
Effecting Change: Coordination in Large-Scale Software
Development

Andrew Begel†
Microsoft Research
One Microsoft Way

Redmond, WA, USA
andrew.begel@microsoft.com

ABSTRACT
Large-scale software development requires coordination within and
between very large engineering teams, each of which may be lo-
cated in different locations and time zones. Numerous studies, and
indeed, a whole conference (ICGSE), are dedicated to discovering
the causes of problems with distributed development in the soft-
ware industry. Microsoft has long had product teams too large to be
considered co-located, even when sitting in neighboring buildings
on the same campus. Recently, it has been expanding its engineer-
ing workforce into India and China, and our research is showing
that Microsoft is encountering many of the coordination problems
that go along with differences of location, time zone, and culture.
As we go forward, our research has been changing from learning
about the problem to experimenting with solutions. What are the
best practices for improving coordination? Can they be applied to
all software teams? How does one move past simple readings of
research results towards effective intervention?

Categories and Subject Descriptors
K.6.3 [Software Management]: [Software process]

General Terms
Management

Keywords
Coordination, Distributed Development

1. INTRODUCTION
Coordination between software development teams is one of the

most difficult-to-improve aspects of software engineering. Kraut
and Streeter argue that the software industry has been in crisis mode

†This research was conducted in collaboration with Christopher
Poile from the University of Waterloo, Nachiappan Nagappan from
Microsoft Research, and Lucas Layman from North Carolina State
University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE’08, May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-039-5/08/05 ...$5.00.

for its entire existence, and a root cause is the difficulty in coordi-
nating work between teams of developers [8]. Many researchers
have studied professional software development teams empirically
to gain greater understanding of how software development pro-
cesses, tools, and people impact coordination [4, 10, 12]. The im-
portance of intra- and inter-team coordination is a foremost con-
cern as software development increasingly becomes globally dis-
tributed, and remains a persistent challenge in other disciplines as
well.

Microsoft is considered to be one of the largest software compa-
nies in the world. It employs tens of thousands of software engi-
neers who work on hundreds of interdependent products. Microsoft
is no stranger to coordination problems between product teams, but
only in the last few years has the magnitude and types of these
problems changed. Microsoft has been expanding its development
overseas, starting in Europe, and continuing in India and China.
Time zone and location differences are starting to play an increas-
ing role in shaping how product teams work on their software.

2. COORDINATION STUDY
To better understand the particular coordination problems faced

by distributed software teams, we conducted an interview-based
study of one product team at Microsoft. The team is 3 years old
and is made up of around 300 software engineers divided between
Redmond, WA, Boston MA, and Hyderabad, India. It is organized
into two main groups — one works on a customer-visible applica-
tion, and the other works on an internal platform library used by
the application team. The software product itself is composed of
loosely-coupled components, one created by the team in Boston,
and one by the team in Hyderabad. The other components are built
in Redmond, by teams from both groups working out of two neigh-
boring buildings.

We interviewed 26 members of the teams using questions that
were designed to record the work-related social network of each in-
terviewee, and elicit a list of helpful and unhelpful concrete events
that had occurred in the last several months of each relationship.
We classified each action into into four areas: communication, ca-
pacity, cooperation, and distribution.

The communications area concerned meetings (individual and
group), awareness, communications modalities, frequency and
quality. This is an example quote from one of our interviewees, “I
would appreciate a week-before update to know if they’ll make the
date, if they’ll be early or late, or where they are. Particularly for
example if you’re changing the API...We’ve had instances where
they’ve updated the API and they thought it shouldn’t impact any-
one, but they change it and something breaks.”

The capacity area covered the amount of work each engineer had

and their availability. An example quote from this area is “Not
that it’s bad, but the one thing that could have gone better, and he
acknowledges this – I’ve talked to him before – he doesn’t answer
email as much as I like. If I have questions I’ll have to ping him a
couple of times to get an answer.”

Cooperation covered dependency management, division of labor,
and willingness to help. “I know they have other priorities in their
job. If they tell me they can’t give time now, I kind of respect them.
And if they say, yes I have done code profiling before, I know how
this code profiler works, but I will give you time tomorrow. So I’m
like, why don’t you take your 15 minutes right now and save me an
entire day?”

