Eye Movements in Code Review

Andrew Begel
Microsoft Research
Redmond, WA, USA

andrew.begel@microsoft.com

ABSTRACT

In order to ensure sufficient quality, software engineers conduct
code reviews to read over one another’s code looking for errors that
should be fixed before committing to their source code repositories.
Many kinds of errors are spotted, from simple spelling mistakes
and syntax errors, to architectural flaws that may span several files.
However, we know little about how software developers read code
when looking for defects. What kinds of code trigger engineers
to check more deeply into suspected defects? How long do they
take to verify whether a defect is really there? We conducted a
study of 35 software engineers performing 40 code reviews while
capturing their gaze with an eye tracker. We classified each code
defect the developers found and captured the patterns of eye gazes
used to deliberate about each one. We report how long it took to
confirm defect suspicions for each type of defect and the fraction
of time spent skimming the code vs. carefully reading it. This work
provides a starting point for automating code reviews that could
help engineers spend more time focusing on the difficult task of
defect confirmation rather than the tedious task of defect discovery.

CCS CONCEPTS

« Software and its engineering — Software verification and vali-
dation;

KEYWORDS
Code review, Eye tracking

ACM Reference Format:

Andrew Begel and Hana Vrzakova. 2018. Eye Movements in Code Review.
In EMIS ’18: Symposium on Eye Movements in Programming, June 14-17,
2018, Warsaw, Poland. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3216723.3216727

1 INTRODUCTION

Large-scale software development activities often include some
kind of code review, in which developers read through diffs looking
for bugs, performance issues, security problems, etc. that may have
a negative impact on the product. They report the issues to the
code’s author, who must address the concerns before the code is
allowed into the code repository.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMIS ’18, June 14-17, 2018, Warsaw, Poland

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5792-0/18/06.

https://doi.org/10.1145/3216723.3216727

Hana Vrzakova
University of Eastern Finland
Joensuu, Finland
hanav@uef.fi

Code review practices have long been studied by software en-
gineering researchers [Bacchelli and Bird 2013; Bird et al. 2015;
Fagan 1999] and eye-tracking has been helpful for studying source
code comprehension (for recent literature reviews, see [Obaidel-
lah et al. 2018; Sharafi et al. 2015]). The reading patterns of pro-
grammers have been linked to expertise [Busjahn et al. 2015], task
workload [Fritz et al. 2014a], and frustration with the code [Miiller
and Fritz 2015]. Several researchers have focused on the cognitive
processes that engineers experience when reading through code
for some kind of review, rather than general program comprehen-
sion [Fritz et al. 2014b; Kevic et al. 2015; Rodeghero et al. 2014;
Sharif et al. 2012; Uwano et al. 2006]. Eye tracking can help us
discover exactly how engineers scan through source code looking
for suspicious patterns of code, and identify which patterns trigger
them to investigate further to validate their suspicions and find an
underlying defect. Understanding the kinds of code make devel-
opers suspicious could one day enable us to automate the defect
scanning process, relieving a tedious part of code review.

We watched 40 professional software developers perform code
reviews as part of their daily work. We had each of them do their
reviews with an eye tracker attached to their computer, so we could
watch where they looked as they conducted the review looking
for defects. We classified five kinds of code elements that triggered
review comments and measured how long it took to deliberate over
them. Finally, our gaze analysis enabled us to identify how fast
developers read code, skimming quickly when looking for defects,
carefully reading when validating a suspected defect.

Our contributions include a classification of the code elements
that trigger deliberation periods, along with how long it takes to
verify one’s suspicions, and an early analysis of the differences
between code skimming and careful reading during code reviews.

