
Deep Intellisense: A Tool for Rehydrating Evaporated
Information

Reid Holmes†

Laboratory for Software Modification Research
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

rtholmes@cpsc.ucalgary.ca

Andrew Begel
Microsoft Research
One Microsoft Way

Redmond, WA, USA
andrew.begel@microsoft.com

ABSTRACT
Software engineers working in large teams on large, long-lived
code-bases have trouble understanding why the source code looks
the way does. Often, they answer their questions by looking at past
revisions of the source code, bug reports, code checkins, mailing
list messages, and other documentation. This process of inquiry
can be quite inefficient, especially when the answers they seek are
located in isolated repositories accessed by multiple independent
investigation tools. Prior mining approaches have focused on link-
ing various data repositories together; in this paper we investigate
techniques for displaying information extracted from the reposi-
tories in a way that helps developers to build a cohesive mental
model of the rationale behind the code. After interviewing several
developers and testers about how they investigate source code, we
created a Visual Studio plugin called Deep Intellisense that sum-
marizes and displays historical information about source code. We
designed Deep Intellisense to address many of the hurdles engi-
neers face with their current techniques, and help them spend less
time gathering information and more time getting their work done.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: [User-centered design]; D.2.6
[Programming Environments]: [Integrated environments]

Keywords
Code Investigation, Mining Repositories

General Terms
Human Factors

1. INTRODUCTION
Studies of software developers’ information needs [3, 8] have

shown that their most common question is “why?” Why is this

†This research was conducted while the first author was an intern
at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

piece of code behaving this way? Why was it written this way?
The answers can be found in source code, development specs, bug
reports, checkin messages and email archives. When developers
search through these repositories, they must find the snippets of
information they are hunting for and then correlate them by infer-
ring relationships between them. For example, a checkin message
might mention a bug that is resolved, or a development spec might
mention method names found in source code. Often, these links
are implicit — references to code are embedded in the text of bug
reproduction steps, in emails on a mailing list, or in source code
owned by the developer who made the most recent checkin.

Usually, correlating this information is difficult. Documentation-
based sources (e.g. specifications) are not well-trusted [9]; histori-
cal information (e.g. checkin messages) contains scant details; and
narrative information (e.g. bug reports and emails) is inadequately
tagged with metadata linking it to the source code in question. The
overhead in manually correlating information across the reposito-
ries often causes developers to abandon their own investigation and
ask their colleagues for help [1–5, 7, 8]. One could say that the
information has evaporated. In response to these developer prob-
lems, developers can use software repository data mining tools to
help infer links between related development artifacts [6, 10, 11].
We use one of these (Bridge [11]) in our work to provide the data
for the focus of this paper, a code investigation user interface.

To determine how to effectively display code rationale informa-
tion, we undertook a user-centered investigation and interviewed
industrial developers and testers to gain insight into how they per-
form source code investigation tasks. What data sources do they
use? What facts are useful to their investigation? How do they lo-
cate information? During this interview process we talked to 3 de-
velopers and 2 testers with varying levels of industrial experience.
Based on what we learned, we designed a new tool called Deep In-
tellisense that automatically presents information about related de-
velopment artifacts for selected source code entities in a way that
promotes a cohesive understanding of the events that caused the
code to reach its current state. We validated several low-fidelity
mockups of Deep Intellisense with developers and testers to gain
concrete guidance on what information they wanted to see, how it
should be displayed, and how they wanted to interact with it.

2. INTERVIEWS WITH ENGINEERS
Developers and testers use tools to explore source code reposito-

ries and bug databases, but often face the problem that the answers
they seek are too difficult to find or construct from available ma-
terials. We interviewed engineers at Microsoft to understand how
information evaporation affects them today.

Role Daily Tasks
Hotfix tester Is given a bug and a diff by a developer, as such he knows exactly what was changed and who to talk to.
Performance tester Investigates a lot of code to figure out where to put performance tracing markers.
Developer lead Spends 70% of his time looking at code written by other developers. Lots of SCM command-line work.
New Developer 50% of time is reading code. Lots of bug database searching, works hard to find the diffs associated with a bug.
Feature Developer Mostly new team working on an older product. Specifics of changes are not interesting, but knowing there has been a change is.

Table 1: Roles of developers and testers we interviewed.

