
LDTA’04 Preliminary Version

Language Analysis and Tools for Ambiguous
Input Streams 1

Andrew Begel, Susan L. Graham 2

Computer Science Division – EECS
University of California, Berkeley
Berkeley, CA, 94720-1776 USA

Abstract

Automatically generated lexers and parsers for programming languages have a long
history. Although they are well-suited for many languages, many widely-used gen-
erators, among them Flex and Bison, fail to handle input stream ambiguities that
arise in embedded languages, in legacy languages, and in programming by voice.
We have developed Blender, a combined lexer and parser generator that enables de-
signers to describe many classes of embedded languages and to handle ambiguities
in spoken input and in legacy languages. We have enhanced the incremental lexing
and parsing algorithms in our Harmonia framework to analyze lexical, syntactic
and semantic ambiguities. The combination of better language description and en-
hanced analysis provides a powerful platform on which to build the next generation
of language analysis tools.

Key words: GLR, embedded languages, Harmonia,
programming-by-voice

1 Introduction

Automatically generated lexers and parsers for programming languages have
long been essential tools for constructing language analysis environments.
Many widely-used lexer and parser generators, among them Flex [10] and
Bison [3], are well suited for describing a broad class of programming lan-
guages that are designed to be unambiguous. These tools are ill-suited for
handling input stream ambiguities that arise from legacy languages, from
non-keyboard-based input such as programming by voice, and from embedded
languages. The ambiguities may be lexical, syntactic or semantic.

1 This work was supported in part by NSF Grant CCR-0098314 and by an IBM Eclipse
Innovation Grant.
2 Email: {abegel, graham}@cs.berkeley.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Begel and Graham

The contributions reported in this paper are two-fold:

(i) improved methods for syntax analysis that handle these kinds of ambi-
guities

(ii) a new combined lexer and parser generator and further parser enhance-
ments that facilitate the description and analysis of embedded languages.

Programming by voice, a novel form of user interface enabling the user to
edit, navigate, and dictate code using voice recognition software, is a recent
programming technique supported by the increased power of desktop comput-
ers to accurately process speech. Spoken input, however, contains many lexical
ambiguities, such as homophones, 3 misrecognized words, and an inability to
recognize unpronounceable or concatenated words. When the input is for an
English or other natural language document, it can be disambiguated by a
hidden Markov model provided by the speech recognition vendor. However,
when the input is a computer program, natural language disambiguation rules
do not apply. Not only do these ambiguities affect the voice-based program-
mer’s ability to introduce code, they also affect the ability of the voice-based
programmer to use similar sounding words in different contexts.

Some legacy languages like PL/I and Fortran present difficulties to both a
Flex-based lexer and an LALR(1) based parser. PL/I, in particular, does not
have reserved keywords, meaning that IF and THEN may be both keywords
and variables. A lexer can not distinguish between them; only the parser and
static semantics have enough context to choose. Fortran’s optional whitespace
rule leads to insidious lexical ambiguities. For example, DO57I can designate
either a single identifier or DO 57 I, the initial portion of a Do loop. Without
syntactic support, a particular character sequence could be interpreted using
several sets of token boundaries – either the parser must help the lexer, or the
lexer should pass all possible tokenizations to the parser.

Embedded languages, in which fragments of one language can be embed-
ded within another language, are in widespread use in common application
domains such as Web servers (e.g. PHP embedded in XHTML), data re-
trieval engines (e.g. SQL embedded in C), and structured documentation
(e.g. Javadoc embedded in Java). The boundaries between languages within
a document can be either fuzzy or strict; detecting them might require lexical,
syntactic, semantic or hand-written analysis. The lack of modularity in Flex
and Bison descriptions of embedded languages makes independent mainte-
nance of each component language unwieldy and combined analysis awkward.

The methods described in this paper handle four kinds of input streams,
three of which are ambiguous; our solutions are summarized in Section 3.
Combinations of these ambiguities arise in different forms of embedded lan-
guages. The handling of this fifth kind of input stream is presented in Sec-
tions 4 to 7. Some of these ambiguities have also been addressed in related

3 Homophones are words that sound alike but have different spellings.

2

Begel and Graham

work, which is summarized in Section 8.

Single spelling; single lexical type. This is normal, unambiguous lexing
(i.e. a sequence of characters produces a unique sequence of tokens). We
illustrate this case to show how lexing and parsing work in the Harmonia
analysis framework.

Multiple spellings; single lexical type. Programming by voice introduces
potential ambiguities into programming that do not occur when programs are
typed. If the user speaks a homophone which corresponds to multiple lexemes
(for example, i and eye), and all the lexemes are of the same lexical type
(the token IDENTIFIER), using one or the other homophone may change the
meaning of the program. Multiple spellings of a single lexical type might
also be used to model voice recognition errors or lexical misspellings of typed
lexemes (e.g. the identifier counter occurring instead as conter).

Single spelling; multiple lexical types. Most languages are easily de-
scribed by separating lexemes into separate categories, such as keywords and
identifiers. However, in some languages, the distinction is not enforced by the
language definition. For instance, in PL/I, keywords are not reserved, lead-
ing a simple lexeme like ’IF’ or ’THEN’ to be interpreted as both a keyword
and an identifier. In such cases, a single character stream is interpreted by a
lexer as a unique sequence of lexemes, but some lexemes may denote multiple
alternate tokens, which each have a unique lexical type.

Multiple spellings; multiple lexical types. Sometimes a user might speak
a homophone (e.g., ’for’, ’4’ and ’fore’) that not only has more than one
spelling, but that have distinct lexical types (e.g. keyword, number and iden-
tifier).

Embedded languages. Two issues arise in the analysis of embedded lan-
guages – identifying the boundaries between languages, and analyzing the
outer and inner (and any other nested) languages according to their differing
lexical, structural, and semantic rules. Once the boundaries are identified,
any ambiguities in the inner and outer languages can be handled as if em-
bedding were absent. However, ambiguity in identifying a boundary leads
to ambiguity in which language’s rules to apply when analyzing subsequent
input. Virtually all programming languages admit simple embeddings, no-
tably strings and comments. The embedding in an example such as Javadoc
within Java is more complex. These embeddings are typically processed by
ad hoc techniques. When properly described, they can be identified in a more
principled fashion.

