
Improving Communication Between Pair Programmers
Using Shared Gaze Awareness

Sarah D’Angelo
Northwestern University
Evanston, Illinois USA

sdangelo@u.northwestern.edu

Andrew Begel
Microsoft Research

Redmond, Washington USA
andrew.begel@microsoft.com

ABSTRACT
Remote collaboration can be more difficult than collocated
collaboration for a number of reasons, including the inabil-
ity to easily determine what your collaborator is looking at.
This impedes a pair’s ability to efficiently communicate about
on-screen locations and makes synchronous coordination diffi-
cult. We designed a novel gaze visualization for remote pair
programmers which shows where in the code their partner is
currently looking, and changes color when they are looking at
the same thing. Our design is unobtrusive, and transparently
depicts the imprecision inherent in eye tracking technology.
We evaluated our design with an experiment in which pair
programmers worked remotely on code refactoring tasks. Our
results show that with the visualization, pairs spent a greater
proportion of their time concurrently looking at the same code
locations. Pairs communicated using a larger ratio of implicit
to explicit references, and were faster and more successful at
responding to those references.

ACM Classification Keywords
H.5.3. Information Interfaces and Presentation (e.g. HCI):
Group and organizational interfaces - collaborative computing,
computer-supported collaborative work

Author Keywords
Eye-tracking; collaboration; pair programming

INTRODUCTION
Remote work is becoming increasingly popular because it sup-
ports a flexible lifestyle, and helps people avoid a long com-
mute. Technological advances have improved remote work,
however we still lose some important physical affordances of
collocated work, such as non-verbal cues and gestures. This
especially impacts the ability to understand where your part-
ner is looking in a shared workspace. However, recent work
using dual eye tracking technology has addressed this problem
in the context of remote collaborative work [27]. The dual
eye tracking solution enables tool builders to share eye gaze

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’17, May 06–11, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4655-9/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3025453.3025573

information with each worker and incorporate non-verbal cues
into remote work.

In our work, we apply this method to pair programming. Pair
programming is a commonly practiced method of program-
ming that allows two programmers to work together on a sin-
gle project [49]. This method is popular at many technology
companies, but often occurs only in teams that make it their
standard practice. It requires scheduled co-presence during the
work week along with special computer setups [4]. Previous
work has demonstrated the effectiveness of this method and
the perceived value by the participants [6, 12, 16, 23, 39]. For
example, pairing demands a high level of attention and focus
from the partners because they are continuously working with
someone else and avoiding distractions [10, 46].

Pair programming is an appropriate task for studies of shared
gaze awareness because it is tightly coupled, synchronous, and
collaborative. These factors discourage people from working
remotely when they are part of a pair programming team. Ex-
tending the reach of pair programming to support remote col-
laboration can improve flexibility of work location, accessibil-
ity, enable geographically distributed work, and accommodate
the needs and preferences of a diverse workforce. A survey
we conducted (reported in Section 3) found that developers
would like this flexibility, but current tools for remote pair
programming fail to recreate an effective pairing experience.

General tools for remote work, such as the use of Skype with
screen sharing, lack the ability to share non-verbal cues that fa-
cilitate communication between collocated pairs [15]. Special
purpose tools, such as Saros, a distributed IDE [43], support
limited communication of mouse-based gestures. However,
pairs still cannot make eye contact or see gestures that are not
drawn on screen. The absence of these features makes disam-
biguating references difficult [22]. In a remote setup, pairs
sometimes have to use many explicit references to coordinate
with their partner on a specific location in code, often resorting
to speaking line numbers. In this work, we aim to support
synchronous collaboration in remote settings with a shared
workspace. We designed a novel, shared gaze awareness visu-
alization that reduces the effort required to communicate about
specific locations in code by showing a collaborator where in
the source code his/her partner is looking.

We evaluate our design for sharing gaze awareness in a study
of pair programmers working in a simulated remote setting.
Our design is subtle and accounts for noise in the eye tracking

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6245

http://dx.doi.org/10.1145/3025453.3025573

signal to avoid the negative effective of distracting displays
that can mislead partners [13]. We conducted a within-subjects
experiment to evaluate the visualization and understand how
sharing gaze information affects the way pair programmers
communicate about specific locations in code.

Our results show that when programmers can see where their
partner is looking, they concurrently look at the same code
more often. With the visualization, they are able to communi-
cate about locations in the code more successfully, efficiently,
and effectively. Thus, the design serves as a helpful aid for
coordinating remote work. And, the same design could easily
be integrated into many other forms of collaborative document
editing.

We discuss the role of shared gaze awareness in remote pair
programming and offer implications for the design of shared
gaze awareness in computer-supported collaborative work.

RELATED WORK
Eye movements provide valuable information about how pairs
communicate. For example, before speakers refer to an object,
they look at it [20]. Listeners look at objects soon after they are
referred to [1]. This relationship is important for coordination
and developing common ground between partners [41, 42].

Remote work is challenging because it lacks important fea-
tures of collocated work, such as knowing where your partner
is looking. Sharing gaze awareness, or displaying where your
partner is looking on your screen, is one potential intervention
to help facilitate conversation and coordination. For exam-
ple, listeners can use the speaker’s gaze to help disambiguate
similar objects [22].

Dual eye tracking studies have begun to explore how sharing
gaze in real time between two remote partners influences co-
ordination [27]. For example, remote collaborators can find
a target in a image faster when shown their partner’s gaze
on screen [7]. Additionally, in a collaborative learning task,
shared gaze information improved gains in learning and in-
creased the partners’ joint attention [44]. Sharing gaze also
affects how partners communicate by allowing them to make
use of more deictic references (i.e. this or here) using a gaze
representation as a referential pointer [3, 13].

Pair programming is an interesting application space for shar-
ing gaze awareness because it requires a high level of shared
understanding [48]. Knowing what someone is looking at in
code can provide insights for problem solving. For example,
when novices were shown an expert programmer’s gaze pat-
tern in code review, it helped them identify bugs faster [47].
Additionally, in real-time gaze sharing between expert and
novice, watching an expert’s gaze as they explained an algo-
rithm reduced the variability of gaze patterns in novices [38,
5].