2.1 Methodology
We interviewed three developers and two testers who worked on

Microsoft Windows, Office and Silverlight in semi-structured 60
minute interviews to elicit from them how they perform daily code
investigation tasks (Section 2.2). We first asked them about their
typical daily work tasks that involved programming, debugging, or
testing. We then asked them to describe and demonstrate the spe-
cific tools and techniques that they used to perform these tasks.
Table 1 describes the roles and daily tasks of the engineers we in-
terviewed. In the second half of the interview, we showed them a
series of low-fidelity paper mockups we had created for Deep In-
tellisense (Section 2.4). The two testers were given Mockups #1
and #2 (shown in Figure 1). Based on their feedback and what
we learned about their work practices, we created a tester-oriented
Mockup #3 (Figure 1) and showed it to all of the developers. A
final mockup (#4) was created from the feedback we learned at the
first developer interview, and was shown to the last two develop-
ers. (This mockup closely resembles the final Deep Intellisense
interface, so we omit it from the paper for lack of space.) We in-
terviewed each engineer only once. While the subjects commented
on all aspects of each mockup, pointing out their likes and dislikes,
the developers preferred the later mockups that had incorporated
feedback from our earlier interviews. These mockups seemed to
embody a blend of ideas that they found appealing, making them
more excited to discuss its details.

2.2 Tools and Techniques
Our developers and testers employed a variety of tools and tech-

niques to conduct code investigations. They had several tools in
common: everyone used the Visual Studio IDE, a bug tracking sys-
tem, an SCM system, and the Outlook email client. Several of our
interviewees used a bug tracker on-screen “widget” that enumer-
ated their open and assigned issues without having to query the
bug tracker, and showed them a detailed view when an issue was
selected. In concert with Visual Studio, a few developers used an
alternative IDE which they used for searching through source code.
Developers would regularly switch back and forth between Visual
Studio and this alternative depending on their task. All of the in-
terviewees usually accessed their SCM systems via the command
line. They would issue SCM commands in series until they found a
check-in they were looking for; they would then launch a graphical
diff viewer. Sometimes, they would try to search for a change in
the bug tracking system using the time, comments and author of
the checkin as search keywords. Other times, this work flow was
reversed — the developer or tester would start with a bug and work
their way to the code change associated with a fixed bug.

Overall, we noticed that our interviewees frequently switched
between different IDEs and tools to get their jobs done — none
used any single tool for their entire job. The more experienced
developers and testers always knew which tool held the information
they sought, but would still have to switch between them to build a
cohesive mental model.

2.3 Information Needs
During our interviews, several common information needs emerged

between the developers and testers:
• “What happened most recently?” Both developers and

testers wanted to consider the information available to them
in reverse-chronological order. They felt that more recent
artifacts were more likely to be relevant to their task.

• “Who should I contact about this?” After looking through
bug and change history, if the developer decided to follow
up with someone from an external team, it was important to
identify the correct contact person. Who they talked to de-
pended on the type of information they wanted — for exam-
ple, it could be the person who closed the most recent bug,
or created the original spec for the code.

• “How can I filter the information available to me?” Both
developers and testers have an overabundance of accessible
data. They wanted to initially filter to locate information that
was relevant to the code they were investigating, and then
filter further to find information that was relevant to the spe-
cific issue they were considering. Providing a flexible way to
access the information they required was very important.

Two kinds of information were of specific interest to both groups:
• Inferred links. Bugs, checkins, emails, and documents each

satisfied specific information needs for our participants; how-
ever, they rarely provided all of the information they sought.
The inferred relationships between these elements were cru-
cial for gaining the understanding they required to satisfy
their investigation.

• Scoped information. Developers and testers infrequently
looked for information at the file-level; they were more in-
terested in locating artifacts related to specific source code
locations (methods, fields, etc.).

Two kinds of information were not interesting to either group:
• Burstiness. There was little interest in the density of changes.

For example, the fact that there might have been four check-
ins in two days, and then nothing until two months later was
not interesting to any of the five developers or testers.

• Relationship to product schedule. While the strict ordering
of events (this check-in before that one, or this bug opened
before that check-in was made) was interesting, how these
events related to the product schedule (e.g., was this check-
in before milestone three?) was not interesting.

