
Coordination in Large-Scale Software Teams

Andrew Begel, Nachiappan Nagappan
Microsoft Research

Redmond, WA, USA
andrew.begel@microsoft.com, nachin@microsoft.com

Christopher Poile
Edwards School of Business
University of Saskatchewan

Saskatoon, SK, Canada
poile@edwards.usask.ca

Lucas Layman
National Research Council

Ottawa, ON, Canada
lucas.layman@nrc.gc.ca

Abstract

Large-scale software development requires coordination
within and between very large engineering teams which
may be located in different buildings, on different company
campuses, and in different time zones. From a survey an-
swered by 775 Microsoft software engineers, we learned
how work was coordinated within and between teams and
how engineers felt about their success at these tasks. The
respondents revealed that the most common objects of co-
ordination are schedules and features, not code or inter-
faces, and that more communication and personal contact
worked better to make interactions between teams go more
smoothly.

1. Introduction

Coordination between software development teams is
one of the most difficult-to-improve aspects of software en-
gineering. Kraut and Streeter argue that the software indus-
try has been in crisis mode for its entire existence, and a
root cause is the difficulty in coordinating work between
teams of developers [9]. Researchers have studied pro-
fessional software development teams empirically to gain
greater understanding of how software development pro-
cesses, tools, and people impact coordination. The im-
portance of intra- and inter-team coordination is a fore-
most concern as software development increasingly be-
comes globally distributed, and remains a persistent chal-
lenge in other disciplines as well.

To understand inter- and intra-team dependencies in
large-scale software development, we conducted a web-
based survey of 775 Microsoft developers, testers and pro-

gram managers. We asked engineers how they coordinate
tasks with teams they depend on and with teams that depend
on them, and how they communicate with their dependen-
cies when things go wrong. We then asked how develop-
ers feel about working with dependent teams to understand
where they would like to see improvement. We described
some aspects of this research in prior work [1].

We find that it is important to consider the different roles
that people play on their teams when coordinating with oth-
ers. Processes and tools intended for software developers
may not be appropriate for program managers. The two
job roles “live” in different applications in their daily work;
tools intended for one role’s applications just may not be
used by the other. In addition, intra-team and inter-team co-
ordination communication modes are very different. It may
be easy to pay a personal visit to a team member who likely
sits on the same floor as you, but much more difficult and
socially awkward to visit a collaborator from another team,
especially when that collaborator is not a friend. We also
find that the overhead of communication and maintaining
relationships between individuals who coordinate on dif-
ferent teams is high, but necessary to getting work done
successfully. Many respondents to our survey wished they
could get more information and action about their depen-
dencies with less active communication requirements. Even
though coordination is difficult, we find that even in a cross-
section of one of largest software companies in the world,
almost all engineers are required to coordinate with others
to get their work done.

2. Survey Design

The research was conducted using an anonymous web-
based survey offered over a period of two weeks in Au-

0% 10% 20% 30% 40% 50% 60% 70% 80%

Other

Status

Prioritization of work items

Code

Documentation

Bugs

APIs

Features

Release schedule

Depend on from other teams Other teams depend on this

Figure 1. What engineers depend on from
other teams, and what other teams depend
on from them.

gust 2007 inside the Microsoft Corporation. An invitation
was sent by email to 2,535 developers, testers, program
managers (PMs), architects and user experience engineers,
consisting of a 10% random sample of employees in each
job role. At Microsoft, program managers gather customer
requirements, write design specifications, and manage the
project schedule. Developers turn design specifications into
implementation specifications, and write the code. Testers
turn design specifications into testing specifications, write
test harnesses, and conduct black box testing. Architects
do long-range and product-wide planning, and user experi-
ence engineers design user interfaces and conduct usability
studies. Respondents were offered a chance to win a single
$250 gift certificate as incentive for completing the survey.

