
Codifier: A Programmer-Centric Search User Interface
Andrew Begel

Microsoft Research

Redmond, WA 98052

andrew.begel@microsoft.com

Search tools have transformed knowledge discovery

by exposing information from previously hidden re-

positories to the workers who need it. Search engines

like Google and Live.com provide search capabilities

via a simple one-line text query box, and present re-

sults in a paged HTML list. When the repository be-

ing searched contains structured information with

extractable metadata (e.g. program source code), it

can be advantageous to index the metadata and use it

to enable queries that are more task-centric and suita-

ble for an domain-specific audience.

Codifier is a programmer-centric search user inter-

face that enables software developers to ask domain-

specific questions related to programming languages

and software. For example, developers might ask

 Where is this API or data structure defined?

 Where is this API used?

 Where is this variable assigned a value?

 I know this function writes data to the disk, but I

forget exactly what its name is .

 Even if I spell it wrong, I still want to find IPer-

sistentItemsChangedSink.

 Find all functions where Open() is called with

Init().

 Show me all calls to this method, so I can refac-

tor it by hand.

We index C, C++, C# and VBScript program source

code using a modified compiler to extract and store

lexical and syntactic metadata into a SQL Server

2005 or Windows Desktop Search database. The Co-

difier user interface, presented in Figure 1, enables

software developers to search in this database for

symbols found anywhere in the indexed source code

(not just their defin itions). Searches supported by

metadata can be quite powerful. In additional to

source code symbols, we can search for language-

specific connectors (e.g. foo::bar, foo.bar,

Figure 1: Codifier search user interface showing a search for the symbol COM.

foo->bar), synonyms, homophones, abbreviations,

concept keywords (e.g. searching for COM finds

COMString, ComException, ICOMPointer),

kind and usage of symbols (e.g. searching for defin i-

tions of methods named WriteString (kind:method

usage:def WriteString), newly instantiated objects of

class IEnumString (kind:class usage:use IEnum-

String), assignments to local variables named

firstTimeThroughLoop (kind:localvar

usage:assign firstTimeThroughLoop)), lexical scop-

ing (e.g. searching for calls to method Open() in

classes named MemoryAccess), and keywords for

searching by programming language, source control

informat ion and file path.

Filtering, sorting and refinement capabilities are im-

portant for winnowing the thousands of answers re-

sulting from a search over a large source code base.

For example, Microsoft Windows 2003 Server con-

tains several hundred million symbols in its source

code – when searching for code, the “right” result

may be one out of thousands, or may be all of them.

Codifier provides support for filtering results based

on the lexical, syntactic, and file path scope of the

result. In addition, by presenting the results in a grid,

with one row per symbol found, the UI enables sort-

ing based on any of the metadata values. Refinement

of queries is supported by metadata facet. A top 10

list of results is shown for each facet. When the user

clicks on one of them, an additional filtering term is

added to the query, which is then re-executed.

Codifier stores one symbol per row when using SQL

Server 2005. Using as-of-yet unoptimized schema,

each symbol’s metadata is stored in about 2,300 bytes

of space on disk, so even the largest bodies of source

code we index fit into less than 500 GB. Indexing

time is about 2 million symbols per hour. When using

the less scalable Windows Desktop Search 3.0, Co-

difier stores all metadata for the symbols in each file

in the inverted index, enabling metadata-based

searches, but requiring reanalysis and extract ion of

metadata when each search result is retrieved. Index-

ing time with WDS is about 80,000 files per hour.

Other search engines such as Google Code Search,

Krugle.com, and Koders.com have been targeted at

program source code, but these index minimal meta-

data, and mostly function by restricting the scope of

full-text search to source code files. Numerous IDEs

such as Visual Studio and Eclipse support symbolic

searches with fu ll metadata support, but have limita-

tions as well. Eclipse has a GUI-based interface to

metadata specificat ion which can be onerous to enter,

and both IDEs limit searches to a single managed

project at a time. The Source Insight IDE supports a

larger search scope using heuristically-evaluated me-

tadata, but does not support synonyms, homophones,

concept keywords or lexical scoping in queries or

results. Various research projects such as GENOA

[4], SCRUPLE [7], TAWK [1], and a project by

Clarke, Cox and Sim [3], have emphasized the back-

end techniques of indexing code and left their front

ends to technical pattern-matching languages. Strath-

cona [6] searches for code by example, allev iating the

query language problem. Sourcerer [2] and Assieme

[5] search for links within public code (and Assieme

links in web-based descriptions) to enable program-

mers to learn how to use new APIs. We have made

Codifier’s query language straightforward, like a typ-

ical web search engine, and concentrate mainly on

improving the usability of the UI for understanding

and manipulat ing search results .

Codifier will be demoed at the workshop and com-

ments and feedback will be gratefu lly appreciated.

[1] Atkinson, D. C. and Griswold, W. 2006. Effective pattern

matching of source code using abstract syntax patterns. Softw.

Pract. Exper. 36, 4 (Apr 2006), 413-447.

[2] Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Bal-

di, P., and Lopes, C. 2006. Sourcerer: a search engine for open

source code supporting structure-based search. In Companion To

OOPSLA. (Portland, Oregon, USA, Oct 22 - 26, 2006). ACM

Press, 681-682.

[3] Clarke, C., Cox, A., and Sim, S. 1999. Searching program

source code with a structured text retrieval system (poster ab-

stract). In Proceedings of SIGIR. (Berkeley, California, United

States, Aug 15 - 19, 1999). ACM Press, 307-308.

[4] Devanbu, P. T. 1992. GENOA: a customizable language- and

front-end independent code analyzer. In Proceedings of ICSE.

(Melbourne, Australia, May 11 - 15, 1992). ACM Press, 307-317.

[5] Hoffman, R., Fogarty, J., and Weld, D. Assieme: Finding and

Leveraging Implicit References in a Web Search Interface for

Programmers. To appear in Proceedings of UIST. (Newport,

Rhode Island, Oct 7-10, 2007). ACM Press.

[6] Holmes, R., Walker, R. J., and Murphy, G. C. 2005. Strathcona

example recommendation tool. In Proceedings of ESEC. (Lisbon,

Portugal, Sept 05 - 09, 2005). ACM Press, 237-240.

 [7] Paul, S. and Prakash, A. 1994. A Framework for Source Code

Search Using Program Patterns. IEEE Trans. Softw. Eng. 20, 6

(Jun. 1994), 463-475.

