
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative
Software Development

VENKATESH POTLURI∗, Paul G. Allen School of Computer Science and Engineering at University of Washington,

USA

MAULISHREE PANDEY∗, University of Michigan School of Information, USA

ANDREW BEGEL,Microsoft Research, USA

MICHAEL BARNETT,Microsoft Research, USA

SCOTT REITHERMAN,Microsoft Research, USA

COVID-19 accelerated the trend toward remote software development, increasing the need for tightly-coupled synchronous collabora-
tion. Existing tools and practices impose high coordination overhead on blind or visually impaired (BVI) developers, impeding their
abilities to collaborate effectively, compromising their agency, and limiting their contribution. To make remote collaboration more
accessible, we created CodeWalk, a set of features added to Microsoft’s Live Share VS Code extension, for synchronous code review
and refactoring. We chose design criteria to ease the coordination burden felt by BVI developers by conveying sighted colleagues’
navigation and edit actions via sound effects and speech. We evaluated our design in a within-subjects experiment with 10 BVI
developers. Our results show that CodeWalk streamlines the dialogue required to refer to shared workspace locations, enabling
participants to spend more time contributing to coding tasks. This design offers a path towards enabling BVI and sighted developers
to collaborate on more equal terms.

CCS Concepts: • Social and professional topics → People with disabilities; • Software and its engineering → Collaboration
in software development; • Human-centered computing→ Synchronous editors.

Additional KeyWords and Phrases: software developers, collaboration, blind or visually impaired, accessibility, sound effects, workspace
awareness

ACM Reference Format:
Venkatesh Potluri, Maulishree Pandey, Andrew Begel, Michael Barnett, and Scott Reitherman. 2022. CodeWalk: Facilitating Shared
Awareness in Mixed-Ability Collaborative Software Development. In The 24th International ACM SIGACCESS Conference on Computers

and Accessibility (ASSETS ’22), October 23--26, 2022, Athens, Greece. ACM, New York, NY, USA, 24 pages. https://doi.org/10.1145/
3517428.3544812

1 INTRODUCTION

Synchronous software engineering activities like pair programming and code walkthroughs are useful for developers
to share knowledge, improve and refactor the source code, and debug the code together. Developers have to remain
closely synced to achieve effective collaboration and communication in these activities. If a developer moves to a new
location in the code i.e. line, function or file, their collaborator should follow them immediately; real-time edits should
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/3517428.3544812

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

become apparent right away to enable quick feedback. When collocated, sighted developers work together on one
system to observe and discuss the source code without expending additional effort to stay on the same page. However,
referencing a collaborator’s screen is inaccessible for blind or visually impaired (BVI) developers, often requiring them
to drive the collaboration on their computers [53].

anonymous_2

Following anonymous_2

Fig. 1. VS Code is an IDE that offers integrated collaboration support through its Live Share extension. Live Share enables developers
to work together on source code through document sharing and co-editing in their respective IDEs. It represents collaborators’
location and selection in the source code through colorful cursors.

This screen inaccessibility is magnified in remote synchronous collaboration. Developers typically either use screen
shares or integrated development environments (IDEs) with integrated collaboration support (e.g. VS Code, JetBrains,
Floobits, CodeTogether, etc.) to work synchronously (see Figure 1). These approaches assume that everyone can see
their screens [53, 73]. However, BVI developers cannot access the screen share video or the visual awareness cues in
IDEs through assistive technologies such as screen readers. They have to constantly request that their sighted colleagues
speak code locations, such as line numbers, functions, file names, etc., out loud, in order to stay in sync. Much like
collocated collaboration, BVI developers end up driving the activity. Sometimes, they even hand off their computer’s
control to sighted colleagues in refactoring and debugging tasks, which reduces their own agency.

That task of providing accessible awareness information lies at the heart of facilitating effective remote collaborations
in mixed-ability contexts [25, 34, 53]. Research has begun to explore making shared workspaces accessible to BVI
users [18, 38]. However, these solutions are intended for general-purpose document co-editing; they do not cater to the
unique needs of software engineering tasks like pair programming and code walkthroughs.

Prior to our work, no programming environment with accessible, remote, synchronous co-editing support was publicly
available. We have created and released such an environment, in accordance with four design criteria (see §2.4), which
include maintaining the agency of BVI developers and reducing their burden to drive the collaboration.

In this paper, we present CodeWalk, a set of features added to Microsoft’s Live Share VS Code extension1 (available
to all Live Share users since November 2021), with support for remote, synchronous code review and refactoring tasks.
Our design derives from an investigation of relevant literature in remote collaboration and a set of formative design
activities led by a BVI developer and researcher on the team. During our design process, we compared techniques for
capturing a collaborator’s navigation, editing, and referential (i.e., pointing at or highlighting parts of the code) activities
and presenting them to BVI users using a combination of sound effects and speech (see §4.1). We evaluated CodeWalk
in a within-subjects controlled experiment involving 10 BVI professional developers (see §5). Our results show that
CodeWalk increased study participants’ awareness of their collaborator’s actions and reduced the coordination overhead
1https://docs.microsoft.com/en-us/visualstudio/liveshare/use/enable-accessibility-features-visual-studio-code

2

https://docs.microsoft.com/en-us/visualstudio/liveshare/use/enable-accessibility-features-visual-studio-code

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

required to sync on code locations. Participants strongly preferred CodeWalk over the baseline — the unextended
version of VS Code with Live Share which provides awareness cues visually (see §6).

Our work is an end-to-end demonstration of how to improve the accessibility of an IDE’s remote collaboration
features. We make the following contributions to the HCI, accessibility, and software engineering design communities.

(1) A design for supporting tightly-coupled synchronous programming activities (see §3 and §4).
(2) CodeWalk, an implementation of a set of features added to Microsoft’s Live Share VS Code extension that

makes synchronous programming tasks accessible to BVI developers (see §4).
(3) Validation of our design’s capability to increase shared awareness and facilitate efficient synchronization during

remote collaboration, meeting our design criteria (see §5 and §6).

The COVID-19 pandemic has exacerbated the need for collaborative programming environments that can enable
BVI developers, one of the largest physical disability groups of software developers [67], to participate in remote work
at par with their sighted peers. CodeWalk addresses this timely need and provides a foundation for future software
engineering tools to facilitate accessible collaborations.

2 BACKGROUND AND RELATEDWORK

2.1 Awareness for Sighted People in Remote Collaborations

Groupware is only effective when it supports collaboration across time and space constraints in a shared workspace [32].
Buxton describes a shared workspace in terms of (1) person space [14], (2) task space [14], and (3) reference space [13].
Person space offers a strong sense of copresence with remote collaborators. For instance, teleconferencing platforms
combine video, audio, and even chat to convey facial expressions, gestures, and spoken messages. Sharing the task
space refers to being copresent in the context of the task itself. In collaborative software development activities, the
shared source code forms the task space. Reference space is where the person and task overlap [13], allowing remote
participants to gesture and point to reference one another as well as the task at hand. An example is using text
highlighting during screen shares to direct collaborators’ attention to specific details.

Dourish and Bellotti identified two approaches to present awareness information in shared workspaces — active and
passive [20]. Active approaches include role assignment (e.g. owner, reviewer, editor, etc), audit trails, annotations, and
messaging. Active mechanisms require explicit action on collaborators’ part (e.g. leaving a comment on the shared
artifact like document or source code). Conversely, conveying a collaborator’s whereabouts and edits automatically in
real-time is a passive approach — collaborators do not have to make explicit efforts to communicate their actions.

Scholars and practitioners have blended different kinds of shared workspaces with active and passive approaches
to communicate awareness information in remote synchronous software development. Consider the example of real-
time co-editing of source code. A primary concern is that the shared activity should not introduce bugs, preventing
the code from successfully compiling [23]. IDE plugins like FASTDash [7] and Syde [26] summarize the real-time
activity of collaborators to help them avoid editing conflicts. They also allow developers to leave annotations to inform
collaborators of their actions. Systems like AtCoPE [21] and Collabode [23] allow programmers to concurrently edit
the source code, enabling collaboration in a shared task space. CodePilot [76] extends the activities supported in the
shared task space to allow collaboration across the software development process — editing, testing, debugging, and
even version control.

Real-time activities like pair programming and code walkthroughs impose an additional requirement on developers
to remain closely coordinated [74]. These activities often rely on explicit role assignment. In one common form of

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

pair programming, one programmer drives (leader) the session and writes or explains the code; the other programmer
follows (follower) to offer feedback or heed the explanations. To collaborate efficiently and maintain mutually recursive
awareness of one another (also known as shared intentionality [74]), the participating developers must look at the same
regions within the source code. Saros [60], an Eclipse plug-in, displays each programmer’s text cursor to communicate
their location in the source code and provides a Follow mode for programmers to sync their IDE viewports during pair
programming and code walkthroughs. D’Angelo and Begel used a novel gaze visualization technique to communicate
the lines of code a collaborator was looking at during pair programming [16]. The visualization changed color when
both programmers’ gaze overlapped, communicating awareness and co-presence passively in shared task space. Their
evaluation of the gaze visualization technique revealed that when the collaborators’ eye gaze was in sync, they more
efficiently spoke about their source code using deictic references (e.g. terms such as this, here, that, etc.)

The research discussed above has focused solely on collaborations among sighted developers; they do not report
anything about the needs of BVI developers. The tools noted above rely heavily on visual information, which leads to
significant accessibility problems in mixed-ability contexts [36, 54], including software development [53].

2.2 Inaccessibility for BVI Programmers in Software Development

Initial empirical studies identified accessibility issues with programming tools, like seeking information in IDEs and
challenges in doing UI development [1, 42, 50]. Albusays et al. found that IDEs rely on visual aids like indentation and
syntax highlighting to structure the source code, which favor navigation for sighted developers [2]. On the other hand,
command line interfaces (CLIs) present text in unstructured form [61], which limit BVI developers in navigating the text
efficiently. Researchers have designed tools to improve navigation [3, 4, 30, 62] and address the accessibility challenges
in tasks like code editing [57] and debugging [68]. Potluri et al. designed CodeTalk, a Visual Studio extension, to improve
code glanceability, navigation and debugging by combining UI enhancements, speech, and sound effects [56].

Accessibility challenges are further complicated by workplace dynamics and project management practices [28, 58].
BVI developers often reach out to their sighted colleagues to solve breakdowns in programming tools, especially selecting
teammates who understand workflows with assistive technologies [71]. However, help-seeking in the workplace can
be complicated by the team and organization’s attitudes towards accessibility and inclusion [53].