The survey questions were divided into three sections:
demographics, details about how coordination occurs in
one’s team, and perceptions of how well coordination was
practiced within one’s team and its dependencies. A Likert
scale of “All of the time, Frequently, Occasionally, Rarely,
Almost Never, N/A” was used. All of the survey questions
reported on in this paper can be found in Appendix A.

3. Data and Results

We received 820 responses, of which 45 were invalid (we
removed duplicate and empty surveys), for an overall re-
sponse rate of 30.6% (775 / 2,535). In our sample of 775 re-
spondents, 39.2% are developers, 33.6% are testers, 20.3%
are program managers, and the rest (6.9%) have other job
roles. 76.5% of respondents were individual contributors;
the rest (23.5%) were leads or managers. Respondents had
an average of 9.6 years (SD: 6.3) of experience as soft-
ware engineers, and spent 5.0 years (SD: 4.1) working at
Microsoft.

We asked developers how they depended on other teams
and how they coped when dependencies went awry. The

first question asked survey recipients what artifacts they
depended on from other teams, and what artifacts other
teams depended on from them. The responses are shown
in Figure 1. The respondents report 72% depend on an-
other team’s release schedule and 71% depend on the fea-
tures of another team’s product. At a slightly lesser level are
APIs (62%), bugs (62%), documentation (61%) and code
(58%). Prioritization of work items and status are around
50%. When considering what other teams depend on from
them, however, status becomes the most frequent, rising to
62%, leaving features (57%), bugs (55%), release sched-
ules (55%) and documentation (52%) less frequent. Less
than half of the respondents say that other teams depend on
their code (46%), prioritization of their work items (45%)
or their APIs (38%).

When asked how they kept track of the work items they
depended on from other teams (shown in Figure 2) most
respondents (69% overall) reported using email. 61% use a
work item database and 56% talk about them at status meet-
ings. After that there is a large drop to keeping track of de-
pendencies in your head (38%) followed by using Outlook
tasks (30%), Sharepoint websites (29%), using a point per-
son in charge of keeping track of dependencies (27%) and
Excel spreadsheets (26%). Keeping a list on paper, text ed-
itor or personal whiteboard follows. Note that only 16% of
people keep track of work items outside their team by read-
ing the source code checkin messages, and very few (2%)
keep track of their work items on a public whiteboard.

Notice, too, that program managers (PMs) use a greater
diversity of tools to keep track of dependencies, almost
10% greater in many tools than developers and testers. The
biggest disparities are that PMs use Sharepoint websites
twice as much as developers, and use Excel spreadsheets
three times as much as developers. Developers use source
code checkin messages 60% more often than PMs or testers.

Also illuminating are the ways to how engineers com-
municate to unblock themselves from a critical dependency
(shown in Figure 4). When the dependency is within their
team, almost all (89% and 88%) respondents said they
would send an email and pay a personal visit to the per-
son blocking their work. Instant messages and phone calls
came in a distant second place (55% and 54%), followed by
a setting up a one-time meeting (45%), escalation to their
manager (38%), and communicating via work item database
(38%). When the dependency is outside their team, almost
all still use email (89%) to communicate, but paying a per-
sonal visit drops to 48%. Instead, people use the phone
(59%), escalation to a manager (52%) or one-time meetings
(51%) as a substitute.

From the data in the chart, it appears that respondents
would use a point person to keep track of dependencies
more for external rather than internal collaborations. In ad-
dition, having a manager talk to another group’s manager is

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Dev PM Test

Figure 2. The tools that engineers use to keep track of dependencies on other teams, divided by job
role. The ’other’ category is not shown for clarity of presentation.

2%

5%

5%

6%

9%

10%

10%

12%

49%

53%

57%

59%

63%

0% 10% 20% 30% 40% 50% 60% 70%

Reorganize team

Cancel project

Never take critical dependencies

Other

Interact only with people I trust

Eliminate affected features

Avoid unreasonable people

Switch to a new development methodology

Eliminate code dependencies

Reprioritize affected work items

Have a backup plan in order to ship without the
dependency

Align product schedules

Minimize code dependencies

Figure 3. How engineers mitigate (antici-
pated) problems with dependencies on other
teams.

much more common with external dependencies than inter-
nal ones (25% vs. 8%).

