
App-Directed Learning: An Exploratory Study
Jonathan Sillito

University of Calgary
Calgary, Alberta, Canada

sillito@ucalgary.ca

Andrew Begel
Microsoft Research

Redmond, Washington, USA
andrew.begel@microsoft.com

Abstract—Learning a new platform is a common, yet difficult
task for software developers today. A range of resources, both
official resources (i.e., those provided by the platform owner)
and those provided by the wider developer community are
available to help developers. To increase our understanding
of the learning process and the resources developers use, we
conducted an interview and diary study in which ten developers
told us about their experience learning to develop Windows
Phone applications. We report on a preliminary analysis of our
data viewed through the lens of self-directed learning. Using this
lens, we characterize the learning strategies of our subjects as
app-directed, and describe some of the particular challenges our
subjects faced due to this strategy.

I. INTRODUCTION

Software developers face a constantly changing set of plat-
forms and technologies that they could or may need to learn
to achieve their career goals. In the past decade, the effort of
maintaining competence has changed from mastering desktop
software development to web and mobile platform software
development. One of the challenges of being a developer
today is that life-long learning skills are required to enjoy
a successful career.

Current mobile phone platforms, such as Google’s Android,
Apple’s iOS and Microsoft’s Windows Phone, participate in
a two-sided (or arguably multi-sided) market [10]. Platform
owners become successful not only by selling their phones to
mobile phone consumers, but also by making their platform at-
tractive to developers of mobile phone applications. To support
these developers, platform owners ship Software Development
Kits (SDK) for the developers to use, which provide them with
development tools, APIs and associated documentation.

For example, developers of Windows Phone 7 (WP7) ap-
plications use developer tools integrated with Visual Studio,
APIs in C#, and the Silverlight XAML language for defining
an application’s user interface (among other technologies), and
a phone simulator for testing their applications under many
form factors. Developers have access to thousands of pages of
Microsoft-provided documentation, including reference docu-
mentation, tutorials and how to documents, which they can
use to learn about the platform and its technologies.

Developers also exploit resources created by members of the
broader development community unaffiliated with the platform
owner. Examples include blogs, online forums, and question
and answer sites. Recent research has explored how these
resources are used to answer developers’ questions [11], how

effectively they cover features of a platform [9], and their value
as a source of examples for developers [8], [12].

Building on this previous work, we focus our current
research on understanding how developers learn to build an
application on a platform for their own non-work-related side
project. In this paper, we report on an interview and diary
study that poses three research questions in the context of
WP7 development: (1) How do people develop expertise on
a new development platform?, (2) What challenges do they
face? and (3) How can their learning challenges be overcome
through more effective support?

This first formative analysis of our data (reported here)
uses concepts from the self-directed learning research lit-
erature [4] as an analytic lens. We chose to use the self-
directed learning model because our subjects’ learning and
development activities were self-directed, i.e., not coordinated
by their managers or by a university instructor. We call our
subjects’ approach to learning app-direct learning, which we
characterize as an instance of self-directed learning. We found
that newcomers to the platform started by asking “what do I
need to learn?” and “where should I start?” They found that
picking an application to build helped answer these questions.
In a sense, the application defined the syllabus for their own
personalized course of instruction. The choice of application
also provided structure for their learning while they shaped
their learning goals and strategies, identified learning resources
and evaluated the outcomes of their learning. Our contribution
in this paper is to introduce app-directed learning and discuss
its associated challenges in platform development.

II. METHODS

In our interview and diary study, we recruited 10 Microsoft
developers (P1. . . P10) who did not work for the Windows
Phone product team to participate. We only accepted subjects
who were actively developing WP7 applications on the side
(i.e., not as part of their regular work) during the study.
Subjects had an average of 9 years development experience,
but were relatively new to WP7 development. Our one hour
long semi-structured interviews focused on our subjects’ ex-
periences learning to develop on the platform. The subjects
were also asked to keep a diary of their platform learning
experiences. Each diary entry answered the same question:
“What is one thing you have learned recently about the WP7
platform, and how did you learn it?” In total, we received 2
to 4 diary entries per participant for a total of 24 entries.



Knowles’ self-directed model identifies five stages of learn-
ing: (1) diagnosing learning needs, (2) formulating learning
goals, (3) identifying resources for learning, (4) choosing
and implementing a learning strategy, and (5) evaluating the
learning outcome. We used a Grounded Theory approach [1]
to analyze our data and noted that motivation and persistence
were powerful instigators and mediators of these five stages.
Specifically, we used the following themes to formulate our
interview questions and to guide our analysis.

A. How do our subjects determine what to learn?
B. How are learning goals formulated by our subjects?
C. What resources do our subjects use and how do they find

them?
D. What learning strategies are used by our subjects and

how do they choose them?
E. How do our subjects evaluate the quality of their learning

outcomes?
F. What motivates our subjects to start learning, and con-

tinue to learn, the platform?