2 BACKGROUND

Code reviews began as a way for software engineers to rigorously
check over one another’s code to look for defects at a development
stage early enough to minimize the cost of fixing them [Boehm
1976]. Software engineers have come up with many different pro-
cesses for looking through the code, including defect-based read-
ing, perspective-based reading, and checklist-based walkthroughs
[Ciolkowski et al. 2002]. Code reviews provide advantages beyond
the simple search for code defects; programmers reviewing the
code learn about one other’s projects, increasing team awareness,
spreading knowledge about the code, and facilitating discussions
of best practices and alternative solutions. Bidirectional knowledge
transfer has been ranked as the second-most important benefit of
the contemporary code review [Bacchelli and Bird 2013]. However,
a lack of familiarity with the source code and time constraints can
inadvertently lead to a shallow and superficial code review without
any direct benefits to the code.

https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727

EMIS ’18, June 14-17, 2018, Warsaw, Poland

adeFlow [Dogfood] - o IEl
e-nplefed Viewing Iferatio

I ReviewListenerService.sve.cs Inline & [|Show Both } = a-b — ab ¢ ab € 3

email-here?-*,

t-die-on-anything. - -Conside

paad smaN @

(d.ApplicationUnhandledexception, "{0}\n{1}", ex.Message, ex
2 |1d.NotifyEventStorageFailure Mes: Xx.Sta
errors-are-generic-hand-have - spe ex

o-in-the

varn1d.ApplicationUnhandledException, " inner-exception: - {8}\
66 | arnId.NotifyEventStoragerailurd, -"inner-exception: {B}\n{1}

9 Does this flush 2 errors for EF exceptions now? From
afailure mode analysis PoV, | want exceptions fike
this to emit only 1 error, with the most actionable

message possible.
0 Trevor Camaha

changed to output both main and inner exception in

one call to TraceError if there is an inner exception
Reviewer Status A (which is often most actionable in my experience)s
&, Christian Bird (sutho o Christian Bir
o Trevor Camahan (trevorc) (required) [

o/ Closed ~

CodeFlow Analytics Developers (cfadey)
P

Ricky Kurniawan (rickyk) (O os -
Rock Wang (zhihonwa) (o (

«f Birendra Acharya (biachary) (optional) Status File name

4o/ Closed) main/src/ g 08/Pe

a1 we usually don't script out logins. And | don't think any of these are actually

tian Bird] Sure, Il take this out, D
7 Closes z £ ictan

Figure 1: A layout of CodeFlow. (C) presents the main win-
dow with the source code. (F) illustrates the pop-up window
for a reviewer’s comment.

In contemporary code reviews, one developer evaluates another’s
code in a lightweight and informal way, facilitated by dedicated
code review software. Typical software supports review scheduling
and reviewer assignment, and synchronizes interactions to enable
reviewers to write comments and sign off on the review when they
are satisfied with the code changes [Bacchelli and Bird 2013]. When
authors finish a set of code modifications, they use the software
to identify and choose colleagues to review their code. Those col-
leagues then receive an email notification to open the tool and
begin their review. As they work, they can right-click on a piece
of code to leave a comment about that code that will be seen by
the author and any subsequent reviewers. They can also leave a
comment about the entire set of changes. When done, they click a
button to send the comments back to the author, along with their
approval or rejection of the change. The author then revises the
code and sends it back out to be reviewed again. When all reviewers
have approved the changes, the author is permitted to commit it
into the source code repository.

Uwano et al. studied graduate students conducting code re-
views on small, single-screen, C programs provided by the au-
thors [Uwano et al. 2006]. They discovered that their gaze patterns
followed a common scanpath, first reading code top to bottom, and
then rereading a few parts in more depth. Students who scanned
the entire codebase spent less time spotting the seeded bugs than
those who looked at less code. Our experiment is similar, except
our participants were professionals conducting reviews of many
files of code as part of their regular work day. Our report includes
more details about the kinds of code that trigger deliberations, but
shows similar findings between skimming and focused reading.

Sharif et al. replicated and validated Uwano et al’s study, find-
ing that a longer initial scan correlated with quicker defect detec-
tion [Sharif et al. 2012]. In addition, they hypothesize that experts
use top-down comprehension to focus on likely problem candidates
rather than scanning all over the code.

There have been a number of studies looking at how develop-
ers find the right places to edit code while performing a change

A. Begel et al.

task [Fritz et al. 2014b; Kevic 2016]. This well-studied process is
similar to code review, however, code review is simpler because
developers use the supplied diff regions to identify where to start
reading. Kevic et al. built on Fritz et al.’s work focusing on high-level
navigation observations by using eye tracking to explore naviga-
tion at a finer level of granularity [Kevic et al. 2015]. Kevic et al.
reported on a statistical analysis of reading patterns within and be-
tween methods. Developers followed data flow relationships within
methods, but used text-layout order between methods. Kevic et al.
compares their work to Rodeghero et al. [Rodeghero and McMillan
2015] who also used eye tracking, but for validating function sum-
marization tools. In both cases, they found that developers focused
on small, highly relevant portions of methods rather than carefully
reading the entire text. In our study of code review, we find that
developers quickly spot suspicious code elements, but only explore
additional code in order to validate their suspicions.