Notice also, that 98% of respondents depend on people
outside their teams (only 2% report that they do not have
any dependencies in Figure 4).

Since not all collaborations with other people and teams
go as planned, we asked participants how they mitigate

anticipated and/or real problems with their dependencies.
There were five strong responses (shown in Figure 3, three
that minimize the dependency itself, and two that adjust the
project schedule. 63% of respondents would minimize all
code dependencies on other teams. 59% would align their
product’s schedule with their dependencies’ schedules in
order to ship only when their dependencies have finished
their own work. This can be problematic if a dependency
slips their schedule. 57% of respondents say that their team
makes sure to have a backup plan to ship their own product
without the problem dependency. 53% would reprioritize
their work items, potentially slipping a feature or work item
to the next release. 49% would eliminate all code depen-
dencies, which could mean to “clone and own” (copy and
paste) the desired functionality from the other team’s code-
base. All of the other responses, including canceling the
project (5%) and reorganizing the team (2%) are much less
frequent.

Communication overhead and maintaining relationships
takes a big toll on coordination practices and effectiveness
(see Figure 5). Almost 50% of respondents say that they
need to proactively ask their colleagues for status frequently
or all the time. Lack of communication causes problems
as well for 23% of respondents who need frequently or all
the time find that work items they depend on have changed
without any notification. When communication does occur,
25% of respondents say it is frequently or always difficult
to get a team they collaborate with to implement a change

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Give up
I rarely have dependencies on people

Other
Intimidation

Do not need to -- They do what I want when I ask
Find somebody else to do their work

Accept less than what I wanted
One of my superiors talks to one of their superiors

Attend their war room meeting
Escalate to their point person in charge of tracking dependencies

Escalate to their manager or above
Escalate to my point person in charge of tracking dependencies

Work item database
Escalate to my manager or above

Set up a one-time meeting
Phone

Instant Message
Email

Personal Visit

Unblock dependency within your team Unblock dependency outside your team

Figure 4. How engineers communicate with one another when they need to unblock themselves from
a critical dependency.

they require. 48% of respondents find that must maintain
constant contact with the team they depend on is the way
to get what they want. This contributes greatly to over-
head in depending on other teams. It is also probable that
much of this overhead is due to other team’s deprioritizing
their dependent’s work items. Only 30% of respondents say
that their dependencies frequently or always tell them where
their needs fit into their dependencies’ priorities. This lack
of information often causes anxiety in teams that have many
of these dependencies. Even worse, if a team had a choice
of teams to depend on, they would certainly choose the ones
that place them number one on their priority list, rather than
a team that served too many masters.

A solution that many teams have found to work best for
them is to maintain personal connections with the people
who work in the teams they depend on. 87.6% of respon-
dents agree with the statement “I feel that having personal
connections with teams that I depend on is helpful to me.”

4. Discussion

From the survey results in Figure 1, we can see that
most respondents work on teams that consume software
from others. This is consistent with the demographics of
Microsoft’s software teams. As a company, Microsoft cre-
ates platforms and applications that depend on those plat-
forms. There are necessarily fewer platforms than appli-
cations. What was surprising from the survey responses is
that most teams depend on other teams’ release dates and
features more than other teams’ code or APIs. This implies

that teams worry more about a feature shipping on a par-
ticular date than the details of how the functionality will be
implemented.