The results described in this paper require modifications to conventional
lexers and parsers, whether batch or the incremental versions used in inter-
active environments. Our approach is based on GLR parsing. Even without
input ambiguities, the use of GLR instead of LR parsing enables support for

3

Begel and Graham

ambiguities in the analysis of an input stream. GLR tolerates local ambigu-
ities by forking multiple parsers, yet is efficient because the common parts
of the parsers are shared. In addition, for the syntax specifications of most
programming languages, the amount of ambiguity that arises is bounded and
fairly small. Our contribution is to generalize this notion of ambiguity, and
the GLR parsing method, to parse inputs that are locally different (whether
due to the embedding of languages, the presence of homophones or other
lexically-identified ambiguities).

We have strengthened the language analysis capabilities of our Harmonia
analysis framework [2,5] to handle these kinds of ambiguities. Our research
in programming by voice requires interactive analysis of input stream am-
biguities. Harmonia can now identify ambiguous lexemes in spoken input.
In addition, Harmonia’s new ability to compose multiple language descrip-
tions will enable us to create a voice-based command language for editing and
navigating source code. This new input language will combine a command
language written in a structured, natural-language style with code excerpts
from the programming language in which the programmer is coding.

To realize these additional capabilities, the parser requires additional data
structures to maintain extra lexical information (such as its own private looka-
head token and its own private lexer state), as well as an enhanced interface to
the lexer. These changes enable the enhanced GLR parser to resolve shift–shift
conflicts that arise from the ambiguous nature of the parser’s input stream.
The lexer must be augmented with a bit of extra control logic. A completely
new lexer and parser generator called Blender was developed. Blender pro-
duces a lexical analyzer, parse tables and syntax tree node C++ classes for
representing syntax tree nodes in the parse tree. It enables language designers
to easily describe many classes of embedded languages (including recursively
nested languages), and supports many kinds of lexical, structural and seman-
tic ambiguities at each stage of analysis. In the next section, we summarize
the structure of incremental lexing and GLR parsing, as realized in Harmonia.
The changes to support input ambiguity and the design of Blender follow.

2 Lexing and Parsing in Harmonia

Harmonia is an open, extensible framework for constructing interactive, language-
aware programming tools. Programs can be edited and transformed according
to their structural and semantic properties. High-level transformation opera-
tions can be created and maintained in the program representation. Harmonia
furnishes the XEmacs [25] and Eclipse [4] programming editors with interac-
tive, on-line services to be used by the end user during program composition,
editing and navigation.

Support for each user language is provided by a plug-in module consisting
of a lexical description, syntax description and semantic analysis definition.
The framework maintains a versioned, annotated parse tree that retains all

4

Begel and Graham

edits made by the user (or other tools) and all analyses that have ever been
executed [21]. When the user makes a keyboard-based edit, the editor finds
the lexemes (i.e., the terminal nodes of the tree) that have been modified and
updates their text, temporarily invalidating the tree because the changes are
unanalyzed. If the input was spoken, the words from the voice recognizer are
turned into a new unanalyzed terminal node and added to the appropriate
location in the parse tree. These changes make up the most recently edited
version (a.k.a the last edited version). This version of the tree and the pre-
edited version are used by an incremental lexer and parser to analyze and
reconcile the changes in the tree.

Harmonia employs incremental versions of lexing and sentential-form GLR
parsing [20,22,23,24] in order to maintain good interactive performance. For
those unfamiliar with GLR, one can think of GLR parsing as a variant of LR
parsing. In LR parsing, a parser generator produces a parse table that maps a
parse state/lookahead token pair to an action of the parser automaton: shift,
reduce using a particular grammar rule, or declare error. The table contains
only one action for each parse state/lookahead pair. Multiple potential actions
(conflicts) must be resolved at table construction time. In addition to the parse
table and the driver, an LR parser consists of an input stream of tokens and a
stack upon which to shift grammar terminals and nonterminals. At each step,
the current lookahead token is paired with the current parse state and looked
up in the parse table. The table tells the parser which action to perform and,
in the absence of an error, the parse state to which it should transition.

The GLR algorithm used in Harmonia is similar to that described by Rek-
ers [12] and by Visser [19]. In GLR, conflict resolution is deferred to runtime,
and all actions are placed in the table. When more than one action per lookup
is encountered, the GLR parser forks into multiple parsers sharing the same
automaton, the same initial portion of the stack, and the same current state.
Each forked parser performs one of the actions. The parsers execute in pseudo
parallel, each executing all possible parsing steps for the next input token be-
fore the input is advanced (and forking additional parsers if necessary), and
each maintaining its own additional stack. When a parser fails to find any
actions in its table lookup, it is terminated; when all parsers fail to make
progress, the parse has failed, and error recovery ensues. Parsers are merged
when they reach identical states after a reduce or shift action. Thus concep-
tually, the forked parsers either construct multiple subtrees below a common
subtree root, representing alternative analyses of a portion of the common
input, or they eventually eliminate all but one of the alternatives.

The basic non-incremental form of the GLR algorithm (before any of our
changes) is shown in Figure 1. 4 In GLR parsing, each parser stack is repre-
sented as a linked structure so that common portions can be shared. Each
parser state in a list of parsers contains not only the current state recorded

4 The addition of incrementality is not essential to understanding the changes made here
and is not shown.

5

Begel and Graham

in the top entry, but also pointers to the rest of all stacks for which it is the
topmost element. In Figure 1, the algorithm is abstracted to show only those
aspects changed by our methods. In particular, parse stack sharing is implicit.
Thus push q on stack p means to advance all the specified parsers with current
state p to current state q. The current lookahead token is held in a global
variable lookahead .