Shared gaze is typically represented as a single point on screen
that reflects the gaze coordinate stream interpreted from the
eye tracker [3, 7, 13, 44]. However, alternative designs have
explored depicting gaze in the periphery to subtly direct atten-
tion to specific areas in an image [2, 32]. Additionally, Stotts
et al. displayed a head overlay on the screen to share gaze

information and facial expressions [21]. Related work in col-
laborative document editing has also investigated unobstrusive
indicators to signal where partners are working [36, 29]. We
contribute to this space by evaluating a simple and transparent
design for displaying gaze awareness in documents.

We can also analyze the relationship between two gaze streams
during a collaborative task to evaluate effective coordination
in pairs. The relationship between reference forms and gaze
overlap can be a useful indicator of understanding between
pairs [18]. Sharing cues, such as highlighting text, increases
the amount of time pairs spend looking in the same place to-
gether [28, 45]. Additionally, gaze location can be predicted
based on conversational content and actions in the shared
workspace [34]. We investigate gaze overlap and the rela-
tionship between reference form and acknowledgments (both
verbally and based on gaze).

Recreating the ability to see what your partner is looking
at in remote collaborative work has many possible applica-
tions, ranging from pair programming [5] to remote physical
tasks [17, 24]. We contribute to this space by evaluating a
novel design for sharing gaze awareness to support effective
communication in tightly-coupled tasks.

SURVEY
To motivate this work, we randomly selected 500 software
developers at a large, technology company and asked them
to respond anonymously to a survey about pair programming.
We received 159 complete responses for a 32% response rate.
52.7% reported that they had pair programmed before. Con-
sistent with previous work [6, 12, 16, 39], a majority of the
respondents who have pair programmed say that they enjoy
pairing and believe that it is effective.

In our work, we are particularly interested in expanding the
capabilities for pair programming to effectively support re-
mote pair programming. So we asked survey respondents
whether they might take advantage of working remotely if
they could. Our survey revealed that if they had no constraints,
our respondents would like to spend over 11 hours per week
(out of a 40 hour work week) working remotely. Respondents
explained that working remotely would allow them to avoid
a long commute, work in a place with fewer distractions, and
adjust their schedule to accommodate personal needs. For
example, one respondent said that working remotely would
allow him/her to “spend time with my 2-year-old son during
the day, and then work in the evening more after he has gone
to sleep.” Remote work can accommodate a wide range of
lifestyle preferences and allow for new opportunities that may
not have happened otherwise. At large companies with offices
in many countries, effective remote work could improve and
prompt new international collaborations.

Despite this desire to work remotely, those who pair program
(usually on teams that practice pair programming religiously)
rarely engage in remote pair programming. Our survey re-
vealed that only 18.9% of the 87 respondents who said they
had ever pair programmed had pair programmed remotely.
Those that did pair remotely said they liked its convenience
and flexibility. It allowed developers to work with people who

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6246

are not in the same location, and was “necessary if the subject
matter expert was not local.”

Of the remaining 81.1% who had never tried remote pair
programming, 40.3% considered it, but some worried that
the technology and management would present barriers to
success. One respondent said “I don’t think our technology
would support it enough to be effective.” The most common
tool used by our respondents is Skype with desktop sharing,
which has no specific features designed for collaborative edit-
ing/programming.

We believe that the benefits of pair programming should not
come at the expense of the ability to work remotely. Guided
by our survey responses, we undertake a study to test the
effectiveness of a novel, remote pair programming support
tool.

PILOT OBSERVATIONS
We observed 3 teams at the same large technology company to
gain an understanding of how they practice pair programming.
Each video-recorded observation lasted one hour in the team’s
primary office space. Two researchers were present during the
observations and taking notes.

Each of the three teams practiced a different form of pair
programming. The first pair employed a special hardware
setup using a single computer with two mirrored sets of dual
monitors. They spent the hour planning a refactoring of the
code that one of them had written with a different partner
the week before. The second pair operated in a traditional
driver/navigator role structure in front of one of the pair’s dual
monitor computer. The driver spent the hour explaining to
the navigator the functionality of a particular code abstrac-
tion he had written by himself an hour before we observed
them, when his partner was out at a meeting. The third team
practiced “mobbing,” in which they had four people in front
of one computer with a large 50-inch monitor. One person,
who was facile with source control commands, worked the
keyboard, while the others sat around him. They spent their
hour debugging a problem that had shown up in the nightly
build of their web service.

As we observed each team, we were on the lookout for as-
pects of collocated pair programming that would not be well-
supported in remote work. We found three: first, remote
pairs would not be able to make eye contact, something that
was frequently practiced in all three teams. From an outside
observer’s perspective, pair programming looks more like a
social, conversational activity than an activity purely about the
program on the monitor.

Second, the members of the teams made numerous hand ges-
tures both at the screen and at one another, which would simply
not be visible in a remote setting. Sometimes these gestures
merely supported the on-going conversation (i.e. body lan-
guage), but sometimes the person making the gesture was
pointing at something on the screen to get the other person
to notice it. The remote tools our survey respondents talked
about having used would definitely not support resolving this
kind of gesture.

Third, the teams made constant verbal and gestural references
to specific locations on the screen, something that would be
difficult to impossible to disambiguate while working remotely.
The mobbing team demonstrated this acutely; even in their col-
located setting, the “driver” experienced numerous difficulties
interpreting the code locations at which his teammates were
pointing. One pair was successful at using mouse-based selec-
tion to indicate the part of the code the other was supposed to
pay attention to, but the other pairs experienced difficulty dis-
tinguishing between verbally called out functions with similar
names, or where there were multiple calls to the same function
in a single document.

We decided to focus primarily on the issue of referring to loca-
tions on screen by transforming the partners’ gaze locations
into on-screen visualizations.

