
Codebook: Social Networking over Code

Andrew Begel, Robert DeLine
Microsoft Research

andrew.begel@microsoft.com, rob.deline@microsoft.com

Abstract

Social networking systems help people maintain connec-
tions to their friends, enabling awareness, communication,
and collaboration, especially at a distance. In many studies
of coordination in software engineering, the work artifacts,
e.g. code, bugs, specifications, are themselves the objects
that link engineers together. In this paper, we introduce
Codebook, a social networking web service in which peo-
ple can be “friends” not only with other people but with the
work artifacts they share with them. Providing a web inter-
face to the graph of these connections will enable software
engineers to keep track of task dependencies, discover and
maintain connections to other teams, and understand the
history and rationale behind the code that they work on and
use.

1. Introduction

Software development is highly social. A software en-
gineer’s daily work requires coordination with many other
people and tracking many shared artifacts. Today, this coor-
dination and tracking is largely accomplished through fre-
quent communication and monitoring of artifacts: attend-
ing meetings; chatting in the hallway; reading code revi-
sion messages; examining work item statuses; exchanging
emails; and so on. These coordination activities both take
time away from technical work and are subject to the usual
communication breakdowns, like untimely, inaccurate, mis-
directed or missing information.

Recently, social networking web services, like LinkedIn,
MySpace, and Facebook, have provided a new way for
people to coordinate and keep track of each other’s activ-
ities. A Facebook user, for example, declares other users
as “friends” and (after their approval) sees a “newsfeed” of
their Facebook activities, like posting messages and photos.
By reading the newsfeed and browsing pages, a Facebook
user can stay aware of their friends’ activities and coordi-
nate events like political rallies. In this paper, we propose
a new social networking web service, called Codebook, to

help software engineers track status and coordinate activi-
ties. A software engineer can use Codebook both to track
colleague’s activities and changes to the status of work ar-
tifacts. Codebook also serves as an information portal. An
engineer can look up a person or work artifact to find out
basic information about it, including its history.

2. Data Model

A typical social networking web service can be ab-
stracted as a graph with an event model. In the graph,
the nodes represent people and the edges are self-declared
friends links. A typical event notification policy is that,
when an event happens at a node (e.g. a user posts a photo),
that event is reported to all nodes that are directly connected
to the source node. Codebook enhances this abstraction in
several ways. First, the graph has nodes not only for peo-
ple, but also for their work artifacts. Based on the previ-
ous work of Hipikat [3] and the Bridge [12], Codebook’s
graph includes nodes for code at various levels of granular-
ity (DLLs, source files, namespaces, types, members), work
items, bugs, revisions, non-code documents, and email mes-
sages, as well as people. This graph is produced automat-
ically by crawling the contents of project data silos, like
code revision histories, work item repositories and email
archives. The graph has different kinds of edges to represent
the relationships inferred from these data silos. Figure 1,
for example, depicts a Bridge graph with thirteen nodes,
shown as icons: the revision node (with a check mark, in
the upper-left corner) has a “commits” edge to the person
who committed the change and two “changes” edges to the
changed files; these files each “contain” a class definition,
which in turn “contain” member definitions; the bug item
node has edges to the people who took actions on that bug
item; and the email node has edges to the people who sent
and received the email, as well as edges to a bug item and
method that were textually mentioned in the email content.

This enriched graph allows Codebook users to become
friends with both people and code artifacts. If a tester closes
a bug in a bug repository, for example, the Bridge crawler
will introduce a new “closes” edge between the tester’s node



contains

contains
changes

changes
commits contains

callscontains

closes

opens

from

to

mentions
mentions

subclasscontains

Figure 1. An example Bridge graph.

Figure 2. Mockup home page for a function.

and the bug item’s node, which generates an event for both
nodes. Users who are friends with the tester will see the bug
closure in her newsfeed; at the same time, users who are
friends with the bug item (for example, developers waiting
for a bug fix) will see this event in the bug item’s newsfeed.
The graph also provides many kinds of edges along which
to propagate events. For example, when a revision changes
a method, it also changes the class containing the method,
the source file containing the class, and the DLL built from
the source file. How to propagate events across these indi-
rections is an open research question which we discuss at
the end of this paper.

