
Facilitating Enterprise Software Developer Communication with CARES

Anja Guzzi
Delft University of Technology

Delft, The Netherlands
a.guzzi@tudelft.nl

Andrew Begel
Microsoft Research
Redmond, WA USA

andrew.begel@microsoft.com

Jessica K. Miller
Microsoft Research
Redmond, WA USA

jessica.miller@microsoft.com

Krishna Nareddy
Microsoft Research
Redmond, WA USA

knareddy@microsoft.com

Abstract—Enterprise software developers must regularly
communicate with one another to obtain information and
coordinate changes to legacy code, but find it cumbersome
and complicated to determine the most relevant and expedient
person to contact. This becomes especially difficult when the
relevant person has transferred teams or changed their per-
sonal contact information since contributing to the project. We
conducted a year-long series of surveys and interviews to help
us learn how, why, and how often software developers discover
and communicate with one another. In response to what we saw,
we designed, deployed, and evaluated a domain-specific, IDE-
embedded, photo-oriented, communication tool. We overcame
a significant challenge found in long-lived projects: uniquely
identifying individuals years after their contributions to the
project. After deploying our tool, iteratively refining it, and
deploying it again on a company-wide scale, most users
reported that it simplified the process of finding and reaching
out to other developers and offered them a sense of community
with their colleagues, even if those colleagues did not currently
work on their team. The lessons learned from our study and
tool development should apply to other large, multi-team,
legacy software projects.

Keywords-communication, software engineering, longitudinal
empirical study, coordination

I. INTRODUCTION

Succesfully developing and maintaining software products
requires effective communication between dependent engi-
neers. Our research explores the challenges of communi-
cation at Microsoft, where software products are extremely
large, long-lived, and developed by non-collocated product
teams. Software engineers must often maintain software
written by developers who have left Microsoft, or moved
to other teams. They try to rely on specifications, docu-
mentation, and source code to answer their questions, but
in the end, engineers prefer to speak with knowledgeable
experts or people with the authority to coordinate actions
they need to get their work done [1], [2], [3], [4]. Unfortu-
nately, when there is too little information shared between
dependent engineers about the project’s status and changes,
the work relationships required for fluid collaboration suffer
and threaten the project’s success [5].

Grubb and Begel studied the causes of the paucity of
inter-team communication and found that software devel-
opers felt inhibited from sharing information about their
work [6]. With others on the same team, developers would

communicate about their work quite openly, but with people
in other teams, products, and divisions, they would share
less. When asked, engineers reported an aversion to “spam”
other engineers with work notifications they might not be
interested in. The asymmetry of dependencies on software
teams and the modular boundaries induced by their software
architecture [7] sometimes prevent engineers from noticing
that others depend on their work. If an engineer thought no
one cared about their status or changes, he would not even
think to communicate at all.

We decided to tackle this problem from the reverse
perspective, looking at the software developer who needs
to communicate with a code owner who can explain some
aspect of the software, the rationale behind it, or who had
the authority to coordinate joint action to improve it. Over
the course of a year, we conducted surveys and interviews
to better understand how and why Microsoft software devel-
opers communicate with one another, and how often they do
so. We also discovered the criteria developers use to identify
and choose a set of relevant people, how they select the most
expedient person to contact, the means by which they contact
that person, and how often their conversations led to positive
working relationships.

We then designed, developed, deployed and evaluated a
new communications tool to encourage them to communi-
cate with one another and simplify the process of doing
so. Our tool, CARES: Colleagues and Relevant Engineers’
Support (shown in Figure 1), is a Visual Studio extension
designed specifically for software engineers who want to
communicate with others about source code. CARES displays
a context-sensitive array of photos of the engineers who are
most tightly connected to the code in each file currently
being edited in the IDE. To help developers select the
best person with whom to communicate, each photo has a
tooltip that reveals the person’s code history, organization,
physical location, and current availability. Developers can
then choose to meet the person face-to-face (F2F), or initiate
contact using email, instant messaging (IM), A/V chat,
application sharing, or screen sharing buttons right in the
tooltip.