Location and time zone issues made up the distribution area.
“We miss out on a lot of those water cooler conversations – we just
can’t stick our head in people’s offices, so what we end up doing is
sending an email and the turnaround is so long for that.”1

Combined, the four areas mark out a space to measure good and
bad qualities of coordination. Summarizing the results, we found
that many of the issues mentioned by different team members were
highly asymmetric. That is, analyzing the relationship between the
two groups, the issues that one group perceived as harming inter-
group coordination were not the same issues that the other group
felt were important. Interactions related to capacity and coopera-
tion were cited frequently by all team members as having a posi-
tive impact on overall coordination. The remote teams, Boston and
Hyderabad, were negatively impacted by location, meetings, and
email problems. The team in Hyderabad reported additional prob-
lems caused by cultural differences between them and Redmond.
The Boston team reported additional problems with miscommuni-
cation between them and Redmond.

The issues that negatively affected coordination between the
platform library and applications teams in Redmond focused on
poor communication about awareness, status, and changes. Fur-
thermore, the platform group felt additional problems with low
visibility to the application group and thought that the application
group often neglected to follow up on work tasks. The application
group was significantly impacted by location problems, division of
labor, availability, and prioritization, all stemming from its relation-
ship with the platform library group.

3. TREATMENTS
Once the study surveying the product team’s problems was fin-

ished, we encountered a problem of our own. What was the most
effective way to improve coordination between troubled software
development teams? We had a list of problems and data that
demonstrated correlations between various helpful and unhelpful
actions and people’s feelings about those actions. We found po-
tential ideas for solutions from the literature, from surveys we con-
ducted to find best practices (or at least attempted to find best prac-
tices) at Microsoft [1], and even invented a few on our own.

In this section, we describe the situations that caused the most
significant coordination problems, list a bevy of solutions that we
proposed to our studied software team in several meetings with the
team’s management, and paraphrase their less than enthusiastic re-
sponse to our ideas. We are not saying that the team was unwilling
to let us help them, more that our solutions, however compelling in
their simplicity, lack pragmatic applicability to the real-life condi-
tions in which product teams find themselves.

1While the example comments above are all negative, there were
many positive comments.

3.1 Location
Location Problems Many informal meetings happen in hallways.

Status is communicated, ownership is negotiated, and decisions are
made in these hallway meetings. Teams whose members are not in
the same buildings do not participate in hallway meetings, which
puts them at a disadvantage.

Location Solutions Try not to make decisions in the hallways.
Send status updates electronically. Make sure that those affected
by the decisions feel like they have a chance to participate in the
process, even if they were not there.

These solutions are difficult for product teams to accept. It is
very convenient to convene a set of people in a hallway in order to
bring everyone up-to-date and make decisions. This is perceived
by each individual to be true whether the team is made up of five
people or five hundred people. Should hallway meetings be min-
imized? The practice is part of baseline human nature and not so
easily curtailed.

Sending status electronically means that someone has to summa-
rize a conversation, whether it be informal (e.g. in the hallway), or
formal (at a pre-announced time and place). In a formal meeting, a
scribe can take notes but then has to post them. Sometimes, if he
is a lead, he stores them on his own computer. Sometimes, he will
email them out to the meeting participants. Sometimes, the meet-
ing notes will get posted to a public share where they can be viewed
even by people who did not attend the meeting. Intuitively, it ap-
pears that posting the notes to a share ought to be the right solution
for working with distributed teams, but it turns out to not always
apply. Some parts of the meeting can be sensitive, and while it is
fine for the people who were at the meeting to read the notes, those
parts may not be fit for more general distribution. It feels like a lot
of extra work to filter parts of meeting notes (often just a Word or
Excel document) to ensure visibility by a select set of people.

How can we make a team member who is not present at a deci-
sion feel like they are part of the process? This turns out to be quite
difficult. The general impression of team members not co-located
with the main body of engineers is that many discussions happen
without them and many decisions that affect them are made with-
out their input. Again, this is an expediency issue. While some
decisions are monumental enough to require all of the team’s man-
agement to sign off on them, most are small, everyday decisions
which are mostly easily conducted on-the-fly, in person. To ask
people to catch themselves whenever they are making a decision
that affects someone who is not in the room is quite challenging
and difficult to monitor.

3.2 Time Zone
Time Zone Problems Many informal meetings happen in hall-

ways while team members in Hyderabad are 7,782 miles away,
and asleep. Many formal meetings happen in the afternoons, when
the other half of the team should be asleep. Often, the team in
Hyderabad will wake up at 2:30am to participate in a conference
call to Redmond. This can lead to a strong sense that distributed
teams feel remote in all senses of the word. Turnaround time for
electronic communication increases overhead by two or three times
compared with communication with someone in a compatible time
zone (Boston is for most of the day compatible with Redmond). A
problem most easily solved by face to face or phone communica-
tion can drag on without resolution due to the inability to commu-
nicate synchronously.