Our preliminary answers to each of these analytic questions
are reported in the follow section.

III. FINDINGS

At the interviews, we asked our subjects to describe and
characterize their level of expertise with the WP7 platform,
and explain how they achieved it. The diary entries explored
their day-to-day learning experiences. The results of our anal-
ysis suggest that developing deep platform expertise requires
the development of multiple applications over many years.
Fortunately for the subjects and platform owners, acquiring
the expertise to develop a first or second application on a
platform does not require 10,000 hours of practice (as Glad-
well suggests is necessary to be a world expert [2]), but can
be accomplished in a significantly shorter time. Some aspects
of our subjects’ iterative learning processes are captured here.

A. How do our subjects determine what to learn?

Newcomers to a platform need a way to determine where
to start in their learning and even need to learn “what are the
capabilities the platform provides” (P7). Over time, developers
also need to decide whether to continue learning. Selecting an
application to build helped our subjects answer these kinds
of questions. Subject P1 actually decided ahead of time what
topics he wanted to learn and decided to build an application
that “hit all of those topics.”

For most of our subjects, however, the features of the
intended application determined which parts of the platform
were relevant to learn. These features, thus, defined for them a
personalized “syllabus” that provided a procedural pedagogical
scaffold. To illustrate this point, consider Subject P3. He
developed an application that plays streaming music. His
personal syllabus included learning the WP7 APIs related
to web services, streaming data, and playing foreground and
background audio. The audio APIs were not relevant to any
of our other subjects.

Our key finding here is that rather than talking about how
people learn the WP7 platform, it is better to talk about how
people learn to implement a particular set of application
features on the WP7 platform. One significant challenge with
each subject’s unique syllabus is that there is no single place
that each can find everything he needs, and certainly not
structured in the way that would propel the subject to most
effectively learn them. From the platform owner’s perspective,
constructing a plan for developing effective platform learning
materials and tutorials is almost impossible because every
developer’s learning needs are in fact so different.

B. How are learning goals formulated?

Building on the concept of the application as syllabus, the
learning process described by our subjects interleaves learning
activities with coding activities. Most of our subjects’ learning
arises when they find themselves stuck during application
development. Their learning goal, then, is to figure out “Why
is this not working for me? How am I going to accomplish
what I need to accomplish?” (P8) and learn it well enough “to
get something to work?” (P2).

One could classify the different kinds of development ses-
sions experienced by our subjects based on the fraction of
learning time versus programming time. For example, Subject
P1’s application threw an exception that he could not explain,
so he spent two days trying to figure out the reason for
his exception by coding workarounds, searching online, and
looking at documentation. Finally, he came across a Stack
Overflow post online that suggested to make a particular class
public; a 10 second code change solved the problem.

When developers “get blocked” (P6), their very specific
learning goals require narrowly focused and challenging
information-seeking activities to realize. Thus, our subjects’
most common obstacle, learning how to use API feature X
in my application, proves to be harder than the more general
and reasonably satisfied goal of learning about API feature
X. Due to its context-specificity, this kind of learning goal is
difficult for a platform owner to support. In a self-directed
learning context, without any pre-arranged or pre-identified
curriculum, identifying how to provide the developer the right
help at the right time requires further research.

C. What resources are used, and how are they found?

The learning process triggered when Subject P9 was
blocked was primarily about searching the web. “I just search
online, and usually the first few results are Stack Overflow
where questions are answered.” Subject P8 judged how well
he knew a topic by “how many lines of code” he could write
before having to “go search for help.” When programming, he
kept both his development environment and his web browser
open, so that he could “be working and searching.”

The most common resources found through web search are
not the references authored by the platform owner, but are
more typically, for example, blog entries and Stack Overflow
posts written by non-affiliated community members. Our sub-
jects found that much of the official documentation was limited



because it was missing the collective wisdom accumulated in
the experiences of the developer community. Subject P1 told
us that he often found “ways to use it you may not have
thought of, when not to use it, a-ha moments.” Searching also
helps foster a sense of community by identifying “someone
else who has encountered this problem” (P8).

Code examples found online or distributed with the SDK
play an important role in the learning process of our subjects.
Sometimes examples taken from the web just did not work
when subjects put them in their applications. They found it was
time-consuming to find and try out multiple examples, just to
discover the “one that works for me” (P10). Subjects usually
started an application by “following the vanilla examples”
(P3), and then adapting them to the desired application context.
Though it takes a lot of effort, testing, incorporating, and
adapting external code examples is an essential learning activ-
ity. Subject P6 agreed, saying that “customizing [the example]
to your need would help you understand it a little more” (P6).