In a batch LR or GLR parse, the sentential form associated with a parser at
any stage is the sequence of symbols on its stack (read bottom-to-top) followed
by the sequence of remaining input tokens. Conceptually, they represent a
parse forest that is being built into a single parse tree. In an incremental
parser, both the symbols on the stack and the symbols in the input may
be parse (sub)trees - one can think of them as potentially a non-canonical
sentential form. The goal of an incremental or change-based analysis is to
preserve as much as possible of the parse prior to a change, updating it only
as much as is needed to incorporate the change.

The result of lexing and parsing is sometimes a parse forest made up of all
possible parse trees. Semantic analysis must be used to disambiguate any valid
parses that are incorrect with respect to the language semantics. For example,
to disambiguate identifiers that ought to be concatenated (but were entered
as separate words because they came from a voice recognizer) the semantic
phase can use symbol table information to identify all in-scope names of the
appropriate kind (method name, field name, local variable name, etc.) that
match a concatenated sequence of identifiers that is semantically correct. Care
with analysis must be taken if an inner language can access the semantics of
the outer (e.g. Javascript can reference objects from the HTML code in which
it is embedded). Semantic analyses techniques are interesting and important,
but an in-depth discussion of this topic is beyond the scope of this paper.

3 Ambiguous Lexemes and Tokens

In Section 1 we classified token ambiguities into four types (including unam-
biguous tokens). We next explain how these situations are handled.

3.1 Single Spelling – One Lexical Type

Unambiguous lexing and parsing is the normal state of our analysis framework.
Programming languages have mostly straightforward language descriptions,
only incorporating bounded ambiguities when described using GLR. Thus,
the typical process of the lexer and parser is as follows. The incremental
parser identifies the location of the edited node in the last edited parse tree
and invokes the incremental lexer. The incremental lexer looks at a previously
computed lookback value (stored in each token) to identify how many tokens

6

Begel and Graham

GLR-PARSE()

init active-parsers list to parse state 0
init parsers-ready-to-act list to empty
while not done

PARSE-NEXT-SYMBOL()

if accept before end of input
invoke error recovery

accept

PARSE-NEXT-SYMBOL()

lex one lookahead token
init shiftable-parse-states list to empty
copy active-parsers list to

parsers-ready-to-act list
while parsers-ready-to-act list 6= ∅

remove parse state p from list
DO-ACTIONS(p)

SHIFT-A-SYMBOL()

DO-ACTIONS(parse state p)

look up actions[p×lookahead]
for each action

if action is SHIFT to state x

add <p, x> to shiftable-parse-states

if action is REDUCE by rule y

if rule y is accepting reduction
if at end of input return
if parsers-ready-to-act list = ∅

invoke error recovery
return

DO-REDUCTIONS(p, rule y)

if no parsers ready to act or shift
invoke error recovery and return

if action is ERROR and no parsers
ready to act or shift

invoke error recovery and return

DO-REDUCTIONS(parse state p, rule y)

for each parse state p− below RHS(rule y)
on a stack for parse state p

let q = GOTO state for
actions[p−×LHS(rule y)]

if parse state q ∈ active-parsers list
if p− is not immediately below stack

for parse state q

push q on stack p−

for each parse state r such that
r ∈ active-parsers list and
r /∈parsers-ready-to-act list

DO-LIMITED-REDUCTIONS(r)

else
create new parse state q

push q on stack p−

add q to active-parsers list
add q to parsers-ready-to-act list

DO-LIMITED-REDUCTIONS(parse state r)

look up actions[r×lookahead]
for each REDUCE by rule y action

if rule y is not accepting reduction
DO-REDUCTIONS(r, rule y)

SHIFT-A-SYMBOL()

clear active-parsers list
for each <p, x> ∈ shiftable-parse-states

if parse state x ∈ active-parsers list
push x on stack p

else
create new parse state x

push x on stack p

add x to active-parsers list

Figure 1. A non-incremental version of the unmodified GLR parsing algorithm.

back in the input stream to start lexing due to the change in this token. 5 The
characters of the starting token are fed to the Flex-based lexical analyzer one
at a time until a regular expression is matched. The action associated with

5 Lookback is computed as a function of the number of lookahead characters used by the
batch lexer when the token is lexed. [20]

7

Begel and Graham

PARSE-NEXT-SYMBOL()

for each parse state p ∈ active-parsers list
lexp one lookaheadp token
if lookaheadp is ambiguous

let q1 .. qn = copy parse state p

for each parse state q ∈ q1 .. qn

assign one alternative from lookaheadp to q

add q to active-parsers list
init shiftable-parse-states list to empty
copy active-parsers list to parsers-ready-to-act list
while parsers-ready-to-act list 6= ∅

remove parse state p from list
DO-ACTIONS(p)

SHIFT-A-SYMBOL()

Figure 2. Part of the GLR parsing algorithm modified to support ambiguous lexemes.

the regular expression creates a single, unambiguous token, which is returned
to the parser to use as its lookahead symbol. In response to the parser asking
for tokens, lexing continues until the next token would be a token that is
already in the edited version of the syntax tree. (The details of the parser
incrementality are not essential to this discussion and are omitted for brevity.
Notice that additional information must be stored in each tree node to support
incrementality).

3.2 Single spelling – Multiple Lexical Types

If a single character sequence can designate multiple lexical types, as in PL/I,
tokens are created for each interpretation (containing the same text, but dif-
fering lexical types) and are all inserted into an AmbigNode container. When
the lexer/parser interface sees an AmbigNode, namely, multiple alternate to-
kens, that AmbigNode represents a shift–shift conflict for the parser. A new
lexer instance is created for each token, and a separate parser is created for
each lexer instance. Thus each parser has its own (possibly shared) lexer and
its own lookahead token. The GLR parse is carried out as usual, except that
instead of a global lookahead token, the parsers have local lookaheads with
a shared representation. Due to this change, the criteria for merging parsers
includes not only that the parse states are equal, but that the lookahead token
and the state of each parser’s lexer instance are the same as well.