We also found that developers and testers had specific needs.
Developers. Developers frequently investigate large amounts
source code they did not write themselves. They often try to in-
fer how a bug relates to a checkin (or vice versa). By relating a bug
to a checkin, the developer can see both what was changed (from
the diff in the checkin) and learn why it was changed (by looking
at the rationale in the associated bug). This inferred link helps the
developer better understand the how and why the code changed.
Testers. Testers work on tasks for specific developers. They are
often assigned a bug and given a diff of the fixed source code by
a specific developer. The developer is the explicit point of contact

Paper Mockup #1
Details: Bugs and checkins are kept in separate panels in this mock-up, as
this maps to how developers access these artifacts with their current tools.
Only the two most recent bugs or check-ins are listed with one-click access
to the full list. The people pane is populated by enumerating each person
involved with the artifacts in the index.

Pros: “I like the concept of a people pane.” “The abbreviated bits of
information given for a checkin (change list #, person, time, and short de-
scription) seem right.”

Cons: About splitting up bugs / check-ins — “Why can I only see 2 bugs
or check-ins? I don’t want to click to see more, they should just be there.”
“The additional information on the people pane is not the information I
need.”

Paper Mockup #2
Details: This mock-up explores the concept of ‘burstiness’ and introduces
the event list. The vertical bar provides a visualization of the time the code
element has existed; the horizontal lines represent events (bugs opening and
closing, checkins, etc.). Clicking on a line in the visualization would scroll
the event list to reveal additional details.

Pros: “The event list looks great!” “Integration of the different kinds of
events into one list works well.” “The badge information in the people pane
(aka, why am I listed here) is useful.”

Cons: “The temporal visualization is not interesting.” “The details view
takes up too much space.”

Paper Mockup #3
Details: This mockup resulted from our consultation with the testers. It
tried to provide more information about the bugs they were looking at. If
they wanted more detail, they could click on an item to populate the lower
pane with a detailed view.

Pros: “I like having the position and dept. info on the people pane.” Cons: “I don’t like the concept of the details pane; just take me to [our bug
database], that’s what I’m used to.”

Figure 1: The three low-fidelity paper mockups of the Deep Intellisense user interface.

for any questions. At the same time, testers are still interested in
seeing if the bug they are testing, or the associated code that fixes
it, is related to any other bugs and checkins.

2.4 User Interface Mockup Evaluation
After interviewing each engineer about their work practice, we

showed them a series of paper mockups of Deep Intellisense. The
intent of this exercise was to focus our development effort on pro-
viding information that is relevant to developers and testers, in a
format that is usable to them as they undertake their daily activ-
ities. The feedback we received on our mockups gave us insight
into how the developers and testers would like to see code investi-
gation information displayed to them. For our tool to be successful
for our users, two characteristics of the user interface were going to
be very important:

• Flexibility of interaction. The developers and testers knew
what they were looking for. Their intuition drove them to-
wards particular dates, artifacts, and keywords. Providing
the ability to quickly filter the huge volume of information
available to them down to those elements that they thought
were most relevant should be a primary feature.

• Interleaved event history. Developers search for bugs, check-
ins, source code, and other artifacts using different tools.
This makes it difficult to temporally compare each result set
— the tools force them to think of each artifact set separately;
however, this is not how they think of these artifacts. Our
prototype user interface interleaves the artifacts by date to
make as cohesive a presentation as possible.

3. DEEP INTELLISENSE
Deep Intellisense is a set of three views integrated into the Vi-

sual Studio IDE. It uses an implicit query interaction model, mean-
ing that it automatically updates its view based on the source code
element that is under the developer’s cursor. Information is given
for the most specific element under the cursor; for example, if the
developer has clicked on a method call the view updates with in-
formation that is relevant only to the method being called. This
specificity is significant as many tools operate at the file-level rather
than the specific program element level; this enables developers to
significantly focus their investigation using Deep Intellisense com-
pared to file-level tools.

An overview screen shot of Deep Intellisense is given in Fig-
ure 2. The three views were chosen to provide all of the salient
information about a source code element without requiring the en-
gineer to query, type, or click anything. The views can be arranged
in any manner the developer likes; this screen shot demonstrates
the default horizontal orientation.