To build the tool, we found that we had to address a
major pragmatic issue in enterprise communication; corpo-
rate longevity implies organizational change. Over many

(a) (b)
Figure 1. (a) Screenshot of the CARES tool running in Visual Studio 2010. (b) A tooltip next to Phyllis’ picture displays information about her. Phyllis
made the most recent checkin, but we cannot ask her about it right now because she is in a meeting. We shall email her instead.

years of product development, many people have joined
Microsoft, left Microsoft, and transferred between teams.
Email addresses are recycled when employees leave; re-
joining Microsoft does not necessarily result in receiving
one’s original email address, especially if hired in a different
employee category than before (e.g. vendor vs. full time).
The challenge for us was that Microsoft’s software reposi-
tories identify individuals using email addresses. In order to
support communication with people who had made contri-
butions to the source code at any time in the past, we had to
develop an algorithm that could map an email address and a
checkin date to a unique individual, in spite of any changes
in that individual’s status or identifying “labels.” CARES can
properly label any employee and enable communication with
them (as long as they work for Microsoft at the time you
want to find them).

In this paper, we describe this year-long study and dis-
cuss three categories of lessons that we learned: developer
communication behaviors, tool design and implementation
in the enterprise, and measuring the suitability and impact
of a newly introduced communication tool. We then show
how our studies and tool were inspired and influenced by
the research literature, and conclude with our suggestions
for researchers interested in developing usable software
enterprise-oriented communication tools.

II. METHODOLOGY

In the work described here, we wished to explore in
more detail how software developers communicate about
their source code, in what situations they are willing to
do so, and how often this occurrs. From our previous
studies, we expected to find that ad hoc, asynchronous,
intermittent communication was unsupported by tooling and
would suffer the most from communication inhibitions.

Over a two week period at Microsoft in July 2011,
we conducted a 50 question web-based survey (Survey 1)
divided into 4 sections: demographics and three commu-

nication scenarios (described below). The questions were
drawn from Begel et al.’s previous study of inter-team
coordination [5] and were piloted with several developers
before being deployed.1

Out of 500 randomly sampled Microsoft developers (5%
of all developers) invited to take Survey 1, we received 94
valid responses (19% response rate). Invitees were incented
to respond by a raffle for US$100. Demographically, the 94
respondents of Survey 1 had spent an average of 11.3 years
(SD=7.5) in the software industry and 6.9 years (SD=5.2)
at Microsoft. Most (68%) reported that they had previously
worked at other companies. 97% of respondents were devel-
opers, and 90% of those were individual contributors (ICs).

After the responses were received, we realized that we
should have asked some additional questions on communi-
cation frequency. We sent a supplemental survey (Survey 2)
to respondents of the first survey who indicated they were
willing to speak further on our topic. Survey 2 was sent to
32 respondents of the first survey, and we received 18 valid
responses (56% response rate).

From the research literature, our own prior research, and
what we learned from these surveys, we decided to build
a tool to help with the problems that developers reported.
We designed the CARES tool to help developers find and
select the most relevant person to communicate with for their
needs. To make that selection actionable, CARES supports
initiating communication with the selected party.

We deployed CARES to the 32 people who received
Survey 2 and gave them instructions on how to install and
use it. After a few weeks, we emailed these pilot users
and asked them if they would be willing to be interviewed
about it. Eight users agreed after having used CARES from
between one and three weeks. They were all developers (in-
cluding two developer managers) and worked in 6 different
Microsoft departments. Each worked on a team with 4 to

1To request a copy of the survey, please email Andrew Begel.

9 people and regularly collaborated with 3 to 30 engineers
working on other teams. The first two authors of this paper
interviewed each of those eight CARES users for an hour; one
author asked questions and engaged the interviewee while
the other recorded the interview and took copious notes. The
interviews were transcribed verbatim when it improved the
accuracy of the notes. In each interview, the interviewee was
asked to demonstrate his or her use of CARES in his or her
own workspace. The actions taken by the interviewee in the
demonstration were written down by the note-taking author.