GAZE VISUALIZATION
In this work, we investigate the effect of displaying gaze in-
formation to remote pair programmers in an unobtrusive and
transparent way. We designed a novel, shared gaze visualiza-
tion to indicate where in the code your partner is looking when
programming together on a shared display. We conducted a
within-subjects experiment in which pair programmers are
asked to complete two refactoring tasks together, with and
without our shared gaze visualization. We evaluate the ef-
fectiveness of our design by investigating where pairs are
looking and how they communicate about specific locations
on the screen. Additionally, we conducted post-task surveys
and semi-structured interviews with our participants to un-
derstand the perceived utility of shared gaze awareness. Our
results show that with shared gaze awareness, pairs spend
more time looking at the same locations, are faster to acknowl-
edge references, and use more implicit language when making
references.

Design Process
Much of the previous literature on displaying gaze information
uses a small, rapidly-moving point to illustrate where the eye
is looking at the screen. This type of visualization moves too
fast and can obscure the information on screen, both of which
are distracting [13]. The single point representation is also
inaccurate because the imprecision caused by noise and mi-
crosaccades that is inherent in current eye tracking technology
results in biases in the returned screen coordinates [8, 35].

To avoid these problems, we initially focused on line-based
text designs that could make the gaze visualization move more
slowly. Our first design highlighted the background of an
entire row of text, but initial pilot tests revealed that this to
still be too distracting; too many pixels had to change color
as the eye moved rapidly up and down the screen. First, we
shrank the highlight rectangle horizontally. We started with
a 10 pixel wide rectangle, but we found it to be too subtle in
our pilot tests. So we increased it to 20 pixels, which was
perceived as noticeable, but not distracting. Next, we tried
illustrating the user’s focus by increasing the saturation of
the highlight color the longer the user looked at a particular
line, but the subtle color change went unnoticed by our study
participants. Finally, we tried changing the number of lines in

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6247

Figure 1. Screen Captures with First Iteration of Gaze Visualization
(left) and Final Design (Right)

the highlighted rectangle to show the current range of lines at
which the user was looking. However, when the eye moved
rapidly around the screen, the rectangle would change size a
lot. Also, with only 20-30 lines typically visible in the editor,
the rectangle too often covered most of the screen, making the
visualization useless.

In the end, we fixed the vertical span of the rectangle to 5
lines, colored it with a single pair of semi-saturated colors
(chosen for maximal contrast with the default font colors used
in Visual Studio), and moved it to the left margin of the text
where the participants were already looking, so as to not attract
their attention to irrelevant screen locations (e.g. blank spaces
on the right side of the editor).

Gaze Visualization Design
Our final design is a 5-line high, 20 pixel wide, filled, col-
ored rectangle displayed on the left margin of the other pro-
grammer’s code editor (and vice versa), centered on the Y
coordinate returned by the eye tracker (see Figure 1). The X
coordinate is ignored, since in C#, there is rarely more than one
code concept per line. Reducing the shared space to a 5-line
span of code circumscribes the referential domain, allowing
participants to use less specific language when reference to
locations in code [30].

Similar to the hysteresis effect employed by a thermostat, if
the eye moves within the lines circumscribed by the rectangle,
the rectangle stays still to minimize the quick jumping move-
ments typical to many visual gaze visualizations. If the eye
moves outside the box a line or two up or down, the rectangle
smoothly scrolls with it. When the eye jumps to a completely
disjoint line, the box is re-centered on the new location. In ad-
dition, the rectangle drawn in our visualization changes colors.
Normally, it is yellow, but becomes green when participants
are looking at the same thing (defined as when their rectangles
vertically overlap). This signal is designed to support shared
intentionality (and shared attention) [48] by letting both pro-
grammers know that they are looking at the same part of the
code at the same time.

STUDY METHOD

Participants
Twenty-four software developers from a technology company
who were comfortable programming in C# participated in this

Figure 2. Experiment Setup

study. Participants were recruited through emailed announce-
ments on Agile development mailing lists at the company. All
participants were consented and received USD$50 compensa-
tion for participating. For the study, pairs of participants were
asked to work together in remote pair programming teams.

Setup
From our survey, we found that the most common pairing
setup was a single computer with a single, shared display.
When survey respondents paired remotely, they created this
environment using a Skype call with simultaneous screen shar-
ing. Since our study intended to evaluate a visualization that
looked different on each person’s computer, we could not
use Skype. Instead, we simulated a Skype call using a sin-
gle computer with two displays placed back-to-back, so that
the participants could each work at their own station without
seeing one another, yet still talk aloud to communicate (see
Figure 2).

Each of the two participants had their own display (Moni-
tor 1 (TX300): 23" 1920x1080, and Monitor 2 (EyeX): 24"
1920x1200, both at 96 DPI), mouse, keyboard, and an attached
remote eye tracker (a Tobii TX300 (around USD$45,000) and
a Tobii EyeX (USD$139)) running at 30Hz.1 We used Team-
Player4 [14] software to enable each participant to see and
manipulate their own independent mouse cursor on the single
experimental computer. A GoPro Hero 3 camera was set up to
the left of each participant to record their facial expressions as
they worked. Both displays were screen-captured and merged
with their respective GoPro video feed into a single 2x2 MP4
format movie (see Figure 3).

To simulate screen sharing and support our gaze visualization,
we created a Visual Studio 2015 extension. The extension
displays the project code simultaneously in two code editor
windows whose text (Consolas, 13 pt) and user interface are
slaved to one another, but are displayed on the two separate
monitors. When one participant scrolls his/her window, the
other window scrolls to the same place. If a participant high-
lights text on their window it is also highlighted on their part-
ner’s window. If the participant switches editor windows, an
identical window would open on the other screen. The exten-
sion captures eye tracking information from two eye trackers
simultaneously. It renders the gaze visualization in both code

1We would have liked to use two of the much cheaper Tobii EyeX
trackers, but it is not possible to put more than one EyeX on a
computer.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6248

Figure 3. Combined Videos: Screen capture paired with monitor (in-
dicted by horizontal arrows) and gaze of participant represented on the
screen of their partner (indicated by diagonal arrows.)

editor windows (the only thing that is not duplicated between
the code windows) and logs eye tracking data to disk.

