x1) and
height (y2-y1)

c) computes the area of rectangles by multiplying their width (x1-y1) and
height (x2-y2)

d) I'm not sure.

Subject's answer: a

Scanpath – Subject 2

 34

Fixations per lines - Subject 2

Timeline - Subject 2

 35

Revised coding scheme1

Tier/
Category

Codes Description Classification

(Lexical)
Element

Public1, Double1 (Lexical) element on which the
fixation occurs, e.g. an operator
or identifier

Observable

Line Line1, Line2 ... Line on which fixation occurs Observable
Block Attributes, Con-

structor, Height,
Main, Width, Area

General area in which fixation
occurs, e.g. the height-method,
the main-method etc.

Observable

SubBlock Body, Return,
Signature

Specific region in which fixation
occurs, e.g. a signature or a line
containing a return-statement.
Can be nested. Granularity de-
pends on structures of interest.

Observable

Signature FormalParameter-
List, Name, Type,
Visibility

Precise code section Observable

Formal-
Parameter-
List

x1, x2, y1, y2 Precise code section Observable

MethodCall ActualParameter-
List, Name, Print-
Line

Precise code section Observable

Pattern Flicking,
JumpControl,
JustPassing-
Through,
LinearHorizontal,
LinearVertical,
Retrace-
Declaration,
RetraceReference,
Scan, Signatures,
Thrashing,
Word(Pattern)-
Matching

Flicking: The gaze moves back
and forth between two related
items, such as the formal and
actual parameter lists of a
method call.

JumpControl: Subject jumps to
the next line according to execu-
tion order.

JustPassingThrough: Fixations
are on a blank spot and clearly
just stop on the way to some-
place else.

Observable

1 The scheme was developed with the specific Rectangle program in mind.

36

LinearHorizontal: Subject reads
a whole line either from from
left to right or right to left, all
elements in rather equally dis-
tributed time.

LinearVertical: Subject follows
text line by line, for at least
three lines, no matter of pro-
gram flow, no distinction be-
tween signature and body.

RetraceDeclaration: Often-
recurring jumps between places
where variable is used and
where it had been declared
(Uwano et al. 2006). Form of
Flicking.

RetraceReference: Often-
recurring jumps between places
where variable is used and
where it had been recently re-
ferred to (Uwano et al. 2006).
Form of Flicking.

Scan: Subject first reads all lines
of the code from top to bottom
briefly. A preliminary reading
of the whole program, which
occurs during the first 30 % of
the review time (Uwano et al.
2006).

Signatures: Subject looks at all
signatures first, before looking
into method/constructor body.

Thrashing: The gaze moves
rapidly and wildly in a se-
quence that appears to make no
particular sense.

Word(Pattern)Matching: Sim-
ple visual pattern matching.

 37

Strategy

AttentionTo-Detail,
DataFlow,
Debugging,
Deductive,
DesignAtOnce,
FlowCycle,
Inductive,
Interprocedural-
ControlFlow,
Intraprocedural-
ControlFlow,
StrayGlance,
TestHypothesis,
Touchstone,
Trial&Error,
Wandering

AttentionToDetail: Readers are
trying to comprehend a piece of
code that is not believed to con-
tain bugs. In most cases, there is
a slowness to AttentionToDe-
tail, but the subject could also
be verifying a global property,
such as that argument/ parame-
ter types agree or that the semi-
colons are present in the right
places.

DataFlow: Following a single
object in memory as its value
changes through the program.
Can also occur backwards
through control flow in service
of debugging and/or program
execution comprehension.

Debugging: Similar to Design-
AtOnce, but more equally dis-
tributed fixation durations, and
more equally distributed time
of fixation for all text elements.
Based on pattern LinearHori-
zontal and LinearVertical. The
subject's intention is to find
syntactical or semantic errors.
Very small jumps, where the
subject is presumably validating
the syntax. (Note: Maybe de-
bugging is more a goal, than a
strategy.)

Deductive: From general to
special, from definition to use,
typically includes LinearHori-
zontal.

Interpretation

 38

DesignAtOnce: LinearHorizon-
tal or Scan, hardly any jumps
back. The subject's intention is
to understand the general or
algorithmic idea, without hav-
ing the need to go into details.
Aiming at understanding by
linear reading of the complete
(needed) code. Can easily be
confused with excessive de-
mand/trial and error, might also
include TestHypothesis on local
levels. Captures high-level algo-
rithmic thinking, thus features
rather large steps as the gaze
sweeps over the text typically
associated with Linear and Scan
patterns. Suggests reading
through part or all of the code
in a linear manner, intending to
acquire an overall understand-
ing of it.