Time Zone Solutions Get rid of distributed teams. If you must
work with remote teams, encourage people on the team visit the
other locations to meet people face to face. Create a buddy system
— pair a Redmond person with a Boston or Hyderabad person to li-

aise with and keep each other informed. Encourage more work/life
sacrifices from Redmond, e.g. hold meetings early in the morning
or late at night to accommodate non-USA schedules.

Working together would be much simpler if the entire team fit
into one room. Amazon has a notion that a team cannot be larger
than what can be fed by two pizzas. We presume that means they
are co-located in Seattle, Washington. Unfortunately, development
talent is scarce in the USA, requiring companies to look to other
countries for additional help. Additionally, the USA is surrounded
by two large oceans on either side, making the American workday
schedule impossible to sync up with Europe and Asia.

Creating an exchange program for engineers to visit the other
distributed sites is an idea that has been tried with great success.
Here is a quote from one of our interviews: “We’ve had some key
leads from Redmond not just visit here, but work here out of India
for two weeks. Once anybody goes through that experience, they
will never forget India.”

Not only does empathy with the other location and time zone
increase, but visiting for longer periods of time creates a personal
connection between two remote team members. This connection
results in faster turnaround time on emails compared with someone
you do not know and leads to an obvious buddy for a buddy system.
Visiting for long periods of time is not a scalable solution, however,
due to travel costs and family costs. Many people who work at
Microsoft are married with children and cannot easily leave their
families for a month at a time just to improve relations with team
members. Family tension can also result when team members have
to wake up at odd hours of the night to meet synchronously with
remote teammates.

3.3 Status
Status Problems Waiting for dependent teams to inform you of

status causes anxiety. There is often too little communication from
the person doing a task to the requester of that task. People find it
challenging to keep track of all the things they have to do for others,
as well as the things they have asked others to do for them. Expec-
tations of speed, service, and reliability are often uncommunicated,
leading to misunderstandings and conflict.

Status Solutions Hold frequent, regularly scheduled status meet-
ings with your dependencies, face to face, if possible. Post status
updates online so that everyone can monitor progress. Align your
team’s priorities and schedules with your dependencies. Tell de-
pendents what place they hold in your priority queue. If another
team has you too low down in their priority queue, drop them as a
dependency and find another team to fulfill your needs.

When asked during our study, most interviewees reported de-
pending on around 10 people. Most said they sent emails to request
tasks to be done, and they check up on that work by sending email.
Face to face status updates occurred most often when both people
worked in the same building, on the same floor, in the same hall-
way. If they were in different buildings, the chance of a face to face
meeting dropped by half. If dependencies do not overlap in work-
day hours, turnaround time for status updates often exceeds one
and a half workdays. Requiring each team member and his many
dependencies to schedule meetings to discuss status would easily
cause meeting gridlock. Engineers all report they have too many
meetings to go to already, which they feel prevents them from get-
ting their real work done.2 Most status updates are ad hoc as well,
making it tedious to formalize and post online, for example, in a
bug tracking system.

Team members we spoke to all agreed that aligning the product
2Self-esteem and self-worth issues aside, coordination overhead is
often not perceived as contributing to task completion.

schedule with one’s dependencies can resolve many of the version
mismatch problems with concurrently developed software, espe-
cially when dependent libraries might be updated midway through
a product cycle. If every product was in sync, everyone’s highest
priority bugs could get resolved in all of the products before ship-
ping. However, it is untenable to ask even dozens of products in a
company to all ship at the same time. Like a clocked processor, all
teams would work at the pace of the slowest, most complex prod-
uct. In addition, not every team will agree to work in sync, due to
independent business motivations.

All product team members want to help out their customers, es-
pecially internal customers. They often do not say no when a re-
quest to fix a bug or add a feature comes in. However, they have
their own priorities that are not the same as their dependents, and
the priority of an external bug or feature can easily be dropped.
Without constant vigilance and protest by dependents, their re-
quests could easily never be satisfied. Without attending the other
team’s meetings, changes in priority for a work item are always
surprising. The lack of transparency of one group’s processes to an
outsider easily leads to anxiety. Teams do not tell others explicitly
where they stand in the priority queue, leading to organizational
anxiety as well.