In Figure 2 is a restatement of the PARSE-NEXT-SYMBOL() function that
has been modified with the changes above. Note that both lex and lookahead
are now associated with a parser p rather than being global. Not shown are the
changes to the parser merging criteria in DO-REDUCTIONS() and to the creation of
new parse states (which should be associated with the current lex and lookahead).
In addition, each lookup must reference the associated lookahead – for example,
actions[p×lookaheadp]

8

Begel and Graham

3.3 Multiple Spellings – One Lexical Type

Harmonia’s voice-based editing system looks up words entered by voice recognition
in a homophone database to retrieve all possible spellings for that word. The lexer
is invoked on each word to discover its lexical type and create a token to contain
it. If all alternatives have the same lexical type (e.g. all are identifiers), they are
returned to the parser in a container token called a MultiText, which to the parser
appears as a single, unambiguous token of a single lexical type. Once incorporated
into the parse tree, semantic analysis can be used to select among the homophones.

A similar mechanism could be used for automated semantic error recovery. Iden-
tifiers can easily be misspelled by a user when typing on a keyboard. Compilers
have long supported substituting similarly spelled (or phonetically similar) words
for the incorrect identifier. In an incremental setting, where the program, parse,
and symbol table information are persistent, error recovery could replace the user’s
erroneous identifier with an ambiguous variant that contains the original identifier
along with possible alternate spellings. Further analysis might be able to automat-
ically choose the proper alternative based on the active symbol table. We have not
yet investigated this application.

3.4 Multiple Spellings – Multiple Lexical Types

If the alternate spellings for a spoken word (as described above) have differing lexical
types (such as 4/for/fore), they are returned to the parser as individual tokens
grouped in the same AmbigNode container described above. When the lexer/parser
interface sees an AmbigNode, it forks the parser and lexer instance, and assigns
one token to each lexer instance. The state of each lexer instance must be reset to
the lexical state encountered after lexing its assigned alternative, since each spelling
variant may traverse a different path through the lexer automaton. 6 Once each
token is re-lexed, it is returned to its associated parser to be used as its lookahead
token and shifted into the parse tree.

4 The Nature of Embedded Languages

Using Blender, the outer and inner languages that constitute an embedded language
can be specified by two completely independent language definitions, for example,
one for PHP and another for XHTML, which are composed to produce the final
language analysis tool. Embedded language descriptions may be arbitrarily nested
and mutually recursive. It is the job of the language description writer to provide
appropriate boundary descriptions.

4.1 Boundary Identification

In embedded languages, boundaries between languages may be designated by con-
text (e.g., the format control in C’s printf utility), or by delimiter tokens before

6 Note that we do not reset the lexical state on a single spelling – multiple lexical type ambi-
guity because the text of each alternative (and thus the lexer’s path through its automaton)
is the same, ending up in the same lexical state.

9

Begel and Graham

and after the inner language occurrence. The delimiters may or may not be distinct
from one another; they may or may not belong to the outer (resp. inner) language,
and they may or may not have other meanings in the inner (resp. outer) language.
We refer to these delimiters as a left boundary token and a right boundary token.
Older legacy languages, usually those analyzed by hand-written lexers and parsers,
tend to have more fuzzy boundaries where either one of these boundary tokens may
be absent or confused for whitespace. For example, in the description format used
by Flex, the boundary between a regular expression and a C-based action in its
lexical rules is simply a single character of whitespace followed by an optional left
curly brace.

One technique for identifying boundaries is to use a special program editor
that understands the boundary tokens that divide the two languages (e.g., PHP
embedded in XHTML) and enforces a high-level document/subdocument editing
structure. The boundary tokens are fixed, and once inserted, can not be edited or
removed without removing the entire subdocument. The two languages can then
be analyzed independently.

Another technique is to use regular expression matching (or a simple lexer) to
identify the boundary tokens in the document and use them as an indication to
switch analysis services to or from the inner language. These services are usually
limited to lexically based ones, such as syntax highlighting or imprecise indenta-
tion. More complex services based on syntax analysis cannot easily be used, since
the regular expressions are not powerful enough to determine the boundary tokens
accurately.

Some newer embedded languages maintain lexically identifiable boundaries (e.g.
PHP’s starting token is <?php and its ending token is ?>). Others contain bound-
aries that are only structurally or semantically detectable (e.g. Javascript’s left
boundary is <script language=javascript>).

4.2 Lexically Embedded Languages

Lexically embedded languages are those where the inner language has little or no
structure and can be analyzed by a finite automaton. To give an example, the typical
lexical description for the Java language includes standard regular expressions for
keywords, punctuation, and identifiers. The most complicated regular expressions
are reserved for strings and comments. A string is a sequence of characters bounded
by two double quote characters on either side. A comment is a sequence of characters
bounded by a /* on the left and a */ on the right. Inside these boundary tokens,
the traditional rules for Java lexing are suspended — no keywords, punctuation or
identifiers are found within. Most description writers will “turn off” the normal Java
lexical rules upon seeing the left boundary token, either by using lexer “condition”
states, 7 or by storing the state in a global variable. When the right boundary token
is detected, the state is changed back to the initial lexer state to begin detecting
keywords again.

From the perspective of an embedded language, it is obvious that strings and
comments form inner languages within the Java language that use completely differ-

7 Condition states are explicitly declared automaton states in Flex-based lexical descrip-
tions. They are often used to switch sub-languages.

10

Begel and Graham

ent lexical rules. Using Harmonia, we can split these out into modular components
and clean up the Java lexical specification in the process.

In the case of a string within a Java program, the two boundary tokens are
identical, and lexically identifiable by a simple regular expression. However, aside
from a rule that double quote may not appear unescaped inside a string, the double
quotes that form the boundaries are not part of the string data. This is also true
for comments — the boundary tokens identify the comment to the parser, but do
not make up the comment data.