Accessibility and HCI research has primarily studied BVI developers’ as individual contributors, resulting in limited
understanding about the accessibility of collaborative programming activities. The exceptions are the research efforts
focused on creating inclusive learning experiences for novice BVI programmers [29, 35, 41, 48, 49, 69]. Pandey et al.
were the first to report on the accessibility of collaborative software development [53]. They highlight the sociotechnical
challenges in activities like pair programming, code reviews, and code writing that limit the contributions of BVI
developers during collaboration. The paper reported that BVI developers have to perform additional work, often invisible
to their sighted colleagues [12], to address the accessibility challenges in the workplace [53].

2.3 Accessibility for Mixed-Ability Programmers in Remote Software Development

Given the limited research on awareness needs of BVI developers, we turn to the larger accessibility literature to
identify how sighted and visually impaired people achieve real-time, remote collaboration. A common approach is
asking collaborators to describe their actions, but sighted people often forget to verbalize the relevant details, resulting
in incomplete collaborator awareness [17, 53]. BVI people hesitate to repeatedly request information to avoid slowing
down the pace of the collaboration or imposing on their sighted collaborators [17].

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

In another workaround, collaborators work on their respective computers with the BVI developer sharing their
screen using a video calling application to enable the sighted developer to follow them [53]. Collaborators rely on chat
features to copy-paste text and share line numbers, etc., to collaborate more accessibly. While this workaround allows
a sighted developer to track a BVI developer’s location, the information is not reciprocated to that BVI developer. It
also places the onus of driving the collaboration session on BVI developers. BVI people occasionally have to relinquish
control of their computers to let the sighted colleague control their screen and make changes in real-time [73]. Since
BVI and sighted computer users navigate interfaces differently [8, 55], the approach causes the screen reader to change
focus unexpectedly without feedback to the BVI person, impinging on their agency, and raising privacy concerns [73].
Latency issues also lead to unwieldy drag and click interactions for sighted collaborators.

Another strategy is to use NVDA Remote [75] or JAWS Tandem [63], screen reader addons that transmit announce-
ments instead of simply relaying the video of the collaborator’s screen during screen share [9, 73]. Unfortunately, these
addons often suffer from long latency, causing the BVI person to receive announcements after 15-30 seconds [73]. Plus,
sighted collaborators have to set up the screen reader and the addon with matching configurations at their ends, giving
them additional invisible coordination work and adding to the total collaboration time [53]. Tools like Sinter address
the latency issues and strict configuration requirements of remote screen reading but have not yet been evaluated in
collaborative contexts [10].

Das et al. designed auditory representations to support asynchronous collaborator awareness for activities such as
commenting and editing in shared text documents [18]. The evaluation of their design elements revealed that the use of
non-speech audio, voice modulation, and contextual presentation could improve awareness of BVI authors. Recently,
CollabAlly [38] and Co11ab [19], both Google Docs extensions, have been designed to support synchronous collaborator
awareness in shared document editing. The extensions use spatial audio and voice fonts to represent the actions of
collaborators joining and leaving the document, addition and deletion of comments, and movement of their cursor into
or away from the BVI user’s paragraph. Co11ab also uses a variant of Follow mode [60] to sync collaborators’ viewports.
Shared document editing differs from pair programming and code walkthroughs in an important way, however. Shared
document collaborators need real-time awareness to actively avoid each other’s cursors in order to prevent overwriting
collisions. Software development collaborators, on the other hand, intentionally work on the same lines of code together,
requiring close and immediate coordination for extended periods of time.

In summary, the workarounds discussed above insufficiently convey collaborator awareness, suffer from delays,
place a disproportionate burden on BVI people for driving the collaboration, and compromise their agency. Furthermore,
some of the proposed non-visual techniques [18, 38], which are designed for collaborative writing, will not fulfill the
unique needs of synchronous collaborative programming. We begin to address accessibility of collaborative software
development by designing design criteria for CodeWalk.

2.4 Design Criteria

Based on this literature review, we synthesize the following design criteria for CodeWalk. We annotate each criterion
with citations to the literature that inspired them.

• D1. to minimize the cognitive load on the BVI developer [18] (e.g., maintaining accessible workspace awareness [19,
38] while minimizing conflict with collaborators’ conversations) during synchronous programming activities

• D2. to maintain agency of BVI developers [65] in mixed-ability collaboration [17, 53]
• D3. to reduce the burden on BVI developers [73] of driving the collaboration session to accessibly collaborate [53]

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

Table 1. Descriptions of our code walkthroughs. Each walkthrough occurred between a pair of sighted and/or BVI developers along
with a sighted observer watching a shared screen or listening to a BVI developer’s screen reader.

ID Leader Follower Sighted Observer Task

CW1 Sighted BVI Watched sighted developer’s screen
CW2 BVI Sighted Watched sighted developer’s screen
CW3 Sighted BVI Listened to BVI developer’s screen reader
CW4 BVI Sighted Watched BVI developer’s screen

• D4. to support tightly-coupled collaboration between all collaborators [74]

3 DESIGN

In this section, we describe the formative design activities we conducted that led to the design of CodeWalk.

3.1 Formative Design Activity 1: Choosing a Baseline IDE

Our first design activity was to choose a good baseline IDE to build upon, one that was already accessible by BVI
developers and had facilities for collaborative co-editing support. Several popular IDEs that offer collaborative co-editing
support, such as JetBrains CodeWithMe [33], Sublime [24] and Atom [22], are unfortunately difficult to use by BVI
developers. A few require BVI developers to perform additional setup steps and others even lack accessibility support
for screen reader users to be able to perform basic code editing [72].

By contrast, we found Microsoft’s Visual Studio Code IDE (VS Code) to be both accessible and easily extensible.
Its accessible command palette makes it easy for screen reader users to find commands. In addition, we learned that
the VS Code team speaks with the BVI developer community regularly to improve its accessibility [44, 45]. VS Code
supports collaborative work through its Live Share extension. Similar to Saros [60], Live Share supports synchronous
collaboration through a Follow mode feature, which draws the leader’s cursor in all of the followers’ IDEs and keeps
it in sync as the leader moves around the document. Live Share also supports co-editing, keeping a shared view of
the source code in sync between the connected parties. Though there is little information on the accessibility of Live
Share’s features for BVI developers, there are enough features to make it a good choice for our project’s baseline IDE.

3.2 Formative Design Activity 2: Code Walkthroughs

To assess the accessibility of VS Code with Live Share for teams with BVI and sighted developers, three of the authors
(one of whom is also a BVI developer) conducted four code walkthroughs (see Table 1). Two walkthroughs were led by
a sighted researcher and two were led by the BVI researcher-developer. We tried to cover all combinations of abilities in
a pair along with each taking on a leader or follower role. All of the walkthroughs involved mixed ability teams (CW1,
CW2, CW3, and CW4). In all of the walkthroughs, a third sighted researcher observed the shared screen, however in
code walkthrough CW3, the sighted observer simply tried to listen to and comprehend the (slowed down) screen reader
audio used by the BVI developer.

Each code walkthrough looked at different example source code from VS Code’s library of extensions. Each example
extension consisted of multiple files written in TypeScript, several files of which were read through during each
walkthrough. Each walkthrough was 60 to 90 minutes long.

In addition to recording the code walkthrough sessions, the sighted observer took detailed notes during each code
walkthrough, noting down accessibility breakdowns and workarounds. They minimized their interruptions, limiting

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

questions to clarifications of leader and follow actions to locate one another in each file and to help work around any
non-obvious accessibility barriers. In total, the sighted observer took six pages of notes. Immediately after each code
walkthrough, both the leader and the follower memoed, reflecting on their experiences [59]. As a group, the entire
research team rewatched the sessions from the recording and discussed the memos and notes in their weekly meetings.

We observed that conversations between leader and follower primarily focused on code discussions and clarification
questions during breakdowns in accessibility. When in Live Share’s Follow mode, the IDE drew each developer’s
cursor and synced their viewports on everyone’s screen. Unfortunately, since this information was only visual, the
BVI follower was not aware of any of it and was frequently lost. Consequently, the sighted leader had to speak their
location out loud to the BVI follower to help facilitate tightly-coupled collaboration (Design Criterion D4). This active
approach was error-prone because the sighted leader sometimes forgot to mention their location, especially when they
were navigating quickly around the source code. The BVI developer initiated another workaround, asking clarification
questions to sync with the leader. This often put the burden on the BVI developer (Design Criterion D3) to request
enough accessible information to follow along in the code walkthrough.

When the BVI developer led the code walkthrough, they never got lost. However, they often became unsure whether
the Follow mode had really synced the pairs’ viewports, and had to ask their sighted follower to confirm they could see
the expected code in their window. Finally, the sighted collaborator often talked at the same time as the BVI developer
was trying to listen to their screen reader. This made it difficult for the BVI developer to listen to either audio stream.
The research team discussed that some of the audio overlaps could be avoided if the sighted developer knew when the
BVI developer’s screen reader was speaking. But, revealing the use of AT is a sensitive issue for many screen reader
users, thus we decided to designed CodeWalk’s features to judiciously and carefully make use of audio effects and
speech to reduce the cognitive load (Design Criterion D1) experienced by the BVI developer.

3.3 Formative Design Activity 3: Synthesizing Code Walkthrough Scenarios

Inspired by our literature review and our code walkthroughs, we created 15 scenarios comprising short events that
occurred (or we wished had occurred if the IDE were more accessible) across our code walkthroughs. In addition, we
considered both sighted and BVI developers as leaders, but skipped scenarios involving solely sighted developers. Some
scenarios explore possible communication mechanisms between leaders and followers (e.g., non-verbal, notifying the
leader, notifying all collaborators, or not notifying at all and syncing up after the session). All of these scenarios are
listed in Table 2.

Here is an illustration of Scenarios 1 and 2, which expose some inaccessible features of the baseline IDE and the
design features we explored to address them. Blake, a sighted developer, wants to refactor a piece of code. He asks
Mia, a BVI developer and his colleague for advice. They set up an audio call to verbally discuss the code as they view
the code in a Live Share collaboration session hosted by Blake. Blake shares the session link with Mia, who joins the
session and is presented with Blake’s code in her IDE. Mia invokes the Follow mode command to stay in sync with
Blake’s viewport. As Blake navigates in the IDE, Mia’s IDE shows a copy of Blake’s cursor in a distinct color, which
unfortunately is not accessible to Mia. Though the viewport changes, Mia’s cursor remains untethered from Blake’s.
Therefore, Mia has to occasionally interrupt Blake to ask him to speak his line numbers and keywords out loud so that
she can navigate there herself and use her screen reader to read the code that Blake is referring to.