3.1 Views
Current item view. This view gives the developer a quick at-a-
glance overview of the structural element currently under their cur-
sor. The developer can see the fully-qualified name of the current
item as well as an overview of the artifacts relevant to this item.
The dates show when the item was first created as well as when it
was last edited.
People view. People are associated with events solely as attributes
on events; e.g. a person sends an email, files a bug, or submits a
checkin. Deep Intellisense considers people as first-class entities;

Figure 2: Deep Intellisense

the tool enumerates all of the people involved with the current item
and adds them to a list. During our interviews we found that engi-
neers were most interested in knowing the title and department of
the people involved, along with their email alias and an explana-
tion of their relationship to the current item. We include thumbs up
and thumbs down buttons to filter out people (and their associated
events) who are not relevant to a particular code investigation.
Event history view. This view is the heart of Deep Intellisense; it
provides quick access to all of the relevant events (such as checkins,
modifications to bugs, and emails) to the current item. The events
are displayed in a simple, interleaved, initially chronologically-
ordered list. The list can be sorted according to date, person, event
kind, and if relevant, the number of files affected by the event. A
text filter has also been included to allow the list to be interactively
pared down. Clicking on any bugs, checkins, emails, web pages,
or documents in this view opens up their respective native viewer
to the correct artifact; this was specifically requested when we pre-
sented our mockups.

3.2 Mining backend
Deep Intellisense surfaces data found in isolated repositories uti-

lized by software development teams. These data sources include
source code, SCM repositories, bug report, feature request and
work item databases, and emails sent to mailing lists. Each data
source is mined for descriptive information, as well as links that
can be made to other data items.

The Bridge [11] is the primary source of mined data for Deep
Intellisense. The Bridge is a graph constructed by a series of data
source crawlers, each of which is specialized for a particular kind
of data. The SCM repository crawler indexes every change made
to the source code. At Microsoft, bug reports, feature requests and
work items are contained in a common database that we crawl in
chronological order — all text found within is inserted into nodes
in the Bridge graph. A series of regular expressions are run over
the text in each node to look for plain-text allusions to other graph
nodes. For example, the crawler would scan an email message that
contains the text, "Last night I fixed bug 4567 by incrementing the
counter at the end of the Account.Add method," and produce links
between the graph node for bug 4567 and for any graph node la-
belled by the class Account and method Add.

We have built databases for seven months of Windows Vista de-
velopment (4.7 million nodes, 9.6 million edges, 19% of which
were derived from textual allusions), and for our own source code
base (375,000 nodes, 830,000 edges, 53% of which were derived
from textual allusions).

4. CONCLUSION
While developers have an abundance of historical artifacts avail-

able to them that are related to the source code they are investi-
gating, finding the right ones and creating a cohesive view from

them can be difficult using the disparate tools available to search
and locate them. We created the Deep Intellisense tool to present
information from various data repositories in a more effective way
for developers. In developing Deep Intellisense we talked to sev-
eral developers and testers, as well as referred to recent research
that engaged a very diverse development community. We found
that developers and testers employ a variety of techniques to de-
termine how and why source code changes. We developed Deep
Intellisense to automatically provide these developers and testers
with context-sensitive code history within the Visual Studio IDE
to conduct their code investigations. Deep Intellisense provides an
interface that can surface links between normally disconnected arti-
facts such as bugs, emails, checkins, and specs. By rendering these
historical artifacts in an integrated manner, Deep Intellisense aims
to help developers better understand the history of the source code.
We plan to evaluate our hypotheses about Deep Intellisense with a
trial deployment to several industrial software development teams.

5. REFERENCES
[1] B. Curtis, H. Krasner, and N. Iscoe. A field study of the

software design process for large systems. CACM,
31(11):1268–1287, 1988.

[2] J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In
Proceedings of ICSE, pages 85–95, 1999.

[3] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proceedings of
ICSE, pages 344–353, 2007.

[4] R. E. Kraut and L. A. Streeter. Coordination in software
development. CACM, 38(3):69–81, 1995.

[5] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
Proceedings of ICSE, pages 492–501, 2006.

[6] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM TOSEM, 11(3):309–346, 2002.

[7] D. E. Perry, N. Staudenmayer, and L. G. Votta. People,
organizations, and process improvement. IEEE Software,
11(4):36–45, 1994.

[8] J. Sillito, G. C. Murphy, and K. De Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of FSE, pages 23–34, 2006.

[9] J. Singer. Practices of software maintenance. In Proceedings
of ICSM, pages 139–145, 1998.

[10] D. Čubranić and G. C. Murphy. Hipikat: recommending
pertinent software development artifacts. In Proceedings of
ICSE, pages 408–418, 2003.

[11] G. Venolia. Textual alusions to artifacts in software-related
repositories. In Proceedings of MSR, pages 151–154, 2006.