Tasks
We employed a 2x2 counterbalanced (gaze awareness and
task), within-subjects experimental design. Participants
worked on two refactoring tasks intended to “clean up” the
C# code for a Flappy Bird-like game [40] (see Figure 4), with
our gaze visualization turned on and off. The two tasks were
equivalent in difficulty (pilot tests helped us fine-tune this) and
took about 15 minutes each.

To introduce the participants to the code, they were asked to
collaborate with one another to make small changes to the
game, e.g. changing the sizes of the bird or obstacles. This
task was unmeasured. Then, the participants worked together
to accomplish two refactoring tasks while being recorded and
logged.

After completing each task, each participant filled out a 13-
question Likert-scale questionnaire about their feelings about
their performance on the task. The survey questions were
adapted from McCroskey and McCain [31] on task attractive-
ness and from Begel and Nachiappan [6] on the qualities of
good pair programming partners. Each question asked the par-
ticipant to state the extent to which they disagreed or agreed
with statements about how they worked with their partner. For
example, “I felt like my partner and I were on the same page
most of the time,” or “I felt that I did more work than my
partner.” At the end of the study, the pair was interviewed
informally about their impressions of the gaze visualization to
subjectively evaluate its design and utility.

Video Analysis
To understand how the gaze awareness visualization influenced
communication between the pair, all videos were coded for ref-
erences and acknowledgments. Every time a participant made
a reference or verbally acknowledged a reference, the time
was logged, the type was recorded (reference or acknowledge-
ment), and it was given a description code. The description
code indicated the form of the reference, and ranged from
implicit (deictic) to explicit (text selection). See Figure 5 for a

Figure 4. Example of Flappy Bird Game

Code Description

Deictic When a participant uses a deictic reference
such as: this, that, or here. For example, “I
think it’s this one over here.”

Abstract When a participant uses an abstract concept
or broader category to refer to an object. For
example, “We need to change the variable.”

Gaze When a participant directly refers to the gaze
visualization to refer to an object. For exam-
ple, “Right where I am looking.”

Specific When a participant uses a specific word or
name to describe an object. For example, “I
think it is called in Update Score.”

Typing When a participant is referring to the text that
they are currently typing in the shared window.
For example, “You just made a typo.”

Line Num When a participant uses a line number to refer
to a location. For example, “Fix the error on
line 139.”

Select When a participant highlights a word or sec-
tion of text to direct their partner to it, usually
this reference is paired with a deictic refer-
ence. For example, “This section right here
(highlighting code).”

Table 1. Reference Codes and Descriptions

complete list and Table 1 for code descriptions. The acknowl-
edgment description indicated a “yes” if the reference was
verbally understood, or “confused” if recipient did not follow
the reference.

Gaze Analysis
The main signal we analyzed from our log data was a gaze
overlap signal. This is true if the two participants were looking
at the same thing at the same time. Each participants’ view
area is defined as a sequence of five visible lines in the code
editor, vertically centered on the participant’s last eye gaze
location. In each recorded sample, if any of the first partic-

Figure 5. Reference Categories

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6249

Figure 6. Fraction of gaze overlap in each pairs’ tasks in the two exper-
imental conditions. The * indicates that the two conditions are statisti-
cally significantly different from one another.

ipant’s view area’s lines overlapped the second participant’s
view area, we said that the gaze overlap was true. However, we
filtered out gaze overlaps that lasted less than 100 ms to avoid
spurious indications of gaze overlaps when the eye jumped
around a lot. All of the results in Section 7 use this filtered
gaze overlap measure.

Next, we measured the time from a person’s utterance of a ref-
erence to a location on the screen to when that reference was
verbally acknowledged by the other person. However, since
the goal of the visualization is to help the participants look
something when the other person referred to it, this analysis
also considers shared gaze as an form of acknowledgment.
When there was no explicit verbal acknowledgement, we de-
fined the first filtered gaze overlap within 10 seconds as an
implicit acknowledgement of the reference.

In addition to determining whether or not a reference was
acknowledged, we recorded the time it took for that implicit
or explicit acknowledgement to occur. If neither implicit
or explicit acknowledgement was found, we considered that
reference to be unacknowledged and unsuccessful.

RESULTS
In this section, we present the results of our data analysis. We
looked at three questions.

1. How much time did the participants spend concurrently
looking at the same thing?

2. What kinds of references were used by the participants?

3. How successful were references to locations in the code?

Timing
The basic premise of this work is that pairs that spend more
time looking at the same thing work better together. For each
pair of participants, we counted the total amount of time spent

Figure 7. Fraction of references of each type uttered by the pair in the
two experimental conditions. An * is shown above reference types that
are statistically significantly different from one another.

looking at the same thing (i.e. sum of filtered gaze overlap
time) and divided it by the total time spent on each task to
produce the fraction of time spent looking at the same thing.
This is shown in Figure 6. Using JMP, we computed a one-
way ANOVA to compare the effect of the gaze visualization
on the fraction of filtered gaze overlap time, both with and
without the gaze visualization. The mean score for the gaze vi-
sualization (M = 11.9%, SD = 0.6%) was significantly greater
than without the gaze visualization (M = 5.9%, SD = 0.6%)
[F(1,35) = 58.243, p < 0.0001]. This result suggests that in
each task, participants spent 6% more time looking at the same
things when using the gaze visualization.

Prior work has shown a similar effect in a primarily visual
collaborative learning task [44]. Related studies suggest that
pairs perform collaborative tasks better the more that they at-
tend to the same things at the same time [9, 18, 33]. To further
understand how this affect communication and coordination,
we check that the increased gaze overlap is correlated with a
functional improvement in collaboration.

References
As each person worked together on the refactoring tasks, each
had to repeatedly make references to locations in the code to
signal to their partner where to find or place some relevant
code. These 470 total references span a continuum of the
explicitness of the grounding inherent in the utterance (as
shown in Figure 5). We counted the number of utterances of
each reference type made by participants as they completed
their tasks. Since each pair performed the same set of tasks, we
normalized the values to produce the fraction of each utterance
type made by participants over their tasks. The distribution of
these ratios, divided by experimental condition, can be seen in
Figure 7.