FlowCycle: The same program
flow sequence is followed sev-
eral times, the intent might be to
gain a first understanding of the
flow, strengthening and rein-
forcing it with repeated exami-
nations of the same code. The
Flicking pattern might then
suggest the simplest level of the
FlowCycle strategy.

Inductive: From the special to
general, from context to defini-
tion, typically combined strate-
gy (mix of Scan, JumpControl
and LinearHorizontal).

 39

InterproceduralControl-Flow:
The subject follows call-chains
in real or simulated sequence of
control flow. Intention is to
understand the execution or to
get the outcome of a code sec-
tion. Focus is on execution be-
tween blocks.

IntraproceduralControl-Flow:
The subject scans lines of code
in real or simulated program
execution order. Intention is to
understand the execution or to
get the outcome of a code sec-
tion. Focus is on execution on
block level.

StrayGlance: A glance where
something is looked at that does
not necessarily involve compre-
hension or something that we
cannot explain.

TestHypothesis: Repetition of a
pattern or gaze path. Occurs in
connection with DesignAtOnce
or ControlFlow. The subject's
intention is to check for some
details in understanding. Hints
at some issue where either the
person was distracted, or which
is more difficult to comprehend.
Involves repetition of a pattern
of gaze, and suggests further
concentration in order to better
understand a particular detail.

 40

Touchstone: Analogue to
checking the risk of any deal.
Before transporting some goods
through an unknown route, first
you go there without merchan-
dise and see, where to turn and
where the traffic lights are. And
when you are sure about every-
thing, you take the goods with
you to finish the deal. Compar-
ing this example with program
comprehension, the route is the
algorithm, while the goods are
the parameters.

Trial&Error: Similar to Design-
AtOnce, but with higher read-
ing speed, and some irregular
jumps and repetitions in read-
ing. The subject's intention is to
cope with cognitive overload
and to try to find some place to
start the understanding process.
Connected to JustPassing-
Through and Wandering.

Wandering: It appears that the
subject was backtracking, seem-
ingly searching for a point to
resume the reading after a par-
ticular path of reasoning had
been exhausted, essentially a
transition period or a brief rest
between bursts of effort.

 41

List of participants

 Name Mail

1 Antropova, Maria maria.antropova@gmail.com

2 Bednarik, Roman roman.bednarik@uef.fi

3 Begel, Andrew andrew.begel@microsoft.com

4 Busjahn, Teresa busjahn@inf.fu-berlin.de

5 Gavrilo, Katerina katrinaalex@gmail.com

6 Hansen, Michael mihansen@umail.iu.edu

7 Ihantola, Petri petri@cs.hut.fi

8 Menzel, Suzanne menzel@indiana.edu

9 Orlov, Paul paul.a.orlov@gmail.com

10 Schulte, Carsten arsten.schulte@fu-berlin.de

11 Sharif, Bonita bsharif@ysu.edu

12 Shchekotova, Galina intendia@gmail.com

13 Simon simon@newcastle.edu.au

14 Vrzakova, Hana vrzakova.hana@gmail.com

15 Wang, Peng pwang@student.uef.fi

 Remote participants

 42

Publications of the University of Eastern Finland

Reports and Books in Forestry and Natural Sciences

isbn: 978-952-61-1538-2 (nid.)

isbn: 978-952-61-1539-9 (pdf)

issnl: 1798-5684

issn: 1798-5684

issn: 1798-5692 (pdf)

This is the proceedings of an

international workshop on the

emerging topic of eye movement data

analysis in programming education.

The first workshop edition focused

on “Analyzing the expert’s gaze”. It

was held in November 2013 at the

School of Computing, University of

Eastern Finland.

repo
rts a

n
d stu

d
ies | 18 | B

ed
n

a
rik

, B
u

sja
h

n
, S

ch
u

lte (E
d

s.) | E
ye M

ovem
en

ts in
 P

rogram
m

in
g E

du
cation

Roman Bednarik,
Teresa Busjahn,

Carsten Schulte (Eds.)
Eye Movements in

Programming Education:
Analyzing the Expert’s Gaze