This scenario exposes the limitations and asymmetry of current IDEs in supporting tightly-coupled collaboration
and shared awareness (Design Criterion D4) among sighted and BVI developers. To address the asymmetry, CodeWalk
automatically tethers a BVI developer’s cursor to the leader’s (section 4.1), so that their cursors move in unison whenever

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

Table 2. Mixed ability code walkthrough scenarios that informed the design requirements for CodeWalk. Each scenario was inspired
by at least one code walkthrough. Sighted+ and BVI+ indicates more than one developer. Following or watching “on the side” splits
the VS Code editor and puts one in Follow mode.

Scenario Leader Follower Walkthrough Activity

1 Sighted BVI CW1, CW3 Follower joins collaboration session hosted by leader.
2 Sighted BVI CW1, CW3 Follower tethers cursor to leader.
3 Sighted BVI CW1 Follow leader ‘‘on the side’’ without tethering.
4 Sighted BVI CW1 Follower restarts tethering after watching leader ‘‘on the side’’
5 Sighted BVI CW1, CW3 Follower tells leader they are lost.
6 Sighted BVI CW1, CW3 Follower takes notes during collaborative session.
7 Sighted BVI CW1, CW3 Follower fails to notice what command the leader just used.
8 Sighted BVI CW1, CW3 Follower asks leader about the command they just used.

9 BVI Sighted CW2, CW4 Leader invites follower to join collaboration session.
10 BVI Sighted CW2, CW4 Leader jumps to follower’s cursor, answers the follower’s question,

and jumps back.
11 BVI Sighted CW2 Leader asks follower to show them something.
12 BVI Sighted CW2 Leader asks follower a question to test if they are lost.
13 BVI Sighted CW2, CW3 Follower asks for help using a ‘‘I need help’’ command.

14 BVI Sighted, BVI CW2, CW3, CW4 Leader gets follower’s cursor location from VS Code.
15 BVI Sighted+, BVI+ CW4 Leader gets approximate location of multiple followers from VS

Code.

the leader initiates the navigation action. However, this only happens in Follow mode. Now, Mia should normally have
no doubts about being in sync with Blake, but can still detach (i.e., turn off Follow mode) from the leader if she wants to
explore the code on her own. The feature can also be useful in Scenarios 9 through 13 where she leads the collaboration.
She does not have to worry about the correct code segment being displayed in Blake’s IDE.

Furthermore, to reduce the burden on BVI developers (Design Criterion D3), to preserve their agency (Design
Criterion D2), and minimize cognitive load, we designed several features in CodeWalk to convey a collaborator’s
location, navigation, and edit actions accessibly to BVI developers using a passive, automated approach. We describe
the detailed implementation of these features next.

4 CODEWALK

CodeWalk is a set of features released with Microsoft’s Live Share VS Code extension that supports accessible, remote,
synchronous code review and refactoring activities. We describe the cursor tethering and audible feedback features
that power its capabilities and discuss some of the implementation details that we found needed careful design.

4.1 Features

4.1.1 Cursor Tethering. Live Share’s Follow mode yokes each collaborator’s editor viewport together, a passive visual
mechanism that is inaccessible to BVI developers. CodeWalk facilitates tightly-coupled collaboration (Design Criterion
D4) by tethering BVI collaborators’ cursors with the host of a Live Share session. In designing this feature, we explored
several options to toggle tethering along with various levels of autonomy, ranging from always tethering cursors to
only tethering cursors when the user toggles Follow mode.

Always tethering the BVI developer’s cursor to their collaborator minimizes their cognitive load (Design Criterion
D1), but reduces their agency (violating Design Criterion D2), as the sighted colleague would have total control over

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

Table 3. Use of audio cues to convey awareness indicators in Follow mode (unless specified otherwise in the row)

Awareness
Information

Non-Speech
Indicator

Non-Speech
Indicator
Frequency

Speech
Indicator

Speech
Indicator
Frequency

Built-in
Visual

Indicator

Viewport scrolls Click wheel
sound

Every scroll
event

None None Screen scrolls

Scroll direction Falling or rising
tone depending
on direction

When scrolling
stops

None None Can be inferred
from the scrolling
viewport

Current
Viewport

None None ‘‘Lines X to Y on
screen’’

When scrolling
stops

Visible on screen

Cursor moves by
single line to line
N

Keyboard click Every cursor
move

‘‘Line N’’ 1.5 seconds after
cursor moves end

Cursor moves on
screen

Cursor moves
multiple lines to
line N

Falling or rising
tone depending
on move
direction

Every event ‘‘Line N’’ 1.5 seconds after
cursor moves end

Cursor moves on
screen

Cursor moves by
multiple lines to
line N

Falling or rising
tone depending
on move
direction

Every event ‘‘Line N’’ Every event Cursor moves on
screen

Selection Depends on
selection (key-
board/mouse)

Every event ‘‘Selection on
line N’’

1.5 seconds after
selection is made

Selection visible
on screen

Edits on
follower’s line

Keyboard type For every
character typed

None None Cursor moves on
screen; edits visi-
ble on screen

Edits on
follower’s line
(Follow mode off)

Keyboard type For every
character typed

‘‘<collaborator>
is editing the
same line as you’’

As long as edits
continue on the
same line

Cursor moves on
screen; edits visi-
ble on screen

Edits within 5
lines of follower
(Follow mode off)

Proximity sound For every
character typed

‘‘<collaborator>
is editing nearby’’

As long as edits
continue on the
same line

Cursor moves on
screen; edits visi-
ble on screen

Follow status Pull and push
sound

When follower
starts and stops
following leader

‘‘You are now fol-
lowing <collabo-
rator>’’

Every event None

their BVI colleague’s cursor. BVI and sighted developers navigate code and interfaces differently [2, 55, 56]; they may
want to read a part of the code that their sighted collaborator is talking about by character or by word, a kind of
fine-grained navigation a non-screen reader user has no idea about. To support this need, we support temporarily
untethering the BVI follower’s cursor whenever they move it around, giving them control to move the cursor to the
code they want to read. After 10 seconds of inactivity, CodeWalk retethers the cursors.

4.1.2 Conveying Collaborator Actions via Audio. CodeWalk uses a combination of sounds and speech to passively
communicate a tethered collaborator’s location and their navigation and edit actions, reducing the burden on BVI
developers to ask about them (Design Criterion D3). We explored several sound designs, drawing inspiration from
audio cues used by popular accessible navigation apps and operating systems. We experimented with futuristic artificial
sound effects as well as skeumorphic sounds of keyboard clicks and scroll wheels. We felt that since BVI developers

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

were already familiar with the sounds of standard computer hardware, the skeuomorphic sound effects would be the
best one to convey navigation actions. Navigation distance and direction lacked obvious skeumorphic analogs, so
we designed a set of artificial rising and falling tone sound effects to be played a short time after navigation activity
ends. If the user clicks the mouse somewhere else in the codebase, CodeWalk plays an artificial ‘‘teleportation’’ sound
instead of a mouse click to make it more obvious that something drastic has happened to the cursor location, which
may invalidate the mental model the BVI developer has of the region where they thought the cursor was located.

In designing using speech and sound effects, our primary focus is to minimize cognitive load relative to the
frequency and specificity of the information to be conveyed. We draw inspiration from accessible data visualization
and programming efforts [40, 66, 70] and use speech to announce highly specific information like line numbers, which
is needed less frequently. We use sound effects to convey less specific information, such as the actions performed and
navigation direction - these actions occur at a much higher frequency during collaboration. The use of speech and
sound effects has shown to improve awareness between collaborators [43]. Sound effects minimize cognitive load on
BVI developers (Design Criterion D1) because they do not require conscious interpretation and can be heard even when
a screen reader is actively speaking. However, they do not give enough information about a collaborator’s location.
To address this, after navigation activity has stopped for 1.5 seconds, CodeWalk uses computer-generated speech to
tell the BVI developer what line of code (and file name if it changed) they are now on. Most sound effects are around
200 ms (though one is longer, at 550 ms). Similarly, speech announcements are kept short and precise. The complete
business logic for CodeWalk’s sound effects and speech can be seen in Table 3.

16
17
18
19

##comment

print(’Hello’)

print(’World’)

print(’welcome’)

16
17
18
19

##comment

print(’Hello’)

print(’World’)

print(’welcome’)

16
17
18
19

##comment

print(’Hello’)

print(’World’)

print(’welcome’)

“Line 19”BVI follower’s cursor (grey) tethered
to sighted leader’s cursor (orange)

1.5s
Delay

16
17
18
19

##comment

print(’Hello’)

print(’World’)

print(’welcome’)

“Selection: print”CLICK CLICK CLICK

Fig. 2. Image shows BVI developer’s code editor as she follows a sighted leader. CodeWalk tethers the cursors of collaborators in
Follow mode. When the sighted leader uses arrow keys to navigate, CodeWalk plays skeuomorphic keyboard sounds for each line
moved. When they stop navigation at line 19, CodeWalk plays an artificial falling tone to indicate downward movement followed by
line number announcement. Similarly, when they highlight a word, CodeWalk announces the selection.

Sighted collaborators commonly use visual reference space gestures such as cursor location, text highlighting, and
mouse waving to refer to code [16], gestures largely unavailable to BVI developers [36, 54]. CodeWalk supports selection
awareness by speaking the portion of code highlighted by a collaborator. This simplifies the process of understanding
what a collaborator wants to talk about and reduces the burden on BVI developers to ask sighted colleagues to verbally
announce their selections. An example illustrating these sound effects and speech can be seen in Figure 2.

When a collaborator edits the code with their keyboard, sharper, shorter key click sound effects are played. If the
collaborators are untethered (i.e., Follow mode is off), then they may both be editing the document simultaneously.
The baseline VS Code Live Share gives no indicator that collaborators’ edits may collide, other than drawing the two
cursors near one another. This, of course, is inaccessible to BVI developers. In CodeWalk, whenever the collaborators
are editing within 5 lines of one another, CodeWalk speaks a warning, ‘‘your collaborator is editing nearby.’’ If the
collaborator is on the same line, the warning repeats, ‘‘your collaborator is editing the same line as you,’’ which should
hopefully cause the collaborators to stop what they are doing and negotiate their next actions together, verbally.

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

API Extension Points
e.g. Text Cursor API to track user 1’s locations,
Document Change API to track user 1’s edits, etc.

IDE for User 1: Sighted Developer

Microsoft Cognitive
Services API

Existing Co-editing Support

Announcement Text

Speech

Audio cue filename; Announcement text
e.g. keyclick.wav; “Line 22”

IDE for User 2: BVI Developer

CodeWalk

API Extension Points

Display User 1’s cursor in User 2’s IDE

Display User 2’s cursor in User 1’s IDE

User 2 Speaker

Existing Co-editing Support

Load and play audio cue + speech

Fig. 3. System Architecture Diagram for CodeWalk

4.2 System Implementation

The basic architecture of CodeWalk can be seen in Figure 3. Each developer runs an instance of the VS Code IDE, extended
by CodeWalk. CodeWalk extends four extensibility points provided by VS Code and Live Share (i.e., programming APIs
enabling third-party developers to enhance specific features of the IDE), which we illustrate in the following scenario
walkthrough.