A oneway ANOVA indicates that the fraction of deictic refer-
ences is significantly greater with the gaze visualization turned
on (M = 46% SD = 4%) than when turned off (M = 18%
SD = 4%) [F(1,11) = 24.9663, p = 0.0004]. The fraction of
more explicit, specific word references is lower with the gaze
visualization (M = 21% SD = 3%) than when it was not avail-

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6250

Figure 8. Fraction of successfully acknowledged references of each type
uttered by the pair in the two experimental conditions. An * is shown
above reference types that are statistically significantly different from
one another.

able (M = 34% SD = 3%) [F(1,11) = 7.1602, p = 0.0216].
This means the pairs were more comfortable using the more
implicit, deictic references when they knew that they were
able to see where the other was looking.

Acknowledged References
The reference fractions shown in Figure 7 show all the refer-
ences that were attempted by the pairs, regardless of whether
they were successfully understood and acknowledged. Over
all reference types, there are many unsuccessful references.
Only 37% of the attempted 249 references without the gaze
visualization were acknowledged successfully. With the gaze
visualization, 7% more (44%) of the 221 attempted references
were. We now take a closer look at the overall 190 successful
references to see if the gaze visualization helped the partici-
pants to communicate more effectively or efficiently.

In Figure 8, we show the distribution of successful references
of each type, divided by condition. A one-way ANOVA shows
that the proportion of successful deictic references is signif-
icantly higher when the participants saw the gaze visualiza-
tion (M = 14.3% SD = 2.1%) than without it (M = 3.6%
SD = 2.1%) [F(1,11) = 12.3214, p = 0.0049]. The other refer-
ence types show no significant differences between conditions.
This means that people not only made more deictic references
with the gaze visualization, but they were also 19% better at
communicating them successfully.

Finally, we look at the time it took to communicate a reference
to see whether the gaze visualization had an impact on making
references quicker to acknowledge. Across all references, a
one-way ANOVA shows that successful references were ac-
knowledged more quickly with the gaze visualization (M = 1.7
sec SD = 0.11 sec) than without it (M = 2.1 sec SD = 0.1 sec)
[F(1, 417) = 7.6624, p = 0.0058]. Surprisingly, when we split
the data by reference type, deictic references are not signifi-
cantly faster, but line number and specific name references are.
A one-way ANOVA shows that line number references are
faster with the gaze visualization (M = 1.9 sec SD = 0.3 sec)
than without it (M = 2.5 sec SD = 0.2 sec) F(1,186) = 3.9073,

p = 0.0496]. It also shows that specific name references are
faster with the gaze visualization (M = 1.4 sec SD = 0.2 sec)
than without it (M = 2.3 sec SD = 0.2 sec) [F(1,212) = 7.7144,
p = 0.0060]. The other reference types are not significantly
faster or slower between the two conditions.

In summary, our quantitative results showed that participants
used more deictic references with the gaze visualization, sug-
gesting that they are using the visualization as a referential
pointer. This is consistent with prior work [3, 13]. Our study
adds to this body of knowledge by showing that deictic refer-
ences are successfully acknowledged more often with the gaze
visualization, and that references are acknowledged faster,
suggesting that it is useful aid for coordination.

Completion Time
There was no significant different in completion time between
the gaze visualization and no gaze visualization conditions.
Each pair was allotted 15 minutes to complete the coding
task and all pairs used the entire time and were stopped by
the researcher to change tasks. One explanation for the lack
of difference is our sample population. We believe that the
pairs worked for the entire allotted time because of their own
personal quality standards as professional developers. Addi-
tionally, our informal instructions were intended to encourage
natural collaboration and may have contributed to the contin-
ued effort to “clean up” the code after the basic refactoring
task was completed.

Post-Task Questionnaire
A oneway ANOVA on the results from our post task survey
indicate that when the gaze awareness visualization was dis-
played, participants said that their partner was able to focus
more on the task (M = 4.57 SD = 0.05) compared to with-
out the visualization (M = 4.42 SD = 0.05) [F(1,25) = 4.54,
p = 0.04]. This suggests that participants were looking at the
gaze visualization to gain insight about what their partner was
attending to. Similarly, each partner knew when the other
was looking at the document since the visualization was only
displayed at that time. Participants might have been using this
information to infer that their partner was on task, compared
to without the visualization in which that added information is
not available.

None of responses to the other questions were significantly
different between conditions, though they may be subject
to experimental bias. This suggests that the addition of the
gaze awareness visualization might not influence the perceived
quality of interaction between pair programmers. The benefits
of shared gaze awareness are subtle, and might need to be
used for extended periods of time before the perceived value
is apparent.

Interview Results
At the end of the study, our interviews with the participants
revealed that when they were aware that they were making use
of the visualization, they used it to help communicate about
locations in the and establish a shared understanding of what
the other person is looking at.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6251

“I can get a context of where he is looking at the time, so
it’s a replacement for pointing.” (Pair 3 — Participant 2)

Participants told us that they typically resort to using line num-
bers when talking about locations in code, but that they pre-
ferred to use our gaze visualization because it was easier. This
is reflected in our quantitative analysis of references, which
showed that participants used more deictic references with the
gaze visualization, but more specific word references without
it. This suggests that the visualization assisted coordination
by allowing pairs to use deictic references and communicate
without grounding on items first [11, 13, 19].

Participants also found the color changing to be a useful indi-
cator that both partners were on the same page.

“It was nice when it was green because we know we are
looking at the same line...talking about the same line of
code.” (Pair 4 —Participant 1)

Participants spent more time looking at the same areas of code
with the gaze visualization, suggesting that they were tightly
coordinated and attended to the same information at the same
time.

Participants said that the gaze visualization helped them to
understand what their partner was talking about and attending
to. None of the pairs expressed experiencing any difficulty
interpreting the visualization, suggesting that a 5-line range of
code is a sufficient range for assisting communication through
successfully circumscribing the referential domain.