4. WHERE ARE THE REAL ANSWERS?
It is obvious that there are no simple answers to coordination

problems, even when the problems appear to have simple solutions.
Even simple actions can cause unexpected results in complex sys-
tems. They can interact badly with individual and group behaviors,
especially when those behaviors are part of one’s human nature
or pre-existing, non-work culture. In addition, the lack of trans-
parency in work processes is leading to anxiety, and an inability to
act rationally with full information.

Perhaps the study of coordination should follow a similar path
as the study of economics. Originally, researchers assumed that all
players were independent, rational beings who acted with complete
information. Over time, their theories accounted for groups of in-
dividuals (firms) who sometimes behaved irrationally (swayed by
emotion) and without complete information (poor communication,
hidden processes, and people who manipulate others for their own
ends). The attributes considered by these more modern theories
likely underlie organization behavior and coordination as well.

Is it possible to create a set of treatments for coordination prob-
lems that are independent of the software team that needs them?
From experience, we know the teams appreciate seeing data that
validates their intuitions about the issues they face, and certainly
want to see that data before listening to any researcher who claims
to have the answers. We wonder if the researchers who have de-
veloped software tools to promote awareness [2, 3, 5, 6, 11, 13], or
connect remote people together [7,9] have reports on the effective-
ness of these tools in software teams that were not part of their
requirement studies. How would such an intervention be proposed,
carried out, measured, monitored, and evaluated?

I am looking forward to this workshop because of the opportu-
nity to speak with other researchers who consider treatment of co-
ordination problems as important as discovering their causes. Per-
haps with a little training in psychotherapy, group therapy, and or-
ganizational behavior, we could better guide our software team pa-
tients to adapt our solutions in ways that most effectively address
their needs.

5. REFERENCES
[1] Andrew Begel and Nachiappan Nagappan. Global software

development: Who does it? In submission.
[2] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and

George G. Robertson. Fastdash: a visual dashboard for
fostering awareness in software teams. In Proceedings of
CHI, pages 1313–1322, San Jose, CA, 2007. ACM Press.

[3] Christine A. Halverson, Jason B. Ellis, Catalina Danis, and
Wendy A. Kellogg. Designing task visualizations to support
the coordination of work in software development. In
Proceedings of CSCW, pages 39–48, Banff, Alberta, Canada,
2006. ACM Press.

[4] James D. Herbsleb and Audris Mockus. Formulation and
preliminary test of an empirical theory of coordination in
software engineering. In Proceedings of ESE, pages
138–137, Helsinki, Finland, 2003. ACM Press.

[5] Susanne Hupfer, Li-Te Cheng, Steven Ross, and John
Patterson. Introducing collaboration into an application
development environment. In Proceedings of CSCW, pages
21–24, Chicago, IL, 2004. ACM Press.

[6] Ellen A. Isaacs, John C. Tang, and Trevor Morris. Piazza: a
desktop environment supporting impromptu and planned
interactions. In Proceedings of CSCW, pages 315–324,
Boston, MA, 1996. ACM Press.

[7] Phillip Jeffrey. Forum contact space: serendipity in the
workplace. In CHI extended abstracts, pages 331–332, The
Hague, The Netherlands, 2000. ACM Press.

[8] Robert E. Kraut and Lynn A. Streeter. Coordination in
software development. Communications of the ACM,
38(3):69–81, 1995.

[9] Audris Mockus and James D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of ICSE, pages 503–512, Orlando, FL, 2002.
ACM Press.

[10] Robert J. Sandusky and Les Gasser. Negotiation and the
coordination of information and activity in distributed
software problem management. In Proceedings of GROUP,
pages 187–196, Sanibel Island, FL, 2005. ACM Press.

[11] Anita Sarma, Zahra Noroozi, and André van der Hoek.
Palantír: raising awareness among configuration
management workspaces. In Proceedings of ICSE, pages
444–454, Portland, Oregon, 2003. IEEE Computer Society.

[12] Carolyn B. Seaman and Victor R. Basili. An empirical study
of communication in code inspections. In Proceedings of
ICSE, pages 96–106, Boston, MA, 1997. ACM Press.

[13] Erik Trainer, Stephen Quirk, Cleidson de Souza, and David
Redmiles. Bridging the gap between technical and social
dependencies with ariadne. In Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange, pages
26–30, San Diego, California, 2005. ACM Press.