Mia, a BVI developer (User 2 in Figure 3), installs CodeWalk along with Blake, a sighted colleague (User 1 in Figure 3).
Blake and Mia enter into a joint collaboration session facilitated by VS Code Live Share’s existing co-editing support.
Various extension points are triggered as they collaborate. The first triggers when Blake changes his cursor location. It
sends the new location to Mia’s IDE along with a tag explaining what action caused it. CodeWalk then runs through its
business logic (described in Table 3) to determine the kind of audio feedback to play (sounds and/or speech) and queues
them for playback on Mia’s computer. Each of Blake’s navigation actions may trigger a tuple of one or two sounds along
with a spoken message, each separated by a delay. Typically, the first sound is skeuomorphic (i.e. for key clicks, mouse
clicks, or the scroll wheel). It is followed by a 1.5-second delay, a falling or rising tone (to indicate navigation direction),
and an spoken announcement of the new line number. The 1.5 second delay avoids spamming Mia with additional
sounds and speech if Blake pauses momentarily during his actions (e.g. pausing to adjust mouse wheel when scrolling
through a file). As there are no cross-platform APIs for asking screen readers to generate custom announcements, we
generate CodeWalk’s spoken announcements using the Microsoft Azure Cognitive Services Text-to-Speech (TTS) API.
If too many sounds are requested to be played in a row, queued sounds and speech may be delayed. If they are delayed
over one second, it is considered out of date and CodeWalk ejects it from the playback queue. Additionally, CodeWalk
categorizes sounds into notifications and warnings. Events associated with the former are interruptible, meaning if
a second event comes in before the first one is done playing, it will cancel the first and start the second right away.
Warning sounds are uninterruptible. They are reserved only for edit actions to prevent co-editors from overwriting one
another’s changes.

The second extension point tethers the co-editors’ cursors together. When Mia follows Blake, her cursor will move
automatically wherever Blake’s cursor goes. When tethering is turned on, all of Blake’s edits will always happen on the
same line as Mia’s, so we suppress any spoken warnings. When tethering is turned off, edit sounds and announcements
only play when Blake is editing within five lines of Mia, else the sheer quantity of sounds would overwhelm her.

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

Table 4. Demographic characteristics of the participants and their study session details.

ID Gender Age Country Profession Condition 1 Condition 2 Programming
Language

P1 Male 34 India Senior Software Engineer CodeWalk (Set B) Baseline (Set A) JavaScript
P2 Male 24 India Software Development Engineer CodeWalk (Set A) Baseline (Set B) Python
P3 Male 27 India Technology Analyst CodeWalk (Set B) Baseline (Set A) JavaScript
P4 Male 47 USA Software Engineering Manager Baseline (Set B) CodeWalk (Set A) JavaScript
P5 Female 29 USA Data and Applied Scientist CodeWalk (Set A) Baseline (Set B) Python
P6 Male 44 USA Senior Program Manager Baseline (Set B) CodeWalk (Set A) C#

P7 Male 21 USA Software Engineering Intern Baseline (Set A) CodeWalk (Set B) Python
P8 Male 46 Sweden Software Developer Baseline (Set B) CodeWalk (Set A) C#

P9 Male 35 USA Senior Software Developer Baseline (Set A) CodeWalk (Set B) Java
P10 Male 29 Netherlands Freelance Developer CodeWalk (Set A) Baseline (Set B) Python

A third extension point tracks and conveys selection actions between the co-editors. Mia hears a verbal announcement
of the selection whenever Blake selects some text in his editor, as long as she is tethered to Blake.

The final extension point queues sounds to be played whenever Mia toggles Follow mode on or off. Similar to what
happens in Zoom or Microsoft Teams, a sound is played whenever a co-editor joins or leaves the collaboration session,
followed by an announcement of the co-editor’s name and their cursor location.

5 EVALUATION STUDY

We conducted a within-subjects study to understand and compare the effectiveness of VS Code Live Share with
CodeWalk features against our baseline, plain VS Code Live Share [46]. Our study aimed at answering the following
research questions: (1) How well does CodeWalk improve coordination during remote synchronous collaboration
between sighted and BVI developers? (2) How does it affect the communication between developers about the source
code? (3) How does it shape BVI developers’ perceptions of their collaborative experience?

5.1 Participants

Eligible participants had to be 18 years or older, identify as blind or visually impaired, be comfortable with using screen
readers, have at least a year of programming experience in one of the following languages: C, C++, C#, Python, JavaScript,
TypeScript, or Java (i.e. the programming languages into which we translated our tasks), have collaborated on code, and
be able to communicate about code in spoken English. We recruited participants by posting on social media platforms
and mailing lists (e.g., Program-L) that primarily comprised BVI developers.

Our study accepted 10 BVI developers (P1–P10). Nine participants identified as male; one as female. Participants
were between 21 and 47 years old (average age 33.6; median age 31.5). Table 4 summarizes the details of participants’
demographics, country of residence, and current job title. Each participant was compensated with USD $100 (or its
equivalent in local currency) for their participation in the study.

5.2 Tasks

We employed a 2x2 within-subjects experimental design. Each participant, in collaboration with a sighted confederate
(one of the authors and the study coordinator), performed a series of tasks without CodeWalk (the baseline condition)
and another set of tasks with CodeWalk (experimental condition). Like prior HCI studies [11, 31, 51], the confederate

12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

was instructed to strictly and consistently follow the study protocol with all participants, which is known to lead to
more generalizable results [27].

We developed two sets of tasks (henceforth, set A and set B) for the study. We randomized the order of task sets and
the conditions across the participants. Each set comprised three tasks, resulting in a total of six tasks. We designed the
tasks to range from easy to difficult within each set, enabling participants to ease into the programming environment.
In both sets, the first task was based on editing a string; the second task required editing code central to program
execution; the third task required refactoring a specified set of lines into a function. The research team conducted
multiple rounds of discussion to ensure that both task sets were of equivalent levels of difficulty.

The confederate led the code walkthrough and asked the participant to follow them during the tasks. They asked the
participant to recommend changes and solutions to complete each task. Participants could explore, edit, or verify the
actions of the confederate as they wished. This made the collaboration feel more natural.

All tasks were based on Hangman,2 a common text-based game. The tasks were representative of software develop-
ment activities and required participants to perform code reviews, bug fixing, and code refactoring. We downloaded
publicly available source code for Hangman in C#, Java, Python, and JavaScript so that participants could perform the
tasks in their preferred programming language. For internal validity, we selected code samples with similar lengths and
modified their source code to have similar file names, function names, variable names, and code structure. All code
samples included (1) a main code file representing the game’s logic, (2) a text file containing 851 words to play the game,
and (3) a text file listing both sets of tasks in the order determined for the participant. The C# code sample included an
additional file that represented the game’s UI; this file was referenced for the string editing task. The code samples in
JavaScript included HTML/CSS files which were not required for the study. Table 4 lists the order of conditions and
task sets for each participant, along with the programming language used in their study session.

We conducted a pilot study with one BVI developer (not including in the main study) to ensure that each task set
was possible to complete within 20 minutes and the total study time did not exceed 90 minutes. Based on their feedback,
we found we needed only to improve two things: our instructions on how to connect remotely and the description of
the extensions’ features in both conditions.

5.3 Procedure

We conducted the studies remotely over Microsoft Teams or Zoom, as per the participant’s preference. Participants
were not required to turn on their cameras for the study. Before the main tasks, the study coordinator explained the
key features of the IDE used in the study, the baseline condition, and CodeWalk. We asked participants to share their
screen without including the system audio so that the confederate would not hear the participant’s screen reader or
CodeWalk audio output. We used the video conferencing tool’s recording feature to capture the conversation between
the participant and the study coordinator, which we referred to during our analysis.

To facilitate switching between study conditions, we created a Windows 10 virtual machine (VM) with two different
versions of VS Code — one version with the baseline condition and another augmented with CodeWalk. Both versions
had the same features, keyboard shortcuts, and UI settings. We installed JAWS (version 2020) and NVDA (version 2021)
on the remote VM. We also set up Code Factory Eloquence [15], a popular text-to-speech (TTS) synthesizer used to
customize screen reader voice and speech. Before each study session, we set NVDA as the default screen reader.

2https://en.wikipedia.org/wiki/Hangman_(game)

13

https://en.wikipedia.org/wiki/Hangman_(game)

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

Participants connected to the VM using Microsoft Remote Desktop software. Upon login, we informed participants
that they could modify the screen reader settings. Only P1 and P4 used JAWS; the others performed the tasks with
modified settings for NVDA. We also turned on screen recording within the VM to record the screen reader speech.
Due to technical glitches with screen recording software, we were unable to record the screen reader usage for P4 and
missed a portion of the screen reader usage for P1 and P2.

Participants were instructed to switch to the IDE window for the first condition (see Table 4 for the order) and invite
the study coordinator (referred to as the ‘confederate’ in this paragraph) to the collaboration session. The confederate
was under strict instructions to hide the participant’s shared screen to not look at their IDE contents. Participants could
ask questions about the IDE features or share their comments about the baseline and CodeWalk during the study. We
believed this approach allowed the collaboration and the conversation to proceed more naturally. After twenty minutes,
the participant and the confederate switched to the other experimental condition to perform the next set of tasks.

After each condition, participants verbally responded to a 12 statement Likert-scale questionnaire (see Table 6). The
questionnaire was adapted from existing scales [16, 64] and assessed participants’ opinions regarding awareness and
collaboration. Participants had to indicate on a five point scale whether they strongly disagreed (1) or strongly agreed
(5) with the statements. The study concluded with an informal interview about participants’ experience with CodeWalk
and a short questionnaire about their personal and programming background.

5.4 Data Analysis

The confederate wrote analytic memos [59] after each study session to reflect on how each condition shaped their
awareness and collaboration. One researcher reviewed all the video recordings and conversation transcripts to highlight
the timestamps of sync operations, analyzed using a Poisson regression (see §6.1). Section 6.2 discusses how we adapted
an existing list of codes from [16] to analyze the conversation between the confederate and the participants. Section
6.3 details our analysis of participants’ responses to Likert-scale questionnaire . Lastly, two authors used descriptive
coding [47] to analyze the interviews and organized the codes into themes around collaboration and feedback (see §6.3).