Interestingly, half of the participants expressed that they did
not notice the visualization, stating that, “I think I just forgot
about it!” (P7S2). Although they might not have been explic-
itly aware of the gaze visualization or how it was affecting
their work, we did see changes in behavior. This result is not
surprising when we realize that in collocated collaboration,
gaze is a subtle signal, and we designed our gaze visualization
to reflect that.

DISCUSSION
The addition of gaze awareness to remote collaborative work
is a useful aid for coordination. The novel gaze visualiza-
tion described in this work helped remote pair programmers
communicate more effectively. These pairs used more deictic
references which were more successfully acknowledged with
the gaze visualization, suggesting that pairs used gaze aware-
ness to effectively ground on items in the code. Pairs were
faster to acknowledge references with the gaze visualization,
suggesting that they understood what their partner was refer-
ring to. This may be due to faster grounding, or they could
have already been in sync with their partner and were already
looking at the same location when their partner communicated
with them.

While we applied our tool to the pair programming domain,
it could easily be extended to work with other types of docu-
ments. Our left-aligned visualization would work well with
other types of text based documents. Additionally, the type of
visualization evaluated here could be re-imagined to fit into a
scroll bar, similar to visualizations explored by Hill and col-

leagues [25]. This would enable the visualization to work for
documents whose contents are mirrored, but whose UI is not.

The effectiveness of the novel representation of gaze that we
evaluate in this work demonstrates that gaze visualization de-
sign should take task structure into account. In the the context
of pair programming, a non-obtrusive and non-distracting rep-
resentation was appropriate for the task and well received
by our participants. After the experimental session, when
participants told us their subjective thoughts about the gaze
visualization, they recognized that sometimes they wanted the
visualization to show up only when they were intentionally
trying to communicate a location to their partner.

“I think the bigger thing for me is not where is he looking
all the time but where does he want to have me look.”
(Pair 6 — Participant 2)

Future designs may consider a representation whose visibility
is tied to the conversation between the partners. Using deic-
tic references to inform the display of gaze awareness could
provide more intentional cues and filter out non-signalling eye
movements.

While eye trackers have become very inexpensive, they are
not yet ubiquitous. However, the pair programming teams
we observed were not shy about asking their employers for
other specialized equipment to support pairing that cost many
thousands of dollars. We can easily imagine remote pair pro-
grammers intent on making their programming experience
more effective and efficient spending a few hundred dollars to
do so.

Shared gaze awareness is a way to enhance the remote col-
laboration experience by providing people with an on-screen
representation of where their partner is looking. This work
fine-tunes gaze awareness with a simple and unobtrusive de-
sign that effectively supports coordination and communication.
Our work aims to integrate novel and practical features into
remote work in ways that have the potential to make it even
better than collocated work [26].

Threats to Validity
All experiments contain tradeoffs in the design and implemen-
tation that affect their internal and external validity. The eye
trackers we used are inherently inaccurate devices. In ideal
situations, they can be accurate to 0.5 degrees, but as partici-
pants move around, the accuracy degrades. In this experiment,
we had to rely on the participants to tell us when they believed
the accuracy had degraded enough to require recalibrating the
eye trackers. This happened to only 3 out of 24 participants in
the study, and was done in between tasks. Based on our past
experiences with eye trackers, we designed our gaze visualiza-
tion to be five lines tall to account for the vertical inaccuracy
we have seen in “perfectly” calibrated trackers.

Furthermore, we are using two different eye trackers in this
experiment. Ideally, we would have used two inexpensive eye
trackers to model an affordable system, however given the
technical constraints imposed by tracker manufacturer, we had
to use two different models from the same company. Both
eye trackers are advertised to be accurate to within 0.5 degree,

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6252

and we used them at the same sampling rate so they should be
comparable. However, this more complex experimental setup
is a limitation [37].

In this experiment, we simulated a remote work environment
with a single computer and multiple monitors instead of the
commonly used Skype with screen sharing to test out our the-
ories behind the gaze awareness visualization. Our simulation
performs better than the alternative because there is no latency
in the audio (participants could just speak to one another in the
same room) or the display (since they use the same computer).
We did this because we could not make Skype’s screen sharing
show different displays to each participant. Latencies do cause
some communication problems that we did not observe in our
experiment. A future implementation of our tool would have
to take into account these latencies to accurately assess when
the participants are looking at the same thing at the same time.

Finally, we studied remote pair programming, not distributed
pair programming. In remote pair programming, both partners
use mirrored displays and look at same things together. Dis-
tributed pair programming loosens the mirroring requirement,
supporting programmers working on the same codebase, but
each having their own unique view of the system. Our visual-
ization is based on a mirrored display, so it would not easily
generalize to a distributed pair programming setup.

CONCLUSION
In this paper, we describe a study of remote pair programming.
Through observations, we identified that remote pairs would
have significant difficulties communicating about on-screen
code locations. We took advantage of cheap eye tracking tech-
nology to develop a novel, dual eye tracking, gaze awareness
visualization that helps pairs to see what the other person is
looking at in a code document. We evaluated the visualiza-
tion in an experiment in which pair programmers refactored
source code while working in a simulated remote work envi-
ronment. When the programmers used the visualization, they
were more likely to look at the same thing at the same time.
They were both faster and more successful at communicating
using implicit, deictic references, and used them more fre-
quently compared with references to explicit line number or
specific words on the screen. Most participants recognized
the value of the visualization, though some were not even
consciously aware that the visualization had changed their
behavior and helped them communicate efficiently.

Remote collaboration remains difficult for many people, es-
pecially when adapting a working style that originated and is
typically practiced in collocated settings. When two people
work together to create and edit code, the perceived and real
challenges of communicating effectively and efficiently can
inhibit them from taking advantage of the flexibility and acces-
sibility affording to them by remote work. Our gaze awareness
visualization takes us a step closer to removing those barriers.

ACKNOWLEDGEMENTS
We would like to thank the members of the VIBE research
team and the software developers who participated in our study.
This work was supported by Microsoft Research.