The teams that provide libraries offer status as their main
consumable, followed by features and schedules. Without
being privy to the inner workings of other teams’ processes,
status updates are one of the only ways for a team to manage
its dependency on another team’s software prior to the ship
date. Will they finish in time? Will the requested features
and work items be completed? The lack of this informa-
tion can make team leads anxious and unable to mitigate the
problems associated with teams that may not deliver what
was promised. We see these problems in the perception data
(see Figure 5) where pinging people for status occurs quite
often. Respondents also noted that work items they de-
pended on were changed without any change notification.
We presume these were not changes to say that the work
items were done early or with more features than requested.
The change in status is one thing, but the lack of notification
of the change aggravates whatever anxiety the dependent
teams were already feeling about their dependency.

Another surprising result from the data (shown in Fig-
ure 2) is that the fourth most popular way to keep track
of dependencies is to use one’s memory. In cases where
engineers have few and infrequent dependencies, this may
work just fine. We do not have data to support or refute this.
We hope that when engineers must maintain more signifi-
cant relationships between their team and others, they use
more robust forms of written material. The third most pop-
ular tool is a status meeting, usually occurring face-to-face

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

5. The teams I depend on tell me explicitly where my needs fit into their
priorities.

4. I need to maintain constant contact with the team I depend on in order to get
what I want.

3. It is difficult to get a team I depend on to implement a change I require.

2. I need to ping the people I depend on for status.

1. Work Items that I depend on are changed without my knowledge.

All of the time Frequently Occasionally Rarely Almost Never N/A

Figure 5. How engineers perceive the success of coordination communication.

or held via audio or video conferencing. This corroborates
with the perception data (Figure 5), where respondents re-
port that in order to get what they want from another team,
they must maintain constant contact with them. Status, bug
triage, and similar kinds of meetings are held frequently by
teams to manage their workflow. Attending another team’s
meeting can give one great insight into what their priorities
are and how they evolve over time.

We present the data in Figure 2 split by job role to il-
lustrate the different distribution of answers. Program man-
agers (PMs) at Microsoft handle requirements, scheduling
and coordinate feature and work item completion with other
program managers, developers, and testers. Thus, it should
be unsurprising that they use tools to track dependencies
simply more than developers or testers. However, PMs’
greater dependence on tools is important for tool builders
who aim to help resolve coordination problems between
teams. These tools will likely be most effective if they
“live” in the same applications that program managers al-
ready find themselves in. From the survey data, we can see
that this is often not in the code, itself. Thus, to most effec-
tively resolve team coordination issues with a tool, it is im-
portant for tool builders to note that non-programmer PMs
ought to be their target audience, rather than the developers
who create the code or the testers who validate it. We can
make this argument stronger by noting again that the main
objects mediated in a dependency are features and product
schedules, both items maintained by program managers, not
by developers or testers.

From Figure 4, we can see that the way coordination
occurs within teams is very different than between teams.
Within teams, personal visits and email are the most pop-
ular ways to fix blocked dependencies. The parties know
one another and are comfortable visiting in person to ex-
plain their issues and get them resolved. When dependen-
cies cross teams, however, the frequency of in-person visits
drops by almost half. It is likely quite awkward to pay a

visit to someone whom one does not know, and interrupt
their work (which hopefully is unblocking the issue at the
same time, but probably not) for something that may not be
immediately important to the person. But from the other
survey responses, we can see that attending another team’s
status meeting is fairly accepted practice, and thus may be
a good substitute for a personal visit. As can be observed
in Figure 4, almost all of the answers were chosen more
frequently by respondents with external dependencies than
those with internal dependencies. Thus, the diversity of
methods to unblock oneself is high, along with the asso-
ciated communication overhead required to avail oneself of
them all. This communication overhead likely contributes
to feelings that more work is required to manage external
dependencies than internal ones.

Finally, over half of the respondents report that their
teams have contigency plans to deal with unfulfilled depen-
dencies, either delaying, replacing, or canceling requested
functionality. Only 5% report that their projects are can-
celed for the lack of the dependency, thus, the projects re-
ported about by these respondents appear modular enough
to adapt to unanticipated failures of collaboration between
teams. If, as reported in the perception data in Figure 5,
more teams would tell their dependents explicitly where
they stood in the team’s priorities, perhaps the numbers of
projects that are delivered with less functionality than de-
sired could be reduced by teams seeking out other less bur-
dened teams to meet their needs.