6 STUDY RESULTS

6.1 How well did CodeWalk improve coordination during collaboration?

To analyze how well the participants could follow the confederate, we compared the number of times they attempted to
sync their location with the confederate’s location. We operationalized location syncing as attempts, including successful
attempts, by participants to move their cursor to the confederate’s location using one of the following: (1) moving from
one file to another (2) going from one line to another (3) using the find tool to search for a specific word to navigate to
its location (4) toggling the tether command if unsure of the tether status of cursors. Participants synced their locations
to read the code that the confederate was referring to and to follow them during the collaboration. We hypothesized
that participants would require fewer sync operations in CodeWalk because they would feel less lost compared to the
baseline. We analyzed the screen share recording and participants’ screen reader speech to calculate the total number
of sync attempts.

The median value for the number of times participants tried syncing in CodeWalk was 1, compared to the median
value of 8 in baseline, a huge drop. Figure 4a a visualizes the number of sync attempts for each participant in both
conditions. As recommended for integral data with possibility of rare occurrences, we fit a Poisson regression [77].
We found that participants made significantly fewer attempts to sync locations in CodeWalk condition (p = .000875

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

Table 5. Reference Codes and Descriptions

Code Description

Deictic When a participant or the confederate uses a deictic reference such as this or here, e.g., ‘‘Let’s start with this task.’’
Anaphora When a participant or the confederate refers to a past action or location, e.g., ‘‘Can you go back?’’
Abstract When a participant or the confederate uses a broad category to refer to an object, e.g., ‘‘We need to understand the

function.’’
Reading When a participant or the confederate loudly reads a portion of the code, generally done when approximate location

of the collaborator is known, e.g., ‘‘Press Enter to leave the game!’’
Typing When a participant or the confederate is referring to the text being typed, e.g., ‘‘Let me confirm what you wrote.’’
Specific When a participant or the confederate uses a specific name to describe an object, e.g., ‘‘Let’s go to didGuessCorrect().’’
Line number When a participant or the confederate uses a specific line number, e.g., ‘‘I am on line 31.’’

(a) Number of times participants attempted to sync
locations with confederate in each condition.

(b) Percentage of referents of each type uttered in each condition.
An * is shown above referent types that are significantly different
across conditions

Fig. 4. Results from video and conversation analysis

< 0.01). The result indicates that CodeWalk enabled the participants and the confederate to stay closely coordinated
during collaboration. Note, P7’s outlier value in the CodeWalk condition. The followup interview and his screen share
recording revealed that he had not realized that his cursor was tethered to the confederate’s. He interpreted the sounds
and speech in CodeWalk as locations he should move to, resulting in similar behavior across both conditions.

6.2 How did CodeWalk affect communication about the source code?

Since CodeWalk conveyed information on a co-editor’s location and actions, we hypothesized that CodeWalk would
enable the participants and the confederate to converse about code using more abstract and deictic references compared
to the baseline. We also hypothesized that they would use more line numbers and specific names in the baseline
condition compared to CodeWalk. Both our hypotheses were informed by D’Angelo and Begel [16].

To analyze how the confederate and the participant referred to locations in the code, we adapted and extended the
list of referents from D’Angelo and Begel [16] by making two additions (anaphora and reading). Table 5 shows the
codes of all 7 referents along with their definitions and examples. Each time a participant or the confederate made a
reference to the code, we recorded the referent and its category. We calculated the total number of referents uttered
by the confederate and the participant in each study session. Thus, we ended with 14 total referent counts (7 for the

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

confederate; 7 for the participant) in each condition per session. We normalized the data in each condition by calculating
the percentage of referents in each category. We did not include P2’s data because he experienced significant lags in
screen reader speech causing the confederate and P2 to verbalize and read code aloud for a large portion of the study
(an unlikely scenario for collaboration in outside the study). We visualize the fraction of referents in each category for
each condition in Figure 4b. The figure shows that specific referents were used most heavily during the tasks in both
conditions. We also note a greater usage of deictic and abstract referents in the CodeWalk condition compared to the
baseline. We carried out a one-way ANOVA to compare the percentage of referents in both conditions. The analysis
revealed no significant difference in the percentage values of any category except the abstract referents (p = .037 <
0.05), which were greater in the CodeWalk condition.

6.3 How did participants perceive their collaboration experience with CodeWalk?

6.3.1 Responses to Likert-Scale Questionnaire. Table 6 lists the statements in the Likert questionnaire along with the p
value of participants’ responses in both conditions. All statements had an equal or higher median value in the CodeWalk
condition. A higher median indicates more agreement among the participants, implying a better overall experience
with CodeWalk.

A one-tailed Wilcoxon signed-rank test indicated that the value for responses to ten out of twelve statements were
significantly higher in the CodeWalk condition (p < 0.05). Their statement codes are followed by an asterisk in Table 6.
The significantly different values confirm that participants felt more aware of the confederate’s locations and actions
with CodeWalk. Furthermore, participants felt that the shared awareness was reciprocated by the confederate when
using CodeWalk i.e. the participants felt that the confederate was also aware of their actions (S4 in Table 6). This
indicates greater shared intentionality with CodeWalk.

Two statements (S9 and S12) were not significantly different across conditions. These focused on participants’
perceptions of the confederate’s communication style and effectiveness in collaboration during the tasks. Since the
confederate remained unchanged in both conditions, participants may have felt that their communication style remained
consistent across conditions. Participants’ responses to S9 and S12 may have also been subject to demand characteristics,
cues that shape participants’ desire to form a positive impression on the experimenter [52]. Participants may have
wanted to appear polite in their responses about the confederate’s communication and collaboration abilities.

Table 6. Statements in the Likert-scale questionnaire along with their p values. All statements had equal or higher median value in
the CodeWalk condition. * beside the statement code indicates p < 0.05.

Statement p value

S1 I was keenly aware of everything in my environment. .0009*
S2 I was conscious of what is going on around me. .0035*
S3 I was aware of what my teammate did and how it happened. .0029*
S4 I was aware that my teammate is aware of my actions. .0197*
S5 I am aware of how well we performed together in the team. .0118*
S6 I felt like my teammate and I were on the same page most of the time. .0118*
S7 I could tell what my teammate was thinking about/looking at/talking about most of the time. .0328*
S8 I felt like we shared common subgoals as we worked on the task. .0294*
S9 My teammate communicated clearly during the task. .1284
S10 I communicated clearly with my teammate during this task. .0169*
S11 It was fun to work with my teammate on this task. .0294*
S12 My teammate worked effectively with me to accomplish the task. .1284

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

6.3.2 Interview Results. Video analysis revealed that the participants felt aware of being in the confederate’s vicinity.
They would highlight code or read code aloud to direct the confederate’s attention. In addition, we observed that the
confederate could easily keep track of the participant’s cursor with CodeWalk’s tethering feature. The participant’s
cursor was always visible in the confederate’s viewport, and if the participant moved out of the viewport to read
code, the confederate would scroll to keep track. On the other hand, participants reported that they ‘‘leaned on the

communication’’ with the confederate ‘‘pretty heavily’’ (P7) in the baseline condition. They had to either wait for
the confederate to verbally announce their location using a line number or function name or request the location
information to sync cursors, also indicated by Figure 4a.

We noted instances where participants used CodeWalk’s tethering feature to direct the confederate. For example, P5
asked the confederate to take her ‘‘to the line again’’ to revisit the source code. The confederate moved their cursors to
the location P5 had specified; the sounds confirmed arrival for P5. Later on in the interview, P5 shared that the ‘‘auto
move [of cursors] was really useful’’. Similarly, P6 directed the confederate to move their cursor to various lines during
the refactoring task. After each move, he would explore the code at the destination line, make recommendations for
improving the code, and then instruct the confederate to take him to the next location.

Participants used CodeWalk’s sound effects extensively to maintain awareness of the confederate’s actions. For
instance, after the confederate finished typing, P9 mentioned, ‘‘Yeah, I can tell you are done ’cause the typing noise

stopped’’, and then went on to verify the changes made by the confederate. Participants used the speech announcements
to keep track of location changes. Many participants phrased this as being aware that ‘‘things were happening’’ (P8).
Even on the occasions when the confederate moved quickly, leading to a succession of sounds, participants felt that
‘‘at least [CodeWalk] conveyed a sense of movement’’ (P4). The increased awareness seemed to positively shape the
participants’ feelings about collaboration and assuaged their worries about feeling lost: ‘‘Because I could just snap to
wherever you were, I wasn’t worried about wandering off’’ — P4.

Furthermore, participants liked the design choice of primarily using audio cues to convey the confederate’s actions
and relying on speech sparingly. They shared that the audio cues ‘‘packed a lot of info’’ (P7) without seeming verbose.
In addition, participants did not seem to mind when the audio cues played simultaneously with the screen reader speech,
but they indicated a preference for shorter sounds. Most participants were able to quickly map the skeuomorphic audio
cues to their awareness indicators. It took a few participants longer to associate the non-skeuomorphic audio cues
with their intended meaning of direction changes. However, they acknowledged that they had not ‘‘used it [CodeWalk]

enough’’ (P6) to remember the sounds and believed that ‘‘some more sessions’’ (P1) would enable them to map all the
audio cues to their respective meanings.

Every participant told us that they would like to use CodeWalk to collaborate with their teammates. P5 mentioned
that using CodeWalk in code reviews would enable her to be on the ‘‘same page without lagging behind.’’ P7 shared
that CodeWalk would be ‘‘absolutely instrumental’’ in his pair programming assignments, and he would ‘‘install it

immediately’’ if it were released. P9 felt that it would allow him to mentor junior developers by letting them drive

collaboration sessions: ‘‘When I’m collaborating, I’m the one driving and I share my screen and they look at it. It’s just

easier that way [...] I would be much more likely with an extension like this to let them drive more often.’’ Participants also
appreciated that CodeWalk was built for VS Code, a mainstream and accessible IDE that sighted ‘‘people might have’’

(P5). Upon its launch, they could use it without asking their colleagues to switch to a new IDE. These quotes suggest
that CodeWalk can enable BVI developers to participate in collaborative activities without requiring them to manually
manage the sessions on their own.

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

6.4 Threats to Validity

Our study employed a sighted research team member as a confederate for all study sessions. Employing a single
confederate across all participants is common in HCI [11, 31, 51] and is recommended for maintaining the internal
validity of the experiment [27]. Despite following the study protocol strictly, the confederate may have gained experience
and improved as a communicator with each session. Thus, it is likely that later participants’ collaboration experience
may have been better than the former, resulting in fewer differences in metrics between conditions. We believe the
within-subjects design choice would have addressed any learning effects on the part of the confederate.