REFERENCES
1. Paul D Allopenna, James S Magnuson, and Michael K

Tanenhaus. 1998. Tracking the time course of spoken
word recognition using eye movements: Evidence for
continuous mapping models. Journal of memory and
language 38, 4 (1998), 419–439.

2. Reynold Bailey, Ann McNamara, Nisha Sudarsanam, and
Cindy Grimm. 2009. Subtle gaze direction. ACM
Transactions on Graphics (TOG) 28, 4 (2009), 100.

3. Ellen Gurman Bard, Robin L Hill, Mary Ellen Foster, and
Manabu Arai. 2014. Tuning accessibility of referring
expressions in situated dialogue. Language, Cognition
and Neuroscience 29, 8 (2014), 928–949.

4. Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair
Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
and others. 2001. Principles behind the Agile Manifesto.
(2001). http://agilemanifesto.org/principles.html

5. Roman Bednarik, Andrey Shipilov, and Sami Pietinen.
2011. Bidirectional gaze in remote computer mediated
collaboration: Setup and initial results from
pair-programming. In Proceedings of the ACM 2011
conference on Computer supported cooperative work.
ACM, 597–600.

6. Andrew Begel and Nachiappan Nagappan. 2008. Pair
Programming: What’s in It for Me?. In Proceedings of
the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM ’08). ACM, New York, NY, USA, 120–128.

7. Susan E Brennan, Xin Chen, Christopher A Dickinson,
Mark B Neider, and Gregory J Zelinsky. 2008.
Coordinating cognition: The costs and benefits of shared
gaze during collaborative search. Cognition 106, 3
(2008), 1465–1477.

8. Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha
Crosby, James H. Paterson, Carsten Schulte, Bonita
Sharif, and Sascha Tamm. 2015. Eye Movements in Code
Reading: Relaxing the Linear Order. In Proceedings of
the 2015 IEEE 23rd International Conference on
Program Comprehension (ICPC ’15). IEEE Computer
Society, Washington, DC, USA, 255–265.

9. Mauro Cherubini, Marc-Antoine Nüssli, and Pierre
Dillenbourg. 2008. Deixis and gaze in collaborative work
at a distance (over a shared map): a computational model
to detect misunderstandings. In Proceedings of the 2008
symposium on Eye tracking research & applications.
ACM, 173–180.

10. Jan Chong and Rosanne Siino. 2006. Interruptions on
Software Teams: A Comparison of Paired and Solo
Programmers. In Proceedings of the 2006 20th
Anniversary Conference on Computer Supported
Cooperative Work (CSCW ’06). ACM, New York, NY,
USA, 29–38.

11. Herbert H Clark and Susan E Brennan. 1991. Grounding
in communication. Perspectives on socially shared
cognition 13, 1991 (1991), 127–149.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6253

http://agilemanifesto.org/principles.html

12. Alistair Cockburn and Laurie Williams. 2001. Extreme
Programming Examined. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, Chapter The
Costs and Benefits of Pair Programming, 223–243.

13. Sarah D’Angelo and Darren Gergle. 2016. Gazed and
Confused: Understanding and Designing Shared Gaze for
Remote Collaboration. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 2492–2496.

14. Dicolab. 2016. Dicolab - multi-user, multi-cursor
collaboration. (2016).
https://www.dicolab.com/products_teamplayer.html

15. Jörg Edelmann, Philipp Mock, Andreas Schilling, and
Peter Gerjets. 2013. Preserving Non-verbal Features of
Face-to-Face Communication for Remote Collaboration.
In International Conference on Cooperative Design,
Visualization and Engineering. Springer, 27–34.

16. Ilenia Fronza, Alberto Sillitti, and Giancarlo Succi. 2009.
An Interpretation of the Results of the Analysis of Pair
Programming During Novices Integration in a Team. In
Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement
(ESEM ’09). IEEE Computer Society, Washington, DC,
USA, 225–235.

17. Susan R Fussell, Leslie D Setlock, and Elizabeth M
Parker. 2003. Where do helpers look? Gaze targets
during collaborative physical tasks. In CHI’03 Extended
Abstracts on Human Factors in Computing Systems.
ACM, 768–769.

18. Darren Gergle and Alan T. Clark. 2011. See What I’M
Saying?: Using Dyadic Mobile Eye Tracking to Study
Collaborative Reference. In Proceedings of the ACM
2011 Conference on Computer Supported Cooperative
Work (CSCW ’11). ACM, New York, NY, USA, 435–444.

19. Darren Gergle, Robert E Kraut, and Susan R Fussell.
2013. Using visual information for grounding and
awareness in collaborative tasks. Human–Computer
Interaction 28, 1 (2013), 1–39.

20. Zenzi M Griffin and Kathryn Bock. 2000. What the eyes
say about speaking. Psychological science 11, 4 (2000),
274–279.

21. Karl Gyllstrom and David Stotts. 2005. Facetop:
Integrated semi-transparent video for enhanced natural
pointing in shared screen collaboration. 15 (May 2005),
1–10.

22. Joy E Hanna and Susan E Brennan. 2007. Speakers’ eye
gaze disambiguates referring expressions early during
face-to-face conversation. Journal of Memory and
Language 57, 4 (2007), 596–615.

23. Jo E Hannay, Tore Dybå, Erik Arisholm, and Dag IK
Sjøberg. 2009. The effectiveness of pair programming: A
meta-analysis. Information and Software Technology 51,
7 (2009), 1110–1122.

24. Keita Higuch, Ryo Yonetani, and Yoichi Sato. 2016. Can
Eye Help You?: Effects of Visualizing Eye Fixations on
Remote Collaboration Scenarios for Physical Tasks. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 5180–5190.

25. William C. Hill, James D. Hollan, Dave Wroblewski, and
Tim McCandless. 1992. Edit Wear and Read Wear. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’92). ACM, New
York, NY, USA, 3–9.

26. Jim Hollan and Scott Stornetta. 1992. Beyond Being
There. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’92). ACM,
New York, NY, USA, 119–125.

27. Patrick Jermann, Darren Gergle, Roman Bednarik, and
Susan Brennan. 2012. Duet 2012: Workshop on dual eye
tracking in CSCW. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work
Companion. ACM, 23–24.