D. What learning strategies are used, and how are they
chosen?

Our subjects learned as little as they could get away with
when first learning about a topic, and would only learn more
when revisiting the same topic later to fix issues or deliberately
attempt deeper understanding. At first, the aim appears to be
to learn a topic just well enough to get the feature working, as
Subject P4 told us.“I tend to do a bit of a rush through when
doing a first pass of implementing new functionality,” even if it
is not completely integrated with the rest of the application. In
general, however, the goal is aimed more at “go[ing] through
it gradually” (P9), accomplishing one small task after another.

Of course, just getting something to work in an application
is not enough to understand the technology completely, or even
to know the best way to do it on that platform. “I know I’ve
done it, I don’t know if I’ve done it right, but it kind of works
I think” (P2). Improvements to both the implementation of
a feature in the application and to the developer’s level of
understanding arise when they run into technical problems like
bugs or bad performance. Subject P3 became an expert on
one aspect of the API by unknowingly “shipping with odd
problems.” Over time, he solved those problems “by figuring
out how to handle all of the exceptions that c[ould] arise.”

When enough time passes (less than you would hope)
after learning a topic and moving on to other associated
functionality, developers found that they did not retain even
elementary knowledge of the feature. “I may learn it good
enough, but then I forget it because I don’t use it any more”
(P2). This hurts them when they need to revisit the feature
in order to improve to change the implementation because
they have to relearn the information. Subject P8 said that if
he learns something that he can not put into his application
immediately, he will need to go “back and relearn that again.”
His learning strategy is to learn only as much as he can apply
it to his application at that moment, and iterate on further
learning and coding, as needed.

E. How do learning outcomes evaluated?
As mentioned above, we asked our subjects to characterize

their level of expertise in order to learn what expertise means
to them. We found that while their notion of expertise varies,
it is consistently and closely tied to the relationship between
the amount of time and learning required to actually build
something with the platform. As the need to use online
references during development work shrinks (though, never
to zero), they start feeling that their expertise is growing.

More specific learning episodes are measured using their
progress on the application. If a subject is most concerned
with getting unblocked on a programming task, when he
accomplishes that task, he will feel that he has learned enough
about the subject. However, if a topic needs to be revisited
later because of application issues, he recalibrates his self-
assessment and learns to wait until his application is released
“into the wild” (P8) before believing in his own mastery.

F. What motivates our subjects to learn the platform?
Mark Guzdial, in his Computing Education Blog, says “a

key part of what a teacher does is to motivate the student to
learn” [3]. In self-directed learning, the student is his or her
own teacher, thus a developer’s motivation, persistence, and
self-efficacy play significant roles in the ultimate success of
his learning process.

Our study subjects were initially motivated to learn to build
an application as a long-term personal investment. Subject
P8 said that “the entire application marketplace dynamic ...
[it] is ... a long-term trend for how software is distributed.”
Additionally, he felt that learning a new platform would help
them maintain relevancy in their careers. “When you have a
side project, you are open to new technologies that you would
not even know about in your day job, and ... bring them into
your day job.” In the past, developers’ careers were focused
on learning how to become desktop platform developers, but
with the rise of mobile application marketplaces, their goals
have become much more specific: to release an application on
the platform, and “do well enough in the marketplace so that
my hobby pays for itself” (P8). Subject P2 said that learning
technologies gave him “nerd cred,” and that:

“I just want to learn so that when that next idea
comes that actually will make money, I have all
the tools in place, and I don’t have to worry about
learning how to do something.”

Developers interpreted limited progress in developing their
application as the platform being difficult to learn, or worse,
perceiving themselves to be stupid. Subject P8 said “if I’m
not able to solve my problems quickly ... it’s a big morale
deflater.” Most of our subjects valued making concrete coding
progress on their application as more valuable than spending
time learning, and often mis-estimated the fraction of time
they needed to spend on each. Their stated goal was to become
expert as quickly as possible so they could program “in the
zone.” Similarly, Subject P2 said:

“to not have to rely so much on looking up how
to do something gives you a lot more time and less



context switching; if I know exactly what I need to
do, I can go on a coding binge and I don’t even
realize that time is going by.”

The developer’s perception of his own progress in building
his application has a strong influence on self-efficacy (the
belief in one’s own abilities to complete a task or solve
a problem). For participant P7 making (early) progress is
important to maintain his motivation to build the application:

“I just want to work on it, not learn the language,
then do a lot of trial and errors to get to a solution
because that would have cost me a couple weeks in
learning.”

Subjects P1 and P2 both described experiences in which
they each gave up learning a new platform altogether when
they found it was too hard to get started. We feel that
the principle behind the design of the Logo programming
language, namely a “low threshold and no ceiling,” [5] should
govern the design of platforms. The introductory learning
experiences would then be gentle enough for novices to feel
comfortable learning, without restricting an expert’s ability to
work on increasingly sophisticated projects.