3 METHODOLOGY

In this section, we describe our study methodology.

3.1 Participation

We recruited software developers from teams responsible for build-
ing customer-focused, shipping products at a large software com-
pany in the USA. Recruits were identified through daily searches
through a company-wide database of every queued-up code review.
We emailed employees who had been asked to review code in the
last two weeks to see if they would allow us to go to their offices,
instrument their machine with an eye tracker, and watch them
conduct the code review.

Forty developers signed up. For their participation, we gave
them USD$8 in coupons for the cafeteria. Five early sessions had
to be discarded due to recording problems. In the end, we retained
35 valid code review sessions. Only one of 35 participants was a
woman. On average, participants were 34 years old (SD = 5 yrs).

3.2 Procedure

Participants were consented and given a questionnaire which ex-
plored the participants’ familiarity and experiences with profes-
sional code reviews. Next, eye trackers were installed on the par-
ticipants’ computers and run through the calibration process. Par-
ticipants then conducted their previously assigned code review,
often reading through 10-15 files of code changes. Five of them
had enough time left in the hour-long session to perform a second
review, enabling us to record 40 code reviews.

3.3 Apparatus

Each participant used CodeFlow, shown in Figure 1 [Bacchelli and
Bird 2013] to access their assigned code review and read through
the changes. To record the participants’ gaze patterns, we installed
a Tobii EyeX portable, 60Hz eye tracker [Tobii Technology AB
2018]. After calibrating it to each user at the beginning of each
review, the eye tracker produces a set of (x, y) coordinates indicating
where each eye is looking on the screen. We built an extension to
CodeFlow to process the eye tracking data. We recorded window
positions, window sizes, scroll positions, the mouse position in
screen and window coordinates, the filename and path of the code

Eye Movements in Code Review

under review, and any review comments that were written. We
also recorded the code review session using the Camtasia Studio
7.0 [TechSmith 2018] screen capture software.

3.4 Analysis

The stream of eye gaze positions was very noisy, often appearing
in a spray paint-like pattern around the eye’s actual position. After
removing invalid data points (e.g. (0,0) coordinates or eyes “lost”
data points), we averaged the location of the two eyes together, and
applied a 10-sample median filter to smooth the signal. Our exten-
sion translates the gaze position into an editor character location
to identify the code element at which the user is looking. This goal
is both simpler and higher-level than typical eye tracking analyses,
so instead of applying a fixation filter to the gaze positions (e.g.
Tobii’s I-VT algorithm) to stabilize the signal, we wrote our own
filter. We apply a “majority bounding box” to the data stream. Each
word in the editor is drawn inside of its own bounding box. For
the most recent 10 median eye gaze positions that coincide with
words in the document, the filter identifies the word whose bound-
ing box contains the majority of those 10 points. During testing,
we learned that in order to make the word identification routine
accurate enough, we had to modify CodeFlow to display text using
the Consolas font at 17 points.

We also assessed the subject’s progress with the eye tracker.
We converted the raw eye gaze data into the words (i.e. tokens)
that the person read while doing the code review. From this, we
computed a reading rate in tokens per second. We also normalized
the value by the length of the token (since it takes longer to read a
longer word), and produced a metric of characters read per second.
This is similar to the intent of prior works which investigated the
reviewers’ reading speeds [Sharif et al. 2012; Uwano et al. 2006].

3.5 Threats to Validity

All experiments are subject to internal and external threats to valid-
ity. While we believe our knowledge of CS enables us to intuit what
engineers are thinking from their eye tracking data, we cannot be
sure of our interpretation. However, we were able to triangulate and
refine our conclusions with the participants’ own code review com-
ments in which they clearly stated (for the code author) the defect
or issue they found with the code. Second, we may have affected
our participants’ review performance due to our presence in their
offices and the setup time for the eye tracker. Finally, we believe
that our study generalizes more easily than prior work because our
participants performed reviews on the actual shipping code they
used at work. Prior work employed code examples created by the
experimenters, which were both short and unfamiliar to the study
participants [Sharif et al. 2012; Uwano et al. 2006].