4.3 Syntactically Embedded Languages

Syntactically embedded languages are those where the inner language has its own
grammatical structure and semantic rules. Compilers for syntactically embedded
languages typically use a number of ad hoc techniques to process them. One com-
mon technique is to ignore the inner language, for example, as is done with SQL
embedded in C. C analysis tools know nothing about the lexical or grammatical
structure of SQL, and in fact, treat the SQL code as a string, performing no static
checking of its correctness. 8 This lack of analysis leaves the programmer at risk
for runtime parse errors that should have been caught at compile-time. Similarly,
in Flex, C code is passed along as text by the Flex analyzer, and subsequently
packaged into a C program compiled by a conventional C compiler.

In the next section, we show how language descriptions are written in Blender,
our combined lexer and parser generator tool.

5 Blender Language Descriptions for Embedded Lan-
guages

Lexical descriptions are written in a variant of the format used by Flex. The header
contains a set of token declarations which are used to name the tokens that will be
returned by the actions in this description. At the beginning of a rule is a regular
expression (optionally preceded by a lexical condition state) that when matched
creates a token of the desired type(s) and returns it to the parser.

Grammar descriptions are written in a variant of the Bison format. Each gram-
mar consists of a header containing precedence and associativity declarations, fol-
lowed by a set of grammar productions. To support descriptional modularity, one or
more %import-token declarations are written to specify which lexical descriptions
to load (of which one is specified as the default) in order to find tokens to use in this
grammar. In addition to importing tokens, a grammar may import nonterminals
from another grammar using the %import-grammar declaration. Grammar produc-
tions have no associated actions. The only action of the runtime parser is to produce
a parse tree/forest from the input. The language designer writes a tree-traversing
semantic analysis phase to express any desired actions.

Imported (non-default) terminals and nonterminals are referred to in this paper
as symbollanguage. An imported symbol causes an inner language to be embedded

8 This incomplete and inappropriate lexing forces programmers to escape characters in
their embedded SQL queries that would not be necessary when using SQL alone.

11

Begel and Graham

in the outer language.
An example of a comment embedded in a Java program is:
/* Just a comment */

To embed the comment language in the outer Java grammar, the following rule
might be added:

comment → SLASHSTAR COMMENTDATAcomment-lang STARSLASH

In Blender, boundary tokens for an inner language are specified with the outer
language, so that the outer analyzer can detect the boundaries. The data for the
inner language is written in a different specification, named comment-lang, which
is imported into the Java grammar. In this simple case, the embedding is lexical.
Comment boundary tokens are described by regular expressions that detect the
tokens /* and */. They are placed in the main Java lexical description (the one
that describes keywords, identifiers and literals).

The comment data can be described by the following Flex lexical rule which
matches all characters in the input including the carriage returns.

.|[\r\n] { yymore(); break; }

However, this specification would read beyond the comment’s right boundary
token. Our solution, which is specialized to the peculiarities of a Flex-based lexer
(and might be different in a different lexer generator), is to introduce a special
keyword, END LEX, into any lexical description that is intended to be embedded in
an outer language. END LEX will stand in for the regular expression that will detect
the */. Blender will automatically insert this regular expression based on the right
boundary token following the COMMENTDATA terminal. For those familiar with Flex,
the finalized description would look like:

%{ int comment_length; %}
%token COMMENTDATA
%%
END_LEX { yyless(comment_length); RETURN_TOKEN(COMMENTDATA); }
.|[\r\n] { yymore(); comment_length = yyleng; break; }

We must be careful to insert this new END LEX rule before the other regular ex-
pression due to Flex’s rule precedence property (lexemes matching multiple regular
expressions are associated with the first one), or Flex will miss the right boundary
token. In addition, since the COMMENTDATA lexeme would only be returned once
the right boundary token has been seen, its text would accidentally include the
boundary token’s characters. We use Flex’s yyless() construct to push the right
boundary token’s characters back onto the input stream (and thus be made available
to be matched by a lexer for the outer language), and then return the COMMENTDATA
lexeme.

This sort of lexical embedding enables one to reuse common language compo-
nents in several programming languages. For example, even though Smalltalk and
Java use different boundary tokens for strings (Java uses " and Smalltalk uses ’),
their strings have the same lexical content. Lexically embedding a language (such
as this String language) enables a language designer to reuse lexical rules that may
have been fairly complex to create, and might suffer from maintenance problems if
they were duplicated.

12

Begel and Graham

Syntactic embedding is easier to perform because of the greater expressive power
of context-free grammars. One simply uses nonterminals from the inner language
in the outer language. Following is an example of a grammar for Flex lexical rules:

rule → regexp rootregexp WSPC ccode

ccode → LBRACE compound stmtc RBRACE NEWLINE

| compound stmtc NEWLINE

A Flex rule consists of a regular expression followed by an optionally-braced
C compound statement. The regular expression is denoted by the regexp root
nonterminal from the regexp grammar. The symbol WSPC denotes a white-space
character. The compound statement is denoted by the compound stmt from the
C grammar.

We can now show one of the lexical ambiguities associated with legacy embedded
languages. A left brace token is described by the character {, in both Flex and in C.
A compound statement in C may or may not be bracketed by a set of curly braces.
When a left brace is seen, it can belong either to the outer language for Flex or
to the inner C language. Choosing the right language usually requires contextual
information that is only available to a parser. Even the parser can only choose
properly when presented with both choices, a Flex left brace token and a C left
brace token. This is another example of a single lexeme with multiple lexical types;
its resolution requires enhancements to both the lexer and parser generators as well
as enhancements to the parser.

In the next section, we show how embedded terminals and nonterminals are
incorporated in our tools.

6 Blender Lexer and Parser Table Generation for Em-
bedded Languages

When a Blender language description incorporates grammars for more than one
language, the grammars are merged. 9 Each grammar symbol is tagged with its
language name to ensure its uniqueness. Parser generation proceeds normally as for
a GLR parser generator (i.e. LALR(1) with GLR conflict resolution).