IV. SUMMARY AND FUTURE DIRECTIONS

The organization of our subjects’ learning around the de-
velopment of an application is something we have called app-
directed learning. Its defining aspects are that the features of
applications that developers want to build define the topics
they need to learn and that many of these topics are unknown
to the developers until they encounter issues with them as they
learn to build their application. The conscious goal of their
learning was often only to learn as much as was needed to
complete their immediate development goal. They could return
to the topic later to gain a deeper understanding, if and when
it was needed. Subjects typically found learning resources
online via web search, and were more often supported by
the experiences and wisdom of members of the development
community from their blog posts and answers in Q&A forums,
than by the platform owner’s official documentation.

A consequence of this learning approach is that our subjects
did not develop general expertise in the WP7 platform, but
only with particular aspects. As Subject P7 said, “I have good
breadth on what the platform provides me. There are some
areas which I’m good at, and some I’m not.” Developers
assessed their learning by the completion of a feature or
application. This measurement was vital for preserving a
developer’s motivation to continue learning and developing.

A secondary goal of our research is to identify ways that
platform owners and other development communities can
support developers in learning a platform. To this end, we
have identified several key challenges and open questions
that further analysis and followup studies will consider. What
is the best way to structure and deliver learning resources
when the needs of developers vary wildly? It is difficult to
produce learning materials that account for a progression of
knowledge when each learner wants to take a different path

through the material, or skip it entirely for the next topic. At
times, our subjects inadvertently released buggy code because
the associated platform topics were more complex than they
realized. Simply learning enough to “get it working” was not
enough to avoid all of the pitfalls related to the particular use
of a feature. Is it possible to provide documentation at an
appropriate level of mastery without misleading novices into
believing that they know everything that is required?

Likewise, how can one write application-oriented tutorials
when each developer wants to build applications with their
own unique set of features? Without documentation designed
exactly for each developer’s application, there can be no single
place where a developer could find complete information about
what they need to know, structured in a way that would
enable them to learn it efficiently. This is in stark contrast
to a typical university course in which the instructor defines
the syllabus and learning materials for the entire class, and
everyone follows it together in synchrony.

Our subject found that searching for learning resources
is always related to what they are trying to do with the
application or struggling with at that time. Their very dis-
similar contexts make information-seeking difficult. If they
find enough relevant resources (e.g., sample code), they then
find that adapting them to fit into their application context
is equally as hard. These challenges impede a developer’s
progress, weakening his self-efficacy and demotivating him
so much that he might quit trying entirely. Is this situation
similar to retaining women and minorities in undergraduate
computer science [6]? Or is it closer to motivating effective
end-user software developers [7]? We hope to draw inspiration
from these neighboring research areas to help find solutions
for app-directed learners.

REFERENCES

[1] K. Charmaz. Constructing Grounded Theory: A Practical Guide through
Qualitative Analysis. SAGE Publications, 2006.

[2] M. Gladwell. The Tipping Point: How Little Things Can Make a Big
Difference. Little, Brown, and Co., 2006.

[3] M. Guzdial. It’s not about the teachers, it’s about the
students: In MOOCs or Classroom. Blog, January 2013.
http://computinged.wordpress.com/2013/01/07/its-not-about-the-
teachers-its-about-the-students-in-moocs-or-classroom/.

[4] M. S. Knowles. Self-Directed Learning: A Guide for Learners and
Teachers. Association Press, 1975.

[5] Logo Foundation. What is Logo?, 2011. http://el.media.mit.edu/logo-
foundation/logo/index.html.

[6] J. Margolis and A. Fisher. Unlocking the Clubhouse: Women in
Computing. MIT Press, 2003.

[7] B. A. Myers and M. Burnett. End users creating effective software.
In Extended Abstracts on Human Factors in Computing Systems, pages
1592–1593, 2004.

[8] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code
example? In International Conference on Software Maintenance, 2012.

[9] C. Parnin and C. Treude. Measuring API documentation on the web. In
Web 2.0 for Software Engineering, pages 25–30, Honolulu, HI, 2011.

[10] J.-C. Rochet and J. Tirole. Platform competition in two-sided markets.
Journal of the European Economic Association, 1(4):990–1029, 2003.

[11] C. Treude, O. Barzilay, and M.-A. Storey. How do programmers ask
and answer questions on the web? In ICSE, NIER Track, pages 804
–807, May 2011.

[12] A. Zagalsky, O. Barzilay, and A. Yehudai. Example overflow: Using
social media for code recommendation. In Recommendation Systems
for Software Engineering, pages 38–42, June 2012.