4 RESULTS

Which defects in code trigger a code reviewer’s decision to write
a comment about it? How long does it take to find them? How
fast do reviewers read through the code when looking for a defect
vs. when deliberating about it? In this section, we answer these
questions from our data and analyses.

EMIS ’18, June 14-17, 2018, Warsaw, Poland

Table 1: The average deliberation time spent by engineers
triggered by each category of code before writing a code com-
ment. We include the median because of the skew caused by
a small number of defects requiring extensive deliberation.

Comment Target Median (m:s) Avg (m:s)

Single Code Element 00:15 00:19
Several Code Elements 00:20 35:16
Separated Code 01:29 02:14
Inconsistent Code 01:12 02:32
Meta Comment 00:23 00:32

4.1 Comment Triggers

To classify the code elements that trigger reviewers to comment on
the code, we analyzed a random sample of 78 code review comments
out of the 260 total we saw in the 35 code review videos. For each
comment, we watched the video of the screen capture from the time
that the person first noticed the part of the code that they eventually
commented on until the time they wrote the comment. Aided by eye
tracking playback, we were able to follow the parts of the code the
person looked at and relate it to the nature of the comment. Figure 2
shows participant P20’s gaze path while discovering, validating,
and commenting on a single code issue.

We now present a list of code elements that triggered our par-
ticipants to write a code review comment. The data we present is
not meant to be exhaustive, especially because each participant’s
review was necessarily different from the others. However, to our
knowledge, this kind of list has never before been presented at this
low level of detail. Below, source code elements are followed by a
number in parentheses which represents the number of code review
comments related to that element.

Many code review comments started out with the reviewer look-
ing at individual code elements inside a method, e.g. a constant (2),

200

screen y [px]

IS
8
3

750 1000 1250 1500 175¢
screen x [px]

Figure 2: Gaze path for participant P20’s first code review
comment. The blue path occurs when P20 is triggered by the
code element. The purple path is the deliberation period in
which P20 validates their suspicion about the defect. The red
path happens just before P20 writes the review comment.

EMIS ’18, June 14-17, 2018, Warsaw, Poland

identifier (6), method call (3), line of code (2). Simply viewing identi-
fiers could lead directly to a code review comment, such as noticing
a misspelled identifier (2), outdated identifier (1), excessively long
identifier (2), or unnecessary zero-argument method call (1). One
time, the code’s author inadvertently checked a secret key constant
into the code repository (1). Other times, there were problems asso-
ciated with method signatures’ doc comments, such as those that
were incomplete (2) or which had incorrect capitalization (3).

Another class of review comments were triggered after the re-
viewer looked at several code elements within the class, e.g. one field
(2), all fields in the class (4), a loop block with a change contained
inside (1), an entire method (3), or the entire class (1). Sometimes
the type of the field was wrong (2), the reviewer was confused by
similarly named identifiers (1), or the reviewer noticed that a vari-
able name was shadowed by one from an outer scope (1). Reviewers
also noticed when two contiguous statements could be merged (1),
or that two non-contiguous statements were related and should be
moved closer together (2). Reviewers looked at a method definition
and a call to that method (1), or looked at several calls to the same
method (1), or focused on a change that was related to a method
and then read the entire method (2).

Reviewers were puzzled by differences between two or more re-
lated, but separated, pieces of code, for example between a doc com-
ment and a method name (2), or between the doc comment for
a class and the file name (1). They also noticed opportunities for
relating code in several files, for example, relating data in one class
to validation code in another (1), refactoring common code into a
common method (2), or asking to move a field to another class (1).
Sometimes the request was simpler, for example, to clean up messy
code (2), or to tidy inconsistent formatting (1).