When a Blender language description incorporates more than one lexical descrip-
tion, all of them are combined. In each description, any condition states declared
(including the default initial state) are tagged with their language name to ensure
their uniqueness. All rules are then merged together into a single list of rules. Each
rule whose condition state was not explicitly declared is now declared to belong to
the tagged initial condition state for its language. The default lexical description’s
initial condition state is made the initial condition state of the combined specifica-
tion. Rules that were declared to apply to all condition states (denoted by <*>
at the beginning of the rule) are subsetted to apply only to those states declared
for that particular language. This state-renaming scheme avoids any problems that
the reordering of the rules may cause to the semantics of each language’s lexical
specification.

9 GLR is closed under union.

13

Begel and Graham

However, now each embedded lexical description’s initial condition state is dis-
connected from the new initial state. It falls to the parser to set the lexer state before
each token is lexed. For each parse state created by the GLR parser generator, the
lexical descriptions to which the shift and reduce lookahead terminals belong are
determined. This information is written into a table mapping a parse state to a set
of lexical description IDs. At runtime, as the parser analyzes a document described
by an embedded language description, it uses this table to switch the lexer instance
into the proper lexical state(s) before identifying a lookahead token. If there is more
than one lexical state for a particular parse state, the parser has to tell the lexer
instance to switch into all of the indicated lexical states. However, any parse state
that has more than one lexical state causes the input stream to become ambiguous.
The analysis of this ambiguity is described in the next section.

7 Lexing and Parsing for Embedded Languages

Embedded languages add to the variety of input stream ambiguities described in
Section 3 by enabling the lexer and parser to simultaneously analyze the input with
a number of logical language descriptions. We make two more changes to the GLR
algorithm to handle embedded languages and illustrate the complete algorithm in
Figures 3 and 4.

Before lexing the lookahead token for each parser in PARSE-NEXT-SYMBOL(),
the lexical language(s) associated with each of the parse states is looked up in
the active-parsers list. If the language has changed, the state of the parser’s lexer
instance is reset to the initial lexical state of that language (via a lookup table
generated by Blender). When there is more than one lexical language associated
with the parse state, it implies that there is a lexical ambiguity on the boundary
between the languages. This situation is handled in the same way as the other input
stream ambiguities: a new lexer instance is created for each lexical language (and
set to the initial lexical state of that language), and a separate parser is created for
each lexer instance. Each forked lexer instance will then read the same characters
from the input stream but will interpret them differently because it is in a different
lexical state.

Next, if each parser has its own private lexer instance, and each lexer instance
is in a different lexical state when reading the input stream, then the input streams
may diverge at their token boundaries, with some streams producing fewer tokens,
some producing more. This may cause each parser to be at a different position in
the input stream than the others, which is a departure from the traditional GLR
parsing algorithm in which all parsers are kept in sync shifting the same lookahead
token during each major iteration. Unless we are careful, this could have serious
repercussions on the ability of parsers to merge, as well as performance implications
if one parser were forced to repeat the work of another.

To solve this problem, we observe that any two parsers that have forked will
only be able to merge once their parse state, lexer state and lookahead tokens are
the same. For out-of-sync parsers, this can only happen when the input streams
converge again after the language boundary ambiguities have been resolved. How-
ever, in the GLR algorithm given in Figures 1 and 2, only the active-parsers list is
searched for mergeable parsers. If a parser p is more than one input token ahead of

14

Begel and Graham

GLR-PARSE()

init active-parsers list to parse state 0
init parsers-ready-to-act list to empty
init lookahead-to-parse-state map

to empty
while not done

PARSE-NEXT-SYMBOL()

if accept before end of input
invoke error recovery

accept

PARSE-NEXT-SYMBOL()

SETUP-LEXER-STATES()

for each parse state
p ∈ active-parsers list

lexp one lookaheadp token
if lookaheadp is ambiguous

let q1 .. qn = copy parse state p

for each parse state q ∈ q1 .. qn

assign one alternative from
lookaheadp to q

add q to active-parsers list
for each parse state p ∈ active-parsers list

add <lookaheadp×p>

to lookahead-to-parse-state map
init shiftable-parse-states list to empty
copy active-parsers list to

parsers-ready-to-act list
while parsers-ready-to-act list 6= ∅

remove parse state p from list
DO-ACTIONS(p)

SHIFT-A-SYMBOL()

SETUP-LEXER-STATES()

for each parse state
p ∈ active-parsers list

let langs = lexer-langs[p]
if |langs| > 1

let q1 .. qn = copy parse state p

for each parse state qi ∈ q1 .. qn

if langsi 6= lexer language of lexp

set lex state of lexqi to
init-state[langsi]

add qi to active-parsers list
else if langs0 6= lexer language of lexp

set lex state of lexp to
init-state[langs0]

DO-ACTIONS(parse state p)

look up actions[p×lookaheadp]
for each action

if action is SHIFT to state x

add <p, x> to shiftable-parse-states

if action is REDUCE by rule y

if rule y is accepting reduction
if at end of input return
if parsers-ready-to-act list = ∅

invoke error recovery
return

DO-REDUCTIONS(p, rule y)

if no parsers ready to act or shift
invoke error recovery and return

if action is ERROR and no parsers
ready to act or shift

invoke error recovery and return

Figure 3. A non-incremental version of the fully modified GLR parsing algorithm.
Continued in Figure 4.

another parser q, q will no longer be in the active-parsers list when p will be ready
to merge with it. If the merge fails to occur, parser p may end up repeating the
work of parser q.