Due to their research experience in accessibility, the confederate may better understand participants’ awareness
needs than sighted people unused to collaborating with BVI developers. Participants commented that the confederate
was ‘‘a very good communicator’’ (P7), also confirmed by the lack of significant difference in responses to S9 on the
Likert-scale questionnaire (see Table 6). The confederate’s communication may have suppressed differences in referent
counts between conditions. Therefore, in real-world conditions with more typical collaborators, CodeWalk may show
even more improvement in communication metrics over the baseline.

We deployed CodeWalk on a cloud-based virtual machine (VM) to simplify the installation for our participants.
Using screen readers through remote VM may have increased latency. Some participants reported lags in screen reader
playback which may have impacted their experience with the extension and shaped their feedback. The latency issues
are unlikely to occur in real-world conditions, since the extension would be installed on the user’s own home system.
Thus, we expect the experience of CodeWalk to be better upon its release.

7 DISCUSSION

Overall, we find CodeWalk successfully translates and conveys reference space gestures from sighted developers to
their BVI colleagues, extending Buxton’s model [13] for effective remote collaboration to mixed-ability collaborations.
In this section, we summarize our findings, consider the role of interdependence in our design, and relate our results to
the two projects that are most similar to ours. We then reflect on our own research practices and propose future work.

7.1 Summary of Findings

Our study results show that significantly fewer attempts were needed by our BVI participants to sync locations with
CodeWalk than in the baseline condition. This suggests that the coordination burden (Design Criterion D3), which
often requires explicit communication of awareness cues between collaborators, is reduced through CodeWalk’s sound
effects and speech. Automating the transmission of code location and navigation actions helps to ensure that the
sighted colleague also benefits from a reduced coordination burden, since they need not remember to convey those
actions verbally either. The participants’ increased use of abstract referents to code locations showed a corresponding
decrease in the number of more specific referents (using line numbers and function names). This suggests a reduction
in cognitive load (Design Criterion D1) on the part of the BVI developer. It also shows an increased sense of shared
awareness and shared intentionality between the participants, which ensures that the BVI developer had the capability
to contribute equitably according to their ability rather than be sidelined by inaccessible collaboration tools.

From the Likert scale statements, we learned that participants felt that CodeWalk improved their awareness of their
environment, their teammate, and their teammate’s actions. They also felt that they were more likely to be on the same
mental page most of the time and were able to work effectively together. BVI developers were more likely to highlight
text on the screen using their keyboard, confident in the knowledge that their sighted colleagues would be able to

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

notice it and react to it. BVI participants also could tell from the sound effects when their colleagues were navigating or
when they had stopped, concluding that they were now free to engage in conversation and explore the source code.
Not only did this increase improved their communication, it also minimized the cognitive load (Design Criterion D1) of
trying to intuit what their sighted colleague might be doing without any audible feedback.

CodeWalk’s cursor tethering was designed to support tight coupling (criterion D4) between participants at the task
level, so that when one navigated through the code or edited some text, the other would immediately be made aware
and be able to respond. Some participants responded by directing the confederate to move to additional locations,
showing increased agency (Design Criterion D2), looking around the code with their own screen reader, and then
driving the confederate to the next code location.

CodeWalk’s skeumorphic sounds (e.g., key clicks and scroll wheel sounds) were straightforward for the participants to
understand with no training. However, some sound effects, e.g., rising tone and falling tone, used to convey directionality
of movement, were not immediately obvious to the listeners. While participants got better at distinguishing these
during their study session, others may need more time to get better at this.3

CodeWalk’s spoken sentences were necessary to orient the BVI participants after their sighted colleagues navigated
to new areas in the code. Sometimes, however, these spoken words collided with the participant’s own screen reader
speech. An early version of CodeWalk played its sounds and speech by extending the NVDA screen reader, which
enabled us to detect overlapping speech utterances and cancel one of them. However, to ensure CodeWalk worked
with multiple screen readers on multiple platforms (including Mac and Linux), we used Microsoft’s Azure Cognitive
Services to generate speech and platform-specific sound APIs to play it. It is possible to address the overlapping audio,
however due to time constraints, we were unable to program CodeWalk to cancel our audio while the screen reader
was talking. We encourage screen reader and operating system manufacturers to offer extensible platform-agnostic
APIs for integrated systems like CodeWalk with screen readers.

One interesting form of spoken collision remains. Sighted colleagues receive no indicators when BVI users are
listening to their screen readers, and thus do not realize to stop talking to the BVI user to avoid overlapping with the
screen reader or CodeWalk. Participants expressed a need for avoiding ‘‘double-speak’’ (P8) between the collaborator
and speech announcements by their screen readers and CodeWalk. We plan to explore designs of a visual indicator to
non-screen reader users of CodeWalk to let them knowwhen screen reader speech is active for any of their collaborators.
This feature should require BVI users to opt-in before it is turned on because BVI users’ opinions of whether to reveal
their use of AT to colleagues varies by culture [39] and may have significant workplace consequences [5].

7.2 Accessible Co-Editing

Lee et al. [37]’s CollabAlly tool developed similar sound effect and speech-based feedback for BVI writers in common
co-editing environments (e.g. Google Docs). CollabAlly found success in identifying collaborators’ ongoing work and
comments in the document, enabling collaborator awareness to avoid overwrites synchronously and asynchronously.
Our work examined the awareness needs found in synchronous tasks of code walkthroughs and reviews and found the
timeliness of push-based notifications vital to enable BVI collaborators to stay in sync with their sighted colleagues for
extended periods of time. Many coding tasks fluidly switch between asynchronous and synchronous modes leaving
unanswered how to best support users’ cognitive load by conveying awareness information simultaneously using pull
and push-based modalities.

3See Cat_ToBI (http://prosodia.upf.edu/cat_tobi/en/ear_training/listening.html) to practice distinguishing rising and falling tones from one another.

19

http://prosodia.upf.edu/cat_tobi/en/ear_training/listening.html

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

Das et al. [18, 19]’s Co11ab work supporting mixed ability co-editing stops short of handling collaborators editing
near one another. Prior to CodeWalk, these kinds of close edits would preferentially disadvantage the BVI collaborator
as their sighted colleagues could see the impending collisions and take their own steps to avoid them. CodeWalk’s use
of non-interruptible warning messages as colleagues get too close served to encourage all parties to communicate using
alternate, more accessible, channels (e.g. a concurrent audio call) in order to appropriately synchronize their edits and
avoid conflicts.

7.3 Interdependence

Bennett et al.’s reframing of the goals of assistive technology as interdependence instead of independence ring true
in CodeWalk’s scenarios [6]. Collaboration between colleagues of mixed abilities encourages each to play to their
own strengths, while requiring that each cede some of their own power and control to cooperate effectively with
others. Working together in a code walkthrough or code review, a BVI developer who might have special expertise
in accessibility can disseminate that knowledge to sighted non-specialists in situ and create a better result for their
customers. As shown by Pandey et al. [53], long-term mixed ability collaborators establish mutual reliance by learning
how to work together by paying attention, responding to, and adapting to one another’s task-related behaviors, habits,
and needs. CodeWalk’s sound effects and speech events make a colleague’s navigation and edit work visible to BVI
collaborators, enabling them to be used by a BVI collaborator as an essential assistive technology for remote collaborative
work. Finally, CodeWalk challenges the established hierarchy of sighted participants controlling the task, enabling BVI
developers to lead code walkthroughs and reviews instead of meekly defaulting to follow.

7.4 Researcher Reflections

This work improves our own practice to communicate accessibly and to advocate for our own accessibility when
participating in collaborative software development activities. For example, the BVI member of the research team now
always asks sighted collaborators to verbalize code locations. A sighted member realized that he needed to remember to
stop speaking every so often to allow his BVI collaborator to ‘‘read’’ the code for themselves using their screen reader.
The study coordinator recognized that each BVI developer’s access and communication needs are different and that
expressing these needs can be tricky when collaborating with someone for the first time. They have become mindful of
attuning their communication to the preferences of their BVI collaborators. Finally, as we collaboratively author this
paper using the Overleaf Latex editor, we yearn for it to make use of auditory feedback in order to fully include our BVI
co-author in our writing efforts.

7.5 Future Work

In the future, we would like to explore how to combine the lessons learned from CodeWalk, CollabAlly, and Co11ab in
supporting mixed ability remote collaboration, whether it be for document co-editing, software co-editing, or additional
collaborative software development tasks. In particular, future designs should explore ways that BVI collaborators can
most effectively and equitably lead interactions, in one-to-one and one-to-many scenarios, including collaborations
involving two or more BVI developers.

Many participants said we should ensure that CodeWalk was accessible to deaf-blind programmers and usable with
Braille displays. They felt that its reliance on the audio medium could exclude deaf-blind programmers. In future, we
will extend our design to support communication of awareness information through tactile media.

20

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

We recommend that application design standards, such as ATAG (Authoring Tool Accessibility Guidelines) and
WCAG (Web Content Accessibility Guidelines) be extended to support mixed ability teams and provide non-visual
information about collaborators’ location, navigation, and edit operations. This could increase the use of accessibility
practices in the design of collaborative authoring tools.

8 CONCLUSION

Existing tools to facilitate tightly-coupled software development tasks rely on visual cues and create accessibility barriers
to equitably collaboration for BVI developers. To address this accessibility gap, we designed, developed and evaluated
CodeWalk, a set of features added to Microsoft’s VS Code Live Share extension that makes a collaborator’s location
in a code file and their actions accessible through cursor tethering, as well as sound effects and speech. CodeWalk’s
features improved coordination between BVI developers and their sighted peers while reducing the explicit effort that
BVI developers need to put to stay coordinated. We hope CodeWalk can serve as an exemplar for IDE manufacturers to
make their environments more accessible to blind and visually impaired software developers.

REFERENCES
[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming Challenges Faced by Developers with Visual Impairments: Exploratory

Study. In Proceedings of 9th International Workshop on Cooperative and Human Aspects of Software Engineering. ACM, Austin, TX, 82--85. https:
//doi.org/10.1145/2897586.2897616

[2] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and Observation of Blind Software Developers at Work to Understand
Code Navigation Challenges. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (Baltimore,
Maryland, USA) (ASSETS ’17). Association for Computing Machinery, New York, NY, USA, 91–100. https://doi.org/10.1145/3132525.3132550

[3] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. Audiohighlight: Code skimming for blind programmers. In Proceedings of 2018 IEEE
International Conference on Software Maintenance and Evolution. IEEE, Madrid, Spain, 206--216. https://doi.org/10.1109/ICSME.2018.00030

[4] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. StructJumper: A Tool to Help Blind Programmers Navigate and Understand the
Structure of Code. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15).
Association for Computing Machinery, New York, NY, USA, 3043–3052. https://doi.org/10.1145/2702123.2702589

[5] Florian Beijers. 2019. How to Get a Developer Job When You’re Blind: Advice From a Blind Developer Who Works Alongside a Sighted Team.
https://www.freecodecamp.org/news/blind-developer-sighted-team/

[6] Cynthia L. Bennett, Erin Brady, and Stacy M. Branham. 2018. Interdependence as a Frame for Assistive Technology Research and Design. In
Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (Galway, Ireland) (ASSETS ’18). Association for
Computing Machinery, New York, NY, USA, 161–173. https://doi.org/10.1145/3234695.3236348

[7] Jacob T Biehl, Mary Czerwinski, Greg Smith, and George G Robertson. 2007. FASTDash: a visual dashboard for fostering awareness in software
teams. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, San Jose, CA, 1313--1322.