Reviewers looked for inconsistent code changes, e.g. finding when
a change in one place should have been applied in several others (4),
or looking for similar code in other places but not finding any (1).
They also made high-level comments about how the author wrote
some code, for example, verifying that the author implemented the
code idiom properly (1), theorizing why a particular code idiom
was used in the codebase (1), admonishing the author not to use
a particular technology in the code (1), or suggesting a way to
improve the performance of the code (1).

Finally, there were several meta comments, such as when the
reviewer summarized the entire review in a single review comment
(1), converted a TODO code comment into a review comment (1),
suggested adding something else to the code (1), or more commonly,
simply reacted to a code review comment made by a prior reviewer
(14). Twice, apropos of nothing, the reviewer created a comment, i.e.
they saw something, and without waiting or looking at anything
else, they wrote a fairly involved review comment. We believe the
reviewer had been thinking about the code on their own time and
wrote up their thoughts as soon as they realized they were looking
at the right file in the code.

For each comment, we measured the deliberation time, which is
the amount of time from the initial trigger until the reviewer started
writing the review comment. We find a skewed range of times from
1 second all the way to 11 minutes and 31 seconds (Mean=74 sec,
Median=23 sec). As you can see in Table 1, this seems to be mainly
due to the related statements, separated code, and inconsistent code
review categories, which had some long deliberation times and

A. Begel et al.

some nested deliberations, i.e. the person started looking at one of
the code elements, then digressed to another code review comment,
and then returned to the original. The deliberation times for single
code elements and meta comments were almost always very short.

4.2 Skimming vs. Reading

Code review is predominantly a skimming process in which the re-
viewer initially looks through the code quite fast. When a particular
part of the code catches the reviewer’s eye, he/she will slow down
to read it more carefully. On average, participants in the study read
27 words per second, but the distribution of this value was highly
skewed (Median=66, SD=39). To account for the fact that it takes
more time to read longer tokens, we computed the reading rate per
character as well. Participants read an average of 238 characters
per second (Median=731, SD=89). Most tokens were read quickly,
but there was a large skew to the data, in which participants read
some words very slowly.

We analyzed the difference in speeds by binarizing the reading
rate into skimming vs. careful reading. Careful reading is defined
as reading two standard deviations slower than the mean rate per
person. We found that most participants skimmed through the
code until they were triggered to slow down when they spotted
something suspicious. We saw two cases of participants who did
no careful reading prior to writing up a code review comment. In
these cases, we believe the participants had prior knowledge of the
code changes they were reviewing (perhaps from team meetings)
and did not need to read the code carefully in order to decide what
to write in the comment.

5 CONCLUSION

Now that traditional code inspections have been replaced by tool-
based code reviews, software engineers review almost all of one
another’s code before it is checked into their source code repository.
The commonplace use of code review tools and the affordability of
eye trackers enables us to carefully observe the code review process
at a fine temporal granularity.

In this study, we found which code elements trigger engineers to
be suspicious during code reviews. From the eye tracking playback,
we learned how engineers confirm or reject their defect suspicions
and ultimately decide whether to leave a code review comment for
the author. Our data confirms prior work showing that code review
is primarily a code scanning process. We saw engineers skimming
through large amounts of code before occasionally slowing down
to read smaller portions of the code more carefully. Our results
contribute to our field’s understanding of code review, and offer
opportunities to improve upon it in the future.

REFERENCES

Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Challenges
of Modern Code Review. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 712-721.

Christian Bird, Trevor Carnahan, and Michaela Greiler. 2015. Lessons Learned from
Building and Deploying a Code Review Analytics Platform. In Proceedings of the
12th Working Conference on Mining Software Repositories (MSR °15). IEEE Press,
Piscataway, NJ, USA, 191-201. http://dl.acm.org/citation.cfm?id=2820518.2820542

B. W. Boehm. 1976. Software Engineering. IEEE Trans. Comput. C-25, 12 (Dec 1976),
1226-1241. https://doi.org/10.1109/TC.1976.1674590

Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements in Code

http://dl.acm.org/citation.cfm?id=2820518.2820542
https://doi.org/10.1109/TC.1976.1674590

Eye Movements in Code Review

Reading: Relaxing the Linear Order. In Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension (ICPC ’15). IEEE Press, Piscataway, NJ, USA,
255-265. http://dl.acm.org/citation.cfm?id=2820282.2820320

Marcus Ciolkowski, Oliver Laitenberger, Dieter Rombach, Forrest Shull, and Dewayne
Perry. 2002. Software Inspections, Reviews & Walkthroughs. In Proceedings of the
24th International Conference on Software Engineering (ICSE °02). ACM, New York,
NY, USA, 641-642. https://doi.org/10.1145/581339.581422

Michael E Fagan. 1999. Design and code inspections to reduce errors in program
development. IBM Systems Journal 38, 2/3 (1999), 258.