We introduce a new data structure, a map from a lookahead token to the parsers
with that lookahead. The map is initialized to empty in GLR-PARSE(), and is filled
with each parser in the active-parsers list after each lookahead has been lexed in
PARSE-NEXT-SYMBOL(). Any new parsers created during DO-REDUCTIONS()
are added to the map. In DO-REDUCTIONS(), when a parser searches for another
to merge with, instead of searching the active-parsers list, it searches the list of

15

Begel and Graham

DO-REDUCTIONS(parse state p, rule y)

for each parse state p− below RHS(rule y) on a stack for parse state p

let q = GOTO state for actions[p−×LHS(rule y)]
if parse state q ∈ lookahead-to-parse-state[lookaheadp]

and lookaheadq = lookaheadp and lexq = lexp

if p− is not immediately below stack for parse state q

push q on stack p−

for each parse state r such that r ∈ active-parsers list
and r /∈parsers-ready-to-act list

DO-LIMITED-REDUCTIONS(r)

else
create new parse state q with lexp and lookaheadp

push q on stack p−

add q to active-parsers list
add q to parsers-ready-to-act list
add <lookaheadq×q> to lookahead-to-parse-state map

DO-LIMITED-REDUCTIONS(parse state r)

look up actions[r×lookaheadr]
for each REDUCE by rule y action

if rule y is not accepting reduction
DO-REDUCTIONS(r, rule y)

SHIFT-A-SYMBOL()

clear active-parsers list
for each <p, x> ∈ shiftable-parse-states

if parse state x ∈ active-parsers list
push x on stack p

else
create new parse state x with lexp and lookaheadp

push x on stack p

add x to active-parsers list

Figure 4. The remainder of a non-incremental version of the fully modified GLR parsing
algorithm.

parsers in the range of the map associated with the parser’s lookahead. In the
case where all parsers remained synchronized at the same lookahead terminal, this
degenerates to the old behavior. But for parsers that get out of sync, this enables
the late parser to merge with a parser that has already moved past that terminal,
thereby avoiding repeated work.

If the entries in the map were never removed, the map would grow as the number
of parsers created during that parse. In an incremental setting like ours, the number
of parsers is bounded by the number of tokens examined during the parser (which
is bounded by the size of the edited region of text). To be more memory efficient,

16

Begel and Graham

entries are removed from the map when their lookaheads are no longer accessible.
The active-parsers list is sorted by the offset in the input stream of each parser’s
lookahead terminal. Informed by this sorted list, as soon as the last parser shifts
past a particular lookahead terminal, that lookahead (and its range of parsers) is
removed from the map. Thus, the memory overhead of the map can be bounded
by the dynamic separation of the parsers, rather than the entire size of the edited
region.

8 Related Work

Yacc [6], Bison [3], and their derivatives, introduced in the late 1970s and widely
used, make the generation of C-, C++- and Java-based parsers for LALR(1) gram-
mars relatively simple. These parsers are often paired with a lexical generator
(Lex [8] for Yacc, Flex [10] for Bison, and others) to generate token data structures
as input to the parser. Improvements on this fairly stable base include GLR parser
generation [12,15], found in ASF+SDF [7], and more recently in Elkhound [9], D
Parser [11], and Bison 1.50. Incremental GLR parsing was first described and im-
plemented by Wagner and Graham [20,23,24] and has been improved in the last few
years by our Harmonia project.

There has been considerable work in the ASF+SDF research project [7] on the
analysis of legacy languages, as well as language dialects. One central aspect of this
work increases the power of the analyses by moving the lexer’s work into the parser
and simply parsing character by character. Originally described as scannerless pars-
ing [13,14], this idea has been adapted successfully by Visser to GLR parsing [18,19].
Visser merges the lexical description into the grammar and eliminates the need for
a special-purpose analysis for ambiguous lexemes. Some of the messiness of Flex
interaction that we describe for embedded languages can be avoided. In making
this change, however, some desirable attributes of a separate regular-expression-
based lexer, such as longest match and order-based matching, are lost, requiring
alternate, more complex, implementations based on disambiguation filters that are
programmed into the grammar [17].

In the Harmonia project, a variant of the Flex lexer is used – historically, be-
cause of the ability to re-use lexer specifications for existing languages, but more
importantly, because a separate incremental lexer limits the effects of an edit upon
re-analysis. In Harmonia’s interactive setting, the maintenance of a persistent parse
tree and the application of user edits to preexisting tokens in the parse tree con-
tribute heavily to its interactive performance. The incremental lexer affords a uni-
form interface of tokens to the parser, even when the lexer’s own input stream
consists of a variety of characters, normal tokens and ambiguous tokens created by
a variety of input modes.

In principle, both incrementality and the extensions described in this paper
could be added to scannerless GLR parsers. However, as always, the devil is in the
details. In an incremental setting, parse tree nodes have significant size because they
contain data to maintain incremental state. If the number of nodes increases, even
by a linear factor, performance can be affected. More significantly, incremental
performance is based on the fact that the potentially changed region of the tree
can be both determined and limited prior to parsing by the set of changed tokens

17

Begel and Graham

reported from the lexer. For example, only a trivial amount of reparsing is needed if
the spelling of an identifier changes, since the change does not cross a node boundary.
Although we have not done a detailed analysis, our intuition is that without a lexer,
the potentially changed regions that would end up being re-analyzed for each change
would be considerably larger.

Aycock and Horspool [1] propose an ambiguity-representing data structure sim-
ilar to our AmbigNode. They discuss lexing tokens with multiple lexical types, but
do not discuss how to handle other lexical ambiguities. Their scheme also requires
that each alternate token stream be synced up at all times to one another (insert-
ing null tokens to pad out the varying token boundaries). Our mechanism is able
to fluidly handle overlapping token boundaries in the alternate character streams
without extraneous null tokens.

CodeProcessor [16] has been used to write language descriptions for lexically em-
bedded languages. CodeProcessor also maintains persistent document boundaries
between embedded documents.

9 Future Work and Conclusion

New techniques being developed in our research group for batch GLR parser error
recovery do not yet take into account the ambiguities discussed in this paper. Exten-
sion of the work above to incorporate batch error recovery is ongoing. (Incremental
error recovery is change-based and is more easily extended.)