[8] Jeffrey P. Bigham, Anna C. Cavender, Jeremy T. Brudvik, Jacob O. Wobbrock, and Richard E. Ladner. 2007. WebinSitu: A Comparative Analysis of
Blind and Sighted Browsing Behavior. In Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility (Tempe,
Arizona, USA) (Assets ’07). Association for Computing Machinery, New York, NY, USA, 51–58. https://doi.org/10.1145/1296843.1296854

[9] Syed Masum Billah, Vikas Ashok, Donald E Porter, and IV Ramakrishnan. 2017. Ubiquitous accessibility for people with visual impairments: Are we
there yet?. In Proceedings of the 2017 CHI conference on human factors in computing systems. ACM, Denver, CO, 5862--5868.

[10] Syed Masum Billah, Donald E Porter, and IV Ramakrishnan. 2016. Sinter: Low-bandwidth remote access for the visually-impaired. In Proceedings of
the Eleventh European Conference on Computer Systems. ACM, London, UK, 1--16.

[11] Jeremy Birnholtz, Nanyi Bi, and Susan Fussell. 2012. Do you see that I see? Effects of perceived visibility on awareness checking behavior. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Austin, TX, 1765--1774.

[12] Stacy M. Branham and Shaun K. Kane. 2015. The Invisible Work of Accessibility: How Blind Employees Manage Accessibility in Mixed-Ability
Workplaces. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (Lisbon, Portugal) (ASSETS ’15).
Association for Computing Machinery, New York, NY, USA, 163–171. https://doi.org/10.1145/2700648.2809864

[13] William Buxton. 2009. Mediaspace - Meaningspace - Meetingspace. In Media Space: 20+ Years of Mediated Life, S. Harrison (Ed.). Springer, London,
UK, 217--231.

[14] William A. S. Buxton. 1992. Telepresence: Integrating Shared Task and Person Spaces. In Proceedings of the Conference on Graphics Interface ’92
(Vancouver, British Columbia, Canada). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 123–129.

[15] Code Factory. 2021. Eloquence for Windows. Code Factory. https://codefactoryglobal.com/app-store/eloquence-for-windows/

21

https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/3132525.3132550
https://doi.org/10.1109/ICSME.2018.00030
https://doi.org/10.1145/2702123.2702589
https://www.freecodecamp.org/news/blind-developer-sighted-team/
https://doi.org/10.1145/3234695.3236348
https://doi.org/10.1145/1296843.1296854
https://doi.org/10.1145/2700648.2809864
https://codefactoryglobal.com/app-store/eloquence-for-windows/

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

[16] Sarah D’Angelo and Andrew Begel. 2017. Improving Communication Between Pair Programmers Using Shared Gaze Awareness. Association for
Computing Machinery, New York, NY, USA, 6245–6290. https://doi.org/10.1145/3025453.3025573

[17] Maitraye Das, Darren Gergle, and Anne Marie Piper. 2019. “It Doesn’t Win You Friends”: Understanding Accessibility in Collaborative Writing for
People with Vision Impairments. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 191 (Nov. 2019), 26 pages. https://doi.org/10.1145/3359293

[18] Maitraye Das, Anne Marie Piper, and Darren Gergle. 2022. Design and Evaluation of Accessible Collaborative Writing Techniques for People with
Vision Impairments. ACM Transactions on Computer-Human Interaction 29, 2 (2022), 1--42.

[19] Das, Maitraye and McHugh, Thomas B. and Piper, Anne Marie and Gergle, Darren. 2022. Co11ab: Augmenting Accessibility in Synchronous
Collaborative Writing for People with Vision Impairments. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, 1--18.

[20] Paul Dourish and Victoria Bellotti. 1992. Awareness and coordination in shared workspaces. In Proceedings of the 1992 ACM conference on
Computer-supported cooperative work. ACM, Toronto, ON, Canada, 107--114.

[21] Hongfei Fan, Chengzheng Sun, and Haifeng Shen. 2012. ATCoPE: Any-Time Collaborative Programming Environment for Seamless Integration of
Real-Time and Non-Real-Time Teamwork in Software Development. In Proceedings of the 17th ACM International Conference on Supporting Group
Work (Sanibel Island, Florida, USA) (GROUP ’12). Association for Computing Machinery, New York, NY, USA, 107–116. https://doi.org/10.1145/
2389176.2389194

[22] Github. 2022. Teletype for Atom. Microsoft, Redmond, WA. https://teletype.atom.io/
[23] Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-Time Collaborative Coding in a Web IDE. In Proceedings of the 24th Annual ACM

Symposium on User Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). Association for Computing Machinery, New York,
NY, USA, 155–164. https://doi.org/10.1145/2047196.2047215

[24] Geoff Greer and Matt Kaniaris. 2020. Floobits real-time collaboration plugin for Sublime Text 2 and 3. Floobits. https://github.com/Floobits/floobits-
sublime

[25] Carl Gutwin and Saul Greenberg. 2002. A Descriptive Framework of Workspace Awareness for Real-Time Groupware. Computer Supported
Cooperative Work (CSCW) 11, 3 (Sept. 2002), 411--446. https://doi.org/10.1023/A:1021271517844

[26] Lile Hattori and Michele Lanza. 2010. Syde: A tool for collaborative software development. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2. ACM/IEEE, Cape Town, South Africa, 235--238.

[27] Scott Highhouse. 2009. Designing experiments that generalize. Organizational Research Methods 12, 3 (2009), 554--566.
[28] Earl W. Huff, Kwajo Boateng, Makayla Moster, Paige Rodeghero, and Julian Brinkley. 2020. Examining The Work Experience of Programmers

with Visual Impairments. In 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, Online, 707--711. https:
//doi.org/10.1109/ICSME46990.2020.00077

[29] Earl W. Huff, Kwajo Boateng, Makayla Moster, Paige Rodeghero, and Julian Brinkley. 2021. Exploring the Perspectives of Teachers of the Visually
Impaired Regarding Accessible K12 Computing Education. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA, 156–162. https://doi.org/10.1145/3408877.3432418

[30] Joe Hutchinson and Oussama Metatla. 2018. An Initial Investigation into Non-visual Code Structure Overview Through Speech, Non-speech and
Spearcons. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18. ACM Press, New York, New York,
USA, 1--6. https://doi.org/10.1145/3170427.3188696

[31] Jennifer Hyde, Sara Kiesler, Jessica K Hodgins, and Elizabeth J Carter. 2014. Conversing with children: Cartoon and video people elicit similar
conversational behaviors. In Proceedings of the SIGCHI conference on human factors in computing systems. ACM, Toronto, ON, Canada, 1787--1796.

[32] Hiroshi Ishii and Naomi Miyake. 1991. Toward an open shared workspace: computer and video fusion approach of TeamWorkStation. Commun.
ACM 34, 12 (1991), 37--50.

[33] JetBrains. 2020. Meet Code With Me (EAP) --- a tool for collaborative development by JetBrains. JetBrains, Prague. https://blog.jetbrains.com/blog/
2020/09/28/code-with-me-eap/

[34] Sasa Junuzovic, Prasun Dewan, and Yong Rui. 2007. Read, write, and navigation awareness in realistic multi-view collaborations. In 2007
International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2007). IEEE, New York, NY,
494--503. https://doi.org/10.1109/COLCOM.2007.4553880

[35] Claire Kearney-Volpe and AmyHurst. 2021. AccessibleWeb Development: Opportunities to Improve the Education and Practice ofWeb Development
with a Screen Reader. ACM Trans. Access. Comput. 14, 2, Article 8 (July 2021), 32 pages. https://doi.org/10.1145/3458024

[36] Richard E Ladner and Kyle Rector. 2017. Making your presentation accessible. Interactions 24, 4 (2017), 56--59.
[37] Cheuk Yin Phipson Lee, Zhuohao Zhang, Jaylin Herskovitz, JooYoung Seo, and Anhong Guo. 2021. CollabAlly: Accessible Collaboration Awareness

in Document Editing. Association for Computing Machinery, New York, NY, USA, 1--4. https://doi.org/10.1145/3441852.3476562
[38] Cheuk Yin Phipson Lee, Zhuohao Zhang, Jaylin Herskovitz, JooYoung Seo, and Anhong Guo. 2022. CollabAlly: Accessible Collaboration Awareness

in Document Editing. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22).
Association for Computing Machinery, New York, NY, USA, 1--17.

[39] Franklin Mingzhe Li, Di Laura Chen, Mingming Fan, and Khai N. Truong. 2021. “I Choose Assistive Devices That Save My Face”: A Study on
Perceptions of Accessibility and Assistive Technology Use Conducted in China. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 372, 14 pages. https:
//doi.org/10.1145/3411764.3445321

22

https://doi.org/10.1145/3025453.3025573
https://doi.org/10.1145/3359293
https://doi.org/10.1145/2389176.2389194
https://doi.org/10.1145/2389176.2389194
https://teletype.atom.io/
https://doi.org/10.1145/2047196.2047215
https://github.com/Floobits/floobits-sublime
https://github.com/Floobits/floobits-sublime
https://doi.org/10.1023/A:1021271517844
https://doi.org/10.1109/ICSME46990.2020.00077
https://doi.org/10.1109/ICSME46990.2020.00077
https://doi.org/10.1145/3408877.3432418
https://doi.org/10.1145/3170427.3188696
https://blog.jetbrains.com/blog/2020/09/28/code-with-me-eap/
https://blog.jetbrains.com/blog/2020/09/28/code-with-me-eap/
https://doi.org/10.1109/COLCOM.2007.4553880
https://doi.org/10.1145/3458024
https://doi.org/10.1145/3441852.3476562
https://doi.org/10.1145/3411764.3445321
https://doi.org/10.1145/3411764.3445321

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

CodeWalk: Facilitating Shared Awareness in Mixed-Ability Collaborative Software Development ASSETS ’22, October 23–26, 2022, Athens, Greece

[40] Stephanie Ludi, Jamie Simpson, and Wil Merchant. 2016. Exploration of the Use of Auditory Cues in Code Comprehension and Navigation for
Individuals with Visual Impairments in a Visual Programming Environment. In Proceedings of the 18th International ACM SIGACCESS Conference
on Computers and Accessibility (Reno, Nevada, USA) (ASSETS ’16). Association for Computing Machinery, New York, NY, USA, 279–280. https:
//doi.org/10.1145/2982142.2982206

[41] Stephanie Ludi and Mary Spencer. 2017. Design considerations to increase block-based language accessibility for blind programmers Via Blockly.
Journal of Visual Languages and Sentient Systems 3, 1 (2017), 119--124.