On a typical social networking web service, each node
(person) has its own web page, which serves as a “home
page” with that person’s information, newsfeed activities,
and list of friends. Similarly, on Codebook, each node,
whether representing a person or a code artifact, has a home
page with that node’s information, newsfeed activities, and
list of friends. Figure 2 shows an example of a method’s
home page. An artifact’s home page provides a central-
ized “place” for seeking information, analyzing data, hav-
ing discussions, and meeting others interested in the same
topic [5].

3. Usage Scenarios

We designed Codebook both to allow software engineers
to track people and work artifacts and to provide a portal for
information seeking. Here we describe several of the key
scenarios we intend Codebook to support.

3.1. Anxious for Awareness

When teams collaborate as part of a large project, a
member of one team will often assign a work item to a
member of another team. Tracking the status of work items
assigned across teams is frustrating because the teams’ in-
dependent work is not transparent to each other. The work
item can be delayed due to poor communication or differing
priorities or forgotten altogether because no one advocates
for it [8]. Codebook can help by increasing transparency
between teams. A designated member of the team assign-
ing the work item can befriend the work item and monitor
its newsfeed. Once the work item has been assigned to a
member of the other team, the designated person can be-
friend the assignee to watch his progress on the work item
and to see what other responsibilities are competing with
the work item. Browsing the assignee’s team’s newsfeed
could also provide context about the team’s changing dead-
lines and priorities.

3.2. Who Is Using Our Code?

In a company that produces both applications and frame-
works, a framework team is often unaware of all the other
individuals and teams who are using the framework in their
products. This makes it difficult, for example, to assign
priorities to bugs and to make informed decisions about
breaking changes. Assuming that the Bridge is used “uni-
versally” (perhaps company-wide, perhaps across an en-
tire code repository like SourceForge), Codebook can make
code clients visible to code providers. As sketched in Fig-
ure 2, a method’s home page lists incoming method calls,
each with a code owner and the time the calling method
was last updated, plus a link for contacting the owners of all
calling method. These relationships are aggregated at the
type and DLL levels.

This problem of invisible clients is notoriously acute
when the client has cloned the code it uses to avoid taking a
direct dependency. Although the Bridge does not currently
use a clone detector, this technology is mature enough that
the Bridge could add edges (with varying confidence val-
ues) between a definition and its likely clones. This would
allow a Codebook page for a method to list clones as well
as callers, as shown in Figure 2, with similar support for
contacting clone owners. Owners of the cloned code could
monitor the clones’ evolution to consider accommodating



the changes the clones need. On the other side, the clone
owners could track changes to the cloned code to pick up
bug fixes and to look for opportunities to take a direct de-
pendency rather than cloning.

3.3. Brothers at Arms

In this scenario, a team decides to begin working on a
new technology and wants to know if any other team at the
company is working on something similar. If there is an-
other team, they would certainly like to get in contact, in
order to learn about the other team’s technology, their de-
velopment plans, and their schedule. This will help the team
decide whether to abort their own effort and reuse the other
team’s technology, forge ahead on their own, or collaborate
with the other team to build the technology in a way that is
compatible with both teams’ visions.

Analyses of similarities between specifications and be-
tween bodies of code can produce affinities between code
bases owned by separate teams. Similar to how social net-
working web sites “suggest” friends that you might already
know, Codebook could “suggest” projects from other teams
that are similar to projects that you or your team owns. In
addition to discovering that other projects exist, an engi-
neer can befriend these projects to keep up-to-date with a
newsfeed about project developments. Finally, an engineer
could examine the other project’s friends to see if yet more
projects at the company are trying to accomplish similar
tasks and goals.