Semantic analysis of embedded languages remains an interesting challenge. How
can semantic analyses for independently-defined languages be composed as modu-
larly as lexical and syntactic descriptions? The interaction of two language seman-
tics on their document/subdocument boundaries must be defined by the language
designer. The composition algorithm becomes complicated if semantic entities from
the inner language can be seen or affected by the outer language (and vice versa).

Automated semantic disambiguation of both homophones and syntactic ambi-
guities will require integration with name resolution and type checking. In addition,
to handle ambiguities that arise in an interactive setting (e.g. via edits in a pro-
gram editor) semantic information must be persistent and incrementally updateable.
Such persistence will enable analysis of edits to a portion of the program to use se-
mantic information from surrounding code to help disambiguation (for example,
by providing a list of all legal visible bindings at the edit location). A MultiText
identifier token appearing in a variable use position can be disambiguated if one of
its alternatives matches a definition that is in scope and has the right static type.
Our solutions to these problems are still in progress.

In this paper, we have described tools and analyses to handle embedded lan-
guages, programming by voice, and support for legacy languages — situations that
are poorly supported by contemporary language analysis tools. We classified the
lexical ambiguities caused by these situations into four types, and developed both a
lexer and parser generator and a set of lexing and parsing analysis enhancements to
address each one. We then extended these methods to embedded languages. Our
work gives language designers several more tools with which to more easily describe
and analyze the complex programming languages of today, and of tomorrow.

18

Begel and Graham

References

[1] John Aycock and R. Nigel Horspool. Schrödinger’s token. Software Practice
and Experience, 31(8):803–814, July 2001.

[2] M. Boshernitsan. Harmonia: A flexible framework for constructing interactive
language-based programming tools. Technical Report UCB/CSD-01-1149,
Computer Science Division – EECS, University of California, Berkeley, 2001.
M.S. Report.

[3] Charles Donnelly and Richard Stallman. Bison: the Yacc-compatible parser
generator. Free Software Foundation, December 1990.

[4] Eclipse. http://www.eclipse.org.

[5] Harmonia Project Web Site. http://harmonia.cs.berkeley.edu.

[6] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX
Programmer’s Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston,
New York, NY, USA, 1979. AT&T Bell Laboratories Technical Report July 31,
1978.

[7] Paul Klint. A meta-environment for generating programming environments.
ACM Transactions of Software Engineering and Methodology, 2(2):176–201,
March 1993.

[8] Michael E. Lesk and Eric Schmidt. Lex — A lexical analyzer generator. In
UNIX Programmer’s Manual, volume 2, pages 388–400. Holt, Rinehart, and
Winston, New York, NY, USA, 1979. AT&T Bell Laboratories Technical Report
in 1975.

[9] Scott McPeak. Elkhound: A fast, practical GLR parser generator. In Compiler
Construction, 2004.

[10] Vern Paxson. Flex – fast lexical analyzer generator. Free Software Foundation,
1988.

[11] John Plevyak. D Parser Homepage. http://dparser.sourceforge.net.

[12] Jan Rekers. Parser Generation for Interactive Environments. Ph.d.
dissertation, University of Amsterdam, 1992.

[13] D. J. Salomon and G. V. Cormack. Corrections to the paper: Scannerless
NSLR(1) Parsing of Programming Languages. ACM SIGPLAN Notices,
24(11):80–83, November 1989.

[14] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of
programming languages. In Proceedings of the SIGPLAN ’89 Conference on
Programming Language Design and Implementation, pages 170–178, 1989.

[15] Masaru Tomita. Efficient Parsing for Natural Language — A Fast Algorithm
for Practical Systems. Int. Series in Engineering and Computer Science. Kluwer,
Hingham, MA, 1986.

19

http://www.eclipse.org
http://harmonia.cs.berkeley.edu
http://dparser.sourceforge.net

Begel and Graham

[16] Michael L. Van De Vanter and Marat Boshernitsan. Displaying and
editing source code in software engineering environments. In Proceedings of
Second International Symposium on Constructing Software Engineering Tools
(CoSET’2000), pages 39–48, Limerick, Ireland, 2000.

[17] Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser.
Disambiguation filters for scannerless generalized LR parsers. In Compiler
Construction (CC ’02), pages 143–158, 2002. In Lecture Notes in Computer
Science 2304.

[18] E. Visser. Scannerless generalized-LR parsing. Technical Report P9707,
Programming Research Group, University of Amsterdam, 1997.

[19] Eelco Visser. Syntax Definition for Language Prototyping. Ph.d. dissertation,
University of Amsterdam, 1997.

[20] Tim A. Wagner. Practical Algorithms for Incremental Software Development
Environments. Ph.d. dissertation, University of California, Berkeley, March 11,
1998. Technical Report UCB/CSD-97-946.

[21] Tim A. Wagner and Susan L. Graham. Efficient self-versioning documents. In
Proceedings of COMPCON ’97, San Jose, CA, 1997.

[22] Tim A. Wagner and Susan L. Graham. General incremental lexical analysis,
1997. Unpublished.

[23] Tim A. Wagner and Susan L. Graham. Incremental analysis of real
programming languages. In Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 31–
43, 1997.

[24] Tim A. Wagner and Susan L. Graham. Efficient and flexible incremental
parsing. ACM Transactions on Programming Languages and Systems,
20(5):980–1013, September 1998.

[25] XEmacs: The next generation of Emacs. http://www.xemacs.org.

20

http://www.xemacs.org

	Introduction
	Lexing and Parsing in Harmonia
	Ambiguous Lexemes and Tokens
	Single Spelling -- One Lexical Type
	Single spelling -- Multiple Lexical Types
	Multiple Spellings -- One Lexical Type
	Multiple Spellings -- Multiple Lexical Types

	The Nature of Embedded Languages
	Boundary Identification
	Lexically Embedded Languages
	Syntactically Embedded Languages

	Blender Language Descriptions for Embedded Languages
	Blender Lexer and Parser Table Generation for Embedded Languages
	Lexing and Parsing for Embedded Languages
	Related Work
	Future Work and Conclusion
	References