[42] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study of blind software developers. In 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, Innsbruck, Austria, 71--74. https://doi.org/10.1109/VLHCC.2012.6344485

[43] Oussama Metatla, Nick Bryan-Kinns, and Tony Stockman. 2018. “I Hear You”: Understanding Awareness Information Exchange in an Audio-Only
Workspace. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174120

[44] Microsoft. 2020. Accessibility in Visual Studio Code. Microsoft. https://code.visualstudio.com/docs/editor/accessibility#_screen-readers
[45] Microsoft. 2020. Microsoft/vscode-a11y - Gitter. Microsoft. https://gitter.im/Microsoft/vscode-a11y
[46] Microsoft. 2022. Visual Studio Live Share. Microsoft, Redmond, WA. https://visualstudio.microsoft.com/services/live-share/
[47] Matthew Miles, A. Michael Huberman, and Michael Saldaña. 2013. Qualitative Data Analysis: A Methods Sourcebook. Sage Publications, Thousand

Oaks, CA.
[48] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessibility Barriers to Blocks Programming for Children with Visual

Impairments. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for
Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3173574.3173643

[49] Cecily Morrison, Nicolas Villar, Anja Thieme, Zahra Ashktorab, Eloise Taysom, Oscar Salandin, Daniel Cletheroe, Greg Saul, Alan F Blackwell,
Darren Edge, Martin Grayson, and Haiyan Zhang. 2020. Torino: A tangible programming language inclusive of children with visual disabilities.
Human–Computer Interaction 35, 3 (2020), 191--239.

[50] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Addressing Accessibility Barriers in Programming for People with Visual
Impairments: A Literature Review. ACM Transactions on Accessible Computing (TACCESS) 15, 1 (2022), 1--26.

[51] Katja Neureiter, Martin Murer, Verena Fuchsberger, and Manfred Tscheligi. 2013. Hand and eyes: how eye contact is linked to gestures in video
conferencing. In CHI’13 Extended Abstracts on Human Factors in Computing Systems. ACM, Paris, France, 127--132.

[52] Austin Lee Nichols and Jon K Maner. 2008. The good-subject effect: Investigating participant demand characteristics. The Journal of general
psychology 135, 2 (2008), 151--166.

[53] Maulishree Pandey, Vaishnav Kameswaran, Hrishikesh V. Rao, Sile O’Modhrain, and Steve Oney. 2021. UnderstandingAccessibility and Collaboration
in Programming for People with Visual Impairments. In Proceedings of the CSCW Conference on Computer Supported Cooperative Work (Virtual)
(CSCW ’21). Association for Computing Machinery, New York, NY, USA, 30 pages.

[54] Yi-Hao Peng, JiWoong Jang, Jeffrey P Bigham, and Amy Pavel. 2021. Say It All: Feedback for Improving Non-Visual Presentation Accessibility. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery,
New York, NY, USA, Article 276, 12 pages. https://doi.org/10.1145/3411764.3445572

[55] Venkatesh Potluri, Tad Grindeland, Jon E. Froehlich, and Jennifer Mankoff. 2021. Examining Visual Semantic Understanding in Blind and Low-Vision
Technology Users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for
Computing Machinery, New York, NY, USA, 14 pages.

[56] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving
Programming Environment Accessibility for Visually Impaired Developers. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3174192

[57] T. V. Raman. 1996. Emacspeak—Direct Speech Access. In Proceedings of the Second Annual ACM Conference on Assistive Technologies (Vancouver,
British Columbia, Canada) (Assets ’96). Association for Computing Machinery, New York, NY, USA, 32–36. https://doi.org/10.1145/228347.228354

[58] Gema Rodríguez-Pérez, Reza Nadri, and Meiyappan Nagappan. 2021. Perceived diversity in software engineering: a systematic literature review.
Empirical Software Engineering 26, 5 (2021), 1--38.

[59] Johnny Saldaña. 2016. The coding manual for qualitative researchers (3rd ed.). Sage, London, UK.
[60] Stephan Salinger, Christopher Oezbek, Karl Beecher, and Julia Schenk. 2010. Saros: an eclipse plug-in for distributed party programming. In

Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering. ACM/IEEE, Cape Town, South Africa, 48--55.
[61] Harini Sampath, Alice Merrick, and Andrew MacVean. 2021. Accessibility of Command Line Interfaces. Association for Computing Machinery, New

York, NY, USA, 1--10. https://doi.org/10.1145/3411764.3445544
[62] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible AST-Based Programming for Visually-Impaired Programmers. In

Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing
Machinery, New York, NY, USA, 773–779. https://doi.org/10.1145/3287324.3287499

[63] Freedom Scientific. 2022. Jaws Tandem Quick Start Guide. https://support.freedomscientific.com/JawsHQ/JawsTandemQuickStart
[64] Chirag Shah and Gary Marchionini. 2010. Awareness in collaborative information seeking. Journal of the American Society for Information Science

and Technology 61, 10 (2010), 1970--1986.

23

https://doi.org/10.1145/2982142.2982206
https://doi.org/10.1145/2982142.2982206
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1145/3173574.3174120
https://code.visualstudio.com/docs/editor/accessibility#_screen-readers
https://gitter.im/Microsoft/vscode-a11y
https://visualstudio.microsoft.com/services/live-share/
https://doi.org/10.1145/3173574.3173643
https://doi.org/10.1145/3411764.3445572
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1145/228347.228354
https://doi.org/10.1145/3411764.3445544
https://doi.org/10.1145/3287324.3287499
https://support.freedomscientific.com/JawsHQ/JawsTandemQuickStart

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

ASSETS ’22, October 23–26, 2022, Athens, Greece Potluri and Pandey, et al.

[65] Kristen Shinohara and Jacob O Wobbrock. 2016. Self-conscious or self-confident? A diary study conceptualizing the social accessibility of assistive
technology. ACM Transactions on Accessible Computing (TACCESS) 8, 2 (2016), 1--31.

[66] Alexa Siu, Gene S-H Kim, Sile O’Modhrain, and Sean Follmer. 2022. Supporting Accessible Data Visualization Through Audio Data Narratives. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing
Machinery, New York, NY, USA, Article 476, 19 pages. https://doi.org/10.1145/3491102.3517678

[67] Stack Overflow. 2021. Stack Overflow Developer Survey 2021. https://insights.stackoverflow.com/survey/2021#section-demographics-disability-
status

[68] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel Garcia. 2009. Sodbeans. In 2009 IEEE 17th International Conference
on Program Comprehension. IEEE, Vancouver, BC, Canada, 293--294.

[69] Andreas Stefik and Richard Ladner. 2017. The Quorum Programming Language (Abstract Only). In SIGCSE Technical Symposium (Seattle,Washington,
USA) (SIGCSE ’17). ACM, New York, NY, USA, 641.

[70] Andreas M. Stefik, Christopher Hundhausen, and Derrick Smith. 2011. On the Design of an Educational Infrastructure for the Blind and Visually
Impaired in Computer Science. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11).
Association for Computing Machinery, New York, NY, USA, 571–576. https://doi.org/10.1145/1953163.1953323

[71] Kevin M. Storer, Harini Sampath, and M. Alice Merrick. 2021. ‘‘It’s Just Everything Outside of the IDE that’s the Problem’’: Information Seeking by
Software Developers with Visual Impairments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/3411764.3445090

[72] Sublime users. 2020. A request for the implementation of accessibility. Issue #3392. sublimehq/sublime_text. GitHub. https://github.com/sublimehq/
sublime_text/issues/3392

[73] John Tang. 2021. Understanding the Telework Experience of People with Disabilities. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 30 (apr
2021), 27 pages. https://doi.org/10.1145/3449104

[74] Josh Tenenberg, Wolff-Michael Roth, and David Socha. 2016. From I-Awareness to We-Awareness in CSCW. Computer Supported Cooperative Work
(CSCW) 25, 4 (Oct. 2016), 235--278. https://doi.org/10.1007/s10606-014-9215-0

[75] Christopher Toth and Tyler Spivey. 2018. Documentation NVDA Remote Access. https://nvdaremote.com/docs/
[76] JeremyWarner and Philip J Guo. 2017. Codepilot: Scaffolding end-to-end collaborative software development for novice programmers. In Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, Denver, CO, 1136--1141.
[77] Jacob O Wobbrock and Matthew Kay. 2016. Nonparametric statistics in human--computer interaction. In Modern Statistical Methods for HCI.

Springer, Berlin, Germany, 135--170.

24

https://doi.org/10.1145/3491102.3517678
https://insights.stackoverflow.com/survey/2021#section-demographics-disability-status
https://insights.stackoverflow.com/survey/2021#section-demographics-disability-status
https://doi.org/10.1145/1953163.1953323
https://doi.org/10.1145/3411764.3445090
https://github.com/sublimehq/sublime_text/issues/3392
https://github.com/sublimehq/sublime_text/issues/3392
https://doi.org/10.1145/3449104
https://doi.org/10.1007/s10606-014-9215-0
https://nvdaremote.com/docs/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Awareness for Sighted People in Remote Collaborations
	2.2 Inaccessibility for BVI Programmers in Software Development
	2.3 Accessibility for Mixed-Ability Programmers in Remote Software Development
	2.4 Design Criteria

	3 Design
	3.1 Formative Design Activity 1: Choosing a Baseline IDE
	3.2 Formative Design Activity 2: Code Walkthroughs
	3.3 Formative Design Activity 3: Synthesizing Code Walkthrough Scenarios

	4 CodeWalk
	4.1 Features
	4.2 System Implementation

	5 Evaluation Study
	5.1 Participants
	5.2 Tasks
	5.3 Procedure
	5.4 Data Analysis

	6 Study Results
	6.1 How well did CodeWalk improve coordination during collaboration?
	6.2 How did CodeWalk affect communication about the source code?
	6.3 How did participants perceive their collaboration experience with CodeWalk?
	6.4 Threats to Validity

	7 Discussion
	7.1 Summary of Findings
	7.2 Accessible Co-Editing
	7.3 Interdependence
	7.4 Researcher Reflections
	7.5 Future Work

	8 Conclusion
	References