Thomas Fritz, Andrew Begel, Sebastian C Miiller, Serap Yigit-Elliott, and Manuela
Ziiger. 2014a. Using Psycho-physiological Measures to Assess Task Difficulty in
Software Development. Proceedings of the 36th International Conference on Software
Engineering (2014), 402-413.

Thomas Fritz, David C. Shepherd, Katja Kevic, Will Snipes, and Christoph Braunlich.
2014b. Developers’ Code Context Models for Change Tasks. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, New York, NY, USA, 7-18. https://doi.org/10.1145/2635868.
2635905

Katja Kevic. 2016. Recognizing Relevant Code Elements During Change Task Navi-
gation. In Proceedings of the 38th International Conference on Software Engineering
Companion (ICSE ’16). ACM, New York, NY, USA, 851-854. https://doi.org/10.1145/
2889160.2889270

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd,
and Thomas Fritz. 2015. Tracing Software Developers’ Eyes and Interactions for
Change Tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. https:
//doi.org/10.1145/2786805.2786864

Sebastian C. Miiller and Thomas Fritz. 2015. Stuck and frustrated or in flow and happy:
Sensing developers’ emotions and progress. Proceedings - International Conference
on Software Engineering 1 (2015), 688-699.

Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. 2018. A Survey on
the Usage of Eye-Tracking in Computer Programming. ACM Computing Surveys
(CSUR) 51, 1 (2018), 5.

Paige Rodeghero and Collin McMillan. 2015. An Empirical Study on the Patterns of Eye
Movement during Summarization Tasks. 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (2015), 1-10.

Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney D’Mello.
2014. Improving Automated Source Code Summarization via an Eye-tracking Study
of Programmers. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). ACM, New York, NY, USA, 390-401. https://doi.org/10.
1145/2568225.2568247

Zohreh Sharafi, Zephyrin Soh, and Yann Gael Gueheneuc. 2015. A systematic literature
review on the usage of eye-tracking in software engineering. Information and
Software Technology 67 (2015), 79-107.

Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. 2012. An Eye-tracking Study
on the Role of Scan Time in Finding Source Code Defects. In Proceedings of the
Symposium on Eye Tracking Research and Applications (ETRA ’12). ACM, New York,
NY, USA, 381-384. https://doi.org/10.1145/2168556.2168642

TechSmith. 2018. Screen Recording and Video Editing Software | Camtasia | TechSmith.
https://www.techsmith.com/video-editor.html

Tobii Technology AB. 2018. Tobii EyeX Specification. http://tobiigaming.com/product/
tobii-eyex/.

Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. 2006.
Analyzing Individual Performance of Source Code Review Using Reviewers’ Eye
Movement. In Proceedings of the 2006 Symposium on Eye Tracking Research &Amp;
Applications (ETRA "06). ACM, New York, NY, USA, 133-140. https://doi.org/10.
1145/1117309.1117357

EMIS ’18, June 14-17, 2018, Warsaw, Poland

http://dl.acm.org/citation.cfm?id=2820282.2820320
https://doi.org/10.1145/581339.581422
https://doi.org/10.1145/2635868.2635905
https://doi.org/10.1145/2635868.2635905
https://doi.org/10.1145/2889160.2889270
https://doi.org/10.1145/2889160.2889270
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2168556.2168642
https://www.techsmith.com/video-editor.html
http://tobiigaming.com/product/tobii-eyex/
http://tobiigaming.com/product/tobii-eyex/
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.1145/1117309.1117357

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Participation
	3.2 Procedure
	3.3 Apparatus
	3.4 Analysis
	3.5 Threats to Validity

	4 Results
	4.1 Comment Triggers
	4.2 Skimming vs. Reading

	5 Conclusion
	References