5. Threats to Validity

Our survey was conducted at Microsoft Corporation;
while we imagine its results apply broadly to software de-
velopers at other companies, studies at other sites would be
useful to highlight behaviors which may be affected by Mi-
crosoft norms and culture.

6. Related Work

Coordination problems are inherent in any sort of dis-
tributed work situation. Many researchers have looked into
coordination problems in software development organiza-
tions and discovered difficulties caused by geographic dis-
tance [7, 10], team size [5], lack of personal contact [8],
lack of awareness [6], poor knowledge flow and commu-
nication breakdowns [2], and architectural modularity [3].
Kraut and Streeter [9] found that developers preferred to
communicate frequently and informally to coordinate with
one another on schedules, bugs, tests and design reviews.
de Souza and Redmiles [4] surveyed developers and cat-
alogued how they managed dependencies, both for poten-
tial problems with coordination that they expected to expe-
rience and problems they expected to cause for others.

7. Conclusion

From these survey results, we can learn some lessons
about how to improve intra- and inter-team coordination.
While most teams experience challenges in coordination,
the majority appear to get their tasks done, albeit with less
completed than they had hoped for. We saw that examining
the needs and methods of engineers with different job roles
can help to focus process changers and tool builders on less
obvious audiences for their interventions, hopefully to ef-
fective results. Another takeaway message from our paper
is that creating and maintaining personal relationships be-
tween individuals on teams that coordinate is indicated by
many respondents as a good way to successfully collabo-
rate with colleagues. However, while more communication
between teams can help improve coordination, it can also
increase process overhead. Creating tools that engender
the right kinds of communication, such as automatic status
gathering and change notification could help people keep up
with their dependencies more efficiently.

For as long as specialization and collaboration has been
around, many possible solutions to coordination problems
have been tried and will continued to be invented. The data
in this paper helps identify some of the potential target areas
and audiences for such interventionary solutions.

References

[1] A. Begel. Effecting change: Coordination in large-scale
software development. In Workshop on Cooperative and
Human Aspects of Software Engineering, pages 17–20,
Leipzig, Germany, May 2008. ACM.

[2] B. Curtis, H. Krasner, and N. Iscoe. A field study of the
software design process for large systems. Communications
of the ACM, 31(11):1268–1287, 1988.

[3] C. R. B. de Souza, D. Redmiles, and P. Dourish. ”break-
ing the code”, moving between private and public work
in collaborative software development. In Proceedings of
GROUP, pages 105–114, Sanibel Island, FL, 2003. ACM
Press.

[4] C. R. B. de Souza and D. F. Redmiles. An empirical study
of software developers’ management of dependencies and
changes. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 241–250, New
York, NY, USA, 2008. ACM.

[5] J. Fred P. Brooks. The mythical man-month. In Proceedings
of the international conference on Reliable software, page
193, New York, NY, 1975. ACM Press.

[6] C. Gutwin, R. Penner, and K. Schneider. Group awareness in
distributed software development. In Proceedings of CSCW,
pages 72–81, Chicago, IL, 2004. ACM Press.

[7] J. D. Herbsleb and R. E. Grinter. Splitting the organiza-
tion and integrating the code: Conway’s law revisited. In
Proceedings of ICSE, pages 85–95. IEEE Computer Society
Press, 1999.

[8] P. Hinds and C. McGrath. Structures that work: social struc-
ture, work structure and coordination ease in geographically
distributed teams. In Proceedings of CSCW, pages 343–352,
Banff, Alberta, Canada, 2006. ACM Press.

[9] R. E. Kraut and L. A. Streeter. Coordination in software
development. Communications of the ACM, 38(3):69–81,
1995.