3.4. Code Investigation

Developers often find themselves or their code impli-
cated in a bug report when they have not made any recent
changes. As they debug through the test case, they find that
the bug originates in a library call that they use which now
returns an unexpected result. Their first suspicion is that the
last change to that code broke it. So, they search through
source code repositories to find a diff that shows what the
code looked like before the change. But that merely tells
what happened, but not why. To understand the code ratio-
nale, the developer reads the revision comment which may
point to a work item in the bug database that was “fixed” by
the revision. Reading through the bug database at the work
item and any other related bugs, they can identify whatever
rationale was written down electronically and discover who
the responsible testers and developers were who worked on
the work item. At this point, the problem moves from tech-
nological to social. There is a bug in the code, at an in-
teraction point between one developer and another. Who is
going to fix it? This involves communication and negotia-
tion between the developers to resolve the quandary.

The Bridge links code to any related bugs, people or

emails where the code was mentioned. On Codebook, the
code’s homepage contains a newsfeed where each of these
related information sources are merged into a single chrono-
logical event stream that can be viewed by a developer to
understand the history and rationale behind the code. When
the developer needs to contact the owners of the code or
bug, they can find them on the code or bug homepage and
email, IM or phone them directly just by clicking on their
names. This scenario emphasizes the importance of the
newsfeed even for far past events.

4. Prototype

Codebook is implemented on the Bridge [12], which is in
turn implemented on a SQL Server relational database. The
Bridge has been in stable use for two years and is scalable
enough to index Windows Vista’s revision history and bug
database. In the Bridge’s architecture, both nodes and edges
have time ranges, which the crawlers populates. For exam-
ple, a “changes” edge between a node and a code revision
has a time range set to the time of the commit; a “mentions”
edge between a node and an email has a time range set to the
email’s sent date. Hence, the Bridge can compute a node’s
history by sorting the outgoing edges by their time ranges.

The first step toward Codebook was an implicit query
system over the Bridge, called Deep Intellisense [6], imple-
mented as an extension of Visual Studio. Whenever a user
clicks on a definition in the code editor, Deep Intellisense
queries the Bridge and shows links to all related people,
and a timeline of all of the revisions, work item events, and
emails related to that definition – that is, the newsfeed for
that definition.

We are currently implementing Codebook on top of the
Bridge, which requires two changes. First, we add a new
type of edge representing “friends” links. Second, we add
an event system that is invoked whenever a Bridge node or
edge is created or when its time range changes.1 When an
event occurs on a node, we propagate it along the node’s
outgoing “friends” edges to the target node’s new aggrega-
tor. The aggregator collects news from all of the neighbors
like a structured RSS feed. As described below, there is an
open research questions about which other edges (such as
“contains” edges) should be involved in event propagation.

5. Related Work

Socio-technical congruence – that is, the relationship be-
tween networks of people and networks of the artifacts they
create – is receiving increased attention. For example, a

1Bridge nodes and edges are never deleted. Instead, when an artifact is
deleted in a data silo, the corresponding Bridge node has its end date set to
the time of deletion. Hence there are no events for deletions.



recent study of software engineering coordination showed
that developers can be connected to one another through
their work artifacts [2]. We believe that this is the first pa-
per to propose a social networking web service based on
software engineers’ work artifacts.

Recent research tools promote developer awareness with
respect to source code, such as Ariadne [11], FastDash [1],
Elvin [4], Jazz [7], and Palantir [9]. Many of these tools
focus on avoiding conflicts by promoting awareness of ac-
tivities that are happening at the same time as a developer’s
work. Codebook does not focus on “live” awareness (the
Bridge’s crawlers are not up-to-the-minute), but on captur-
ing a comprehensive history of people and artifacts and their
connections through a wide variety of crawlers.