28. Patrick Jermann and Marc-Antoine Nüssli. 2012. Effects
of sharing text selections on gaze cross-recurrence and
interaction quality in a pair programming task. In
Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work. ACM, 1125–1134.

29. Sasa Junuzovic, Prasun Dewan, and Yong Rui. 2007.
Read, write, and navigation awareness in realistic
multi-view collaborations. In International Conference
on Collaborative Computing: Networking, Applications
and Worksharing. IEEE, 494–503.

30. Robert E Kraut, Darren Gergle, and Susan R Fussell.
2002. The use of visual information in shared visual
spaces: Informing the development of virtual co-presence.
In Proceedings of the 2002 ACM conference on
Computer supported cooperative work. ACM, 31–40.

31. James C. McCroskey and Thomas A. McCain. 1974. The
measurement of interpersonal attraction. Speech
Monographs 41, 3 (1974), 261–266.

32. Ann McNamara, Reynold Bailey, and Cindy Grimm.
2009. Search task performance using subtle gaze
direction with the presence of distractions. ACM
Transactions on Applied Perception (TAP) 6, 3 (2009),
17.

33. Marc-Antoine Nüssli, Patrick Jermann, Mirweis Sangin,
and Pierre Dillenbourg. 2009. Collaboration and abstract
representations: towards predictive models based on raw
speech and eye-tracking data. In Proceedings of the 9th
international conference on Computer supported
collaborative learning-Volume 1. International Society of
the Learning Sciences, 78–82.

34. Jiazhi Ou, Lui Min Oh, Susan R Fussell, Tal Blum, and
Jie Yang. 2008. Predicting visual focus of attention from
intention in remote collaborative tasks. IEEE
Transactions on Multimedia 10, 6 (2008), 1034–1045.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6254

https://www.dicolab.com/products_teamplayer.html

35. Christopher Palmer and Bonita Sharif. 2016. Towards
Automating Fixation Correction for Source Code. In
Proceedings of the Ninth Biennial ACM Symposium on
Eye Tracking Research & Applications (ETRA ’16).
ACM, New York, NY, USA, 65–68.

36. Mauro C Pichiliani, Celso M Hirata, Fabricio S Soares,
and Carlos HQ Forster. 2008. Teleeye: An awareness
widget for providing the focus of attention in
collaborative editing systems. In International
Conference on Collaborative Computing: Networking,
Applications and Worksharing. Springer, 258–270.

37. Sami Pietinen, Roman Bednarik, Tatiana Glotova, Vesa
Tenhunen, and Markku Tukiainen. 2008. A method to
study visual attention aspects of collaboration:
eye-tracking pair programmers simultaneously. In
Proceedings of the 2008 symposium on Eye tracking
research & applications. ACM, 39–42.

38. Sami Pietinen, Roman Bednarik, and Markku Tukiainen.
2010. Shared visual attention in collaborative
programming: a descriptive analysis. In proceedings of
the 2010 ICSE workshop on cooperative and human
aspects of software engineering. ACM, 21–24.

39. Laura Plonka and Janet van der Linden. 2012. Why
developers don’t pair more often. In Proceedings of the
5th International Workshop on Co-operative and Human
Aspects of Software Engineering (CHASE ’12). IEEE
Press, Piscataway, NJ, USA, 123–125.

40. George Powell. 2016. Flappy Clone. (2016).
https://github.com/georgepowell/flappy_clone

41. Daniel C Richardson and Rick Dale. 2005. Looking to
understand: The coupling between speakers’ and
listeners’ eye movements and its relationship to discourse
comprehension. Cognitive science 29, 6 (2005),
1045–1060.

42. Daniel C Richardson, Rick Dale, and Natasha Z Kirkham.
2007. The art of conversation is coordination common

ground and the coupling of eye movements during
dialogue. Psychological science 18, 5 (2007), 407–413.

43. Stephan Salinger, Christopher Oezbek, Karl Beecher, and
Julia Schenk. 2010. Saros: An Eclipse Plug-in for
Distributed Party Programming. In Proceedings of the
2010 ICSE Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE ’10). ACM,
New York, NY, USA, 48–55.

44. Bertrand Schneider and Roy Pea. 2013. Real-time mutual
gaze perception enhances collaborative learning and
collaboration quality. International Journal of
Computer-Supported Collaborative Learning 8, 4 (2013),
375–397.

45. Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli,
and Pierre Dillenbourg. 2013. Understanding
collaborative program comprehension: Interlacing gaze
and dialogues. In Computer Supported Collaborative
Learning (CSCL 2013).

46. Alberto Sillitti, Giancarlo Succi, and Jelena Vlasenko.
2012. Understanding the Impact of Pair Programming on
Developers Attention: A Case Study on a Large
Industrial Experimentation. In Proceedings of the 34th
International Conference on Software Engineering (ICSE
’12). IEEE Press, Piscataway, NJ, USA, 1094–1101.

47. Randy Stein and Susan E Brennan. 2004. Another
person’s eye gaze as a cue in solving programming
problems. In Proceedings of the 6th international
conference on Multimodal interfaces. ACM, 9–15.

48. Josh Tenenberg, Wolff-Michael Roth, and David Socha.
2016. From I-Awareness to We-Awareness in CSCW.
Computer Supported Cooperative Work 25, 4-5 (Oct.
2016), 235–278.

49. Laurie A Williams and Robert R Kessler. 2000. All I
really need to know about pair programming I learned in
kindergarten. Commun. ACM 43, 5 (2000), 108–114.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6255

https://github.com/georgepowell/flappy_clone

	Introduction
	Related Work
	Survey
	Pilot Observations
	Gaze Visualization
	Design Process
	Gaze Visualization Design

	Study Method
	Participants
	Setup
	Tasks
	Video Analysis
	Gaze Analysis

	Results
	Timing
	References
	Acknowledged References
	Completion Time
	Post-Task Questionnaire
	Interview Results

	Discussion
	Threats to Validity

	Conclusion
	Acknowledgements
	References