[10] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development: Apache
and mozilla. ACM Transactions on Software Engineering
Methodology, 11(3):309–346, 2002.

Appendix A: Survey Questions

1. Which of the following items do you depend upon from other
teams? i.e. you need the following from them in order to
complete your task, or a change in the following with affect
your task.

(a) APIs
(b) Code.
(c) Release schedule
(d) Bugs
(e) Features
(f) Prioritization of work items
(g) Status
(h) Documentation
(i) Other

2. Which of the following items do other teams depend on you
to provide? i.e., they need the following from you in order to
complete their task, or a change in the following will affect
their task.

(a) APIs
(b) Code.
(c) Release schedule
(d) Bugs
(e) Features
(f) Prioritization of work items
(g) Status

(h) Documentation
(i) Other

3. How do you keep track of the items that you depend upon
outside your team?

(a) Mental list
(b) List on paper
(c) List in text editor
(d) List on my personal whiteboard
(e) List on a public whiteboard
(f) Excel spreadsheet
(g) Source code checkin messages
(h) Outlook tasks
(i) Work item database
(j) Email
(k) Sharepoint website
(l) Wiki

(m) Status meetings
(n) Point person in charge of tracking dependencies
(o) The person I depend on reminds me
(p) I do not keep track
(q) Other

4. When you get blocked on a critical dependency within your
team, in what ways do you communicate to unblock your-
self?

(a) Personal visit
(b) Email
(c) Phone
(d) Instant Message
(e) Work item database
(f) Set up a one-time meeting
(g) Attend their bug triage meetings
(h) Escalate to my manager or above
(i) Escalate to their manager or above
(j) Escalate to my point person in charge of tracking de-

pendencies
(k) Escalate to their point person in charge of tracking de-

pendencies
(l) One of my superiors talks to one of their superiors

(m) Intimidation (i.e. pay a visit and do not leave until you
get what you want)

(n) Find someone else to do the work
(o) Accept less than what I wanted
(p) Give up
(q) I rarely have dependencies on people within my team
(r) Do not need to – They always do what I want when I

ask
(s) Other

5. When you get blocked on a critical dependency outside your
team, in what ways do you communicate to unblock your-
self?

(a) Personal visit
(b) Email
(c) Phone
(d) Instant Message
(e) Work item database
(f) Set up a one-time meeting
(g) Attend their bug triage meetings
(h) Escalate to my manager or above
(i) Escalate to their manager or above

(j) Escalate to my point person in charge of tracking de-
pendencies

(k) Escalate to their point person in charge of tracking de-
pendencies

(l) One of my superiors talks to one of their superiors
(m) Intimidation (i.e. pay a visit and do not leave until you

get what you want)
(n) Find someone else to do the work
(o) Accept less than what I wanted
(p) Give up
(q) I rarely have dependencies on people within my team
(r) Do not need to – They always do what I want when I

ask
(s) Other

6. What do you do in your own project to mitigate the effects
(potential or actual) of depending on other teams?

(a) Minimize code dependencies
(b) Eliminate code dependencies (e.g. “clone and own”)
(c) Never take critical dependencies
(d) Align product schedules
(e) Reprioritize affected work items
(f) Avoid unreasonable people
(g) Interact only with people I trust
(h) Cultivate in-person relationships (e.g. become

friendly, put a face to the name)
(i) Switch to a new development methodology (e.g.

Scrum, Feature Crews)
(j) Have a backup plan in order to ship without the depen-

dency
(k) Cancel the project
(l) Reorganize the team

(m) Other

7. Likert-style questions. Answers: All of the time, Frequently,
Occasionally, Rarely, Almost Never, N/A.

(a) Work items that I depend on are changed without my
knowledge.

(b) I need to ping the people I depend on for status.
(c) It is difficult to get a team I depend on to implement a

change I require.
(d) I need to maintain constant contact with the team I de-

pend on in order to get what I want.
(e) The teams I depend on tell me explicitly where my

needs fit into their priorities.