5.1. Open Research Questions

We envision that the frontend to Codebook could take
many forms: RSS feeds, social networking web sites, IDE
plugins similar to Deep Intellisense [6], or automatically
created blog postings. With such a wealth of data, how-
ever, understanding how to render the information presents
a challenge due to inadvertent social engineering conse-
quences. These web pages present an incentive system that
can be gamed. For example, a manager might decide to
display the number of open bugs for each developer on his
team, sorted by the number of bugs. Thus, the “worst” de-
veloper is the one with the most open bugs. This creates an
incentive for closing bugs, independent of fixing them, for
example by closing them as “won’t fix.” Every rendering
of the data represents a value system implicit to the team’s
goals for its members. By choosing a particular rendering,
the team offers an incentive system where each team mem-
ber can look his or her best, as well as make the team look
good to others. We are conducting studies to discover how
particular data renderings affect team member impressions
of the value system, similar to what was done in a study by
Stecher and Counts [10].

A related question is how to deliver newsfeed events in
a way that is relevant and not overwhelming. In particular,
how far along the graph should an event propagate and how
should the presentation of the event change as that distance
increases? When a developer closes a framework bug, there
can be many interested parties. If the developer’s manager
or the person who filed the bug is looking at the report, he
might care about the details of what work was done. If a de-
veloper from another team is looking at the news, he might
care to know that a bug was worked on, but might not need
to know about the content of the bug. If the product’s chief
manager looks at the news, he might care only about the
number of remaining open bugs. We are engaging develop-
ers, testers and program managers with news about project
events, presented in several styles to see what they perceive

about the person behind the news. In addition, we will ask
what the news says about them if they were the source of the
news. By looking at the incongruity of these two percep-
tions, we can hone in on renderings that provide accurate
perceptions of the data to both source and readers.

References

[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson.
Fastdash: a visual dashboard for fostering awareness in soft-
ware teams. In Proceedings of CHI, pages 1313–1322, San
Jose, CA, 2007. ACM Press.

[2] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: implica-
tions for the design of collaboration and awareness tools.
In CSCW ’06: Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages
353–362, New York, NY, USA, 2006. ACM.

[3] D. Cubranic, J. Singer, and K. S. Booth. Hipikat: A project
memory for software development. IEEE Trans. Softw. Eng.,
31(6):446–465, 2005. Member-Gail C. Murphy.

[4] G. Fitzpatrick, P. Marshall, and A. Phillips. Cvs integration
with notification and chat: lightweight software team col-
laboration. In Proceedings of CSCW, pages 49–58, Banff,
Alberta, Canada, 2006. ACM Press.

[5] S. Harrison and P. Dourish. Re-place-ing space: the roles
of place and space in collaborative systems. In CSCW
’96: Proceedings of the 1996 ACM conference on Computer
supported cooperative work, pages 67–76, New York, NY,
USA, 1996. ACM.

[6] R. Holmes and A. Begel. Deep intellisense: a tool for rehy-
drating evaporated information. In MSR ’08: Proceedings of
the 2008 international working conference on Mining soft-
ware repositories, pages 23–26, New York, NY, USA, 2008.
ACM.

[7] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Introduc-
ing collaboration into an application development environ-
ment. In Proceedings of CSCW, pages 21–24, Chicago, IL,
2004. ACM Press.

[8] C. Poile, A. Begel, N. Nagappan, and L. Layman. Coor-
dination in large-scale software development: Helpful and
unhelpful behaviors. In submission.

[9] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: raising
awareness among configuration management workspaces.
In Proceedings of ICSE, pages 444–454, Portland, Oregon,
2003. IEEE Computer Society.

[10] K. Stecher and S. Counts. Thin slices of online profile at-
tributes. In Proceedings of International Conference on We-
blogs and Social Media, Seattle, WA, March 2008.

[11] E. Trainer, S. Quirk, C. de Souza, and D. Redmiles. Bridg-
ing the gap between technical and social dependencies with
ariadne. In Proceedings of the 2005 OOPSLA workshop on
Eclipse technology eXchange, pages 26–30, San Diego, Cal-
ifornia, 2005. ACM Press.

[12] G. Venolia. Textual alusions to artifacts in software-related
repositories. In MSR ’06: Proceedings of the 2006 inter-
national workshop on Mining software repositories, pages
151–154, New York, NY, USA, 2006. ACM.