From the lessons learned from the first deployment, the
second, third, and fourth authors developed CARES further,
while continuing to make the tool available to the 30
pilot users. Feature and user interface enhancements were
added to improve CARES’ compatibility and robustness with
the Microsoft’s development environments. In March 2012,
CARES was publicized at an internal Microsoft research
conference and made available to all employees at the
company. To monitor CARES usage for our study, the tool
included a logging facility to report feature usage.2 As we
write this paper in June 2012, CARES has been used by a
total of 106 employees (excluding the original 30 pilot users
and anyone associated with the development of the CARES
tool). CARES continues to be used (defined as at least twice
in the last two weeks) by 36 of those 106 users. We recorded
a total of 4943 log sessions. The most prolific user used
CARES 411 times since installation.

In April 2012, we conducted a third survey (Survey 3)
of 87 (at the time) known users of CARES. In addition
to demographic questions, we asked about their usage of
the CARES tool, their understanding of the visualization,
their perception of its utility and impact on their daily
work, their subjective assessment of its features, and their
suggestions for improvement. We offered no incentive to
answer this survey. We received 24 responses (28% response
rate), of which 19 were developers (79%) and 5 were testers
(21%). Respondents spent 9.1 years (SD=6.9) in the software
industry and 4.8 years (SD=4.1) at Microsoft. The log data
show that 10 of these survey respondents still regularly use
CARES.

III. LESSONS LEARNED

Over the course of the study, we learned much about
the details of developer communication at Microsoft which
influenced our decision to create a new communication tool.
We discovered that continuous change in the organizational
hierarchy and in the employees’ personally identifying in-
formation (PII) stymied any naive attempts to map email
addresses to people, and challenged us to develop a history-
sensitive identity mapping algorithm. After the tool was

2File paths opened in the editor and employee names and email addresses
visible in the UI of the tool are hashed before being written to the log. This
identifying information is not necessary for our analyses of the data. Logs
are collected automatically, but users can opt out in a Settings dialog.

deployed (twice), we monitored its usage via surveys, in-
terviews, and log analysis, and found how it fit (or did not
fit) into a diversity of developer communication workflows,
and what impact it had on helping developers forge positive
working relationships.

In the following three sections, we describe the most
important lessons we learned from our study.

A. Developer Communication

One of our first research questions was to identify, in
detail, why and how developers communicate with one
another about source code. Our previous studies indicated
that asymmetry of dependency was an important factor
in mediating the quantity of communication, so we asked
study participants questions that concerned both a forwards
and backwards version of communication scenarios that we
included in our surveys.

Reasons for communication Resp. [%] S1 S2 S3
Coordination:

Discuss a change I want to make to the code 54 36 26
Know if my use case was supported by the code 37 42 29
File a bug on the code 33 11 12
Know if a bug on the code was fixed 22 14 9
Propose a collaboration on a topic related to the
code

12 23 10

Take ownership of the code 9 8 N/A
Ask them to make a change to the code N/A 20 14

Seeking Information:
Ask how the code worked 51 65 65
Ask why the code was written that way 47 33 29
Find out who wrote the code 15 4 12
Ask if the code had test cases 8 2 4
Learn more about the code because I used to work
on it

7 1 4

Courtesy:
Ask permission to make a change to the code 20 13 10
Let them know I filed a bug on the code 16 11 7

Table I
WHY RESPONDENTS COMMUNICATE ABOUT SOURCE CODE, DIVIDED

BY CATEGORY, WITH RESPONSE RATE FOR EACH SURVEY SCENARIO: S1
(N=91), S2 (N=84), S3 (N=69). BOLDED REASONS ARE IN THE TOP

FOUR OVER ALL. BOLDED NUMBERS INDICATE FOR WHICH SCENARIO
THE REASON WAS CHOSEN MOST.

The first survey scenario (Sc1) asked respondents to
consider the most recent time they needed to communicate
with someone on another team about source code they saw
in their IDE.3 The second scenario (Sc2) asked about the
most recent time someone on another team asked them about
code they wrote. The third scenario (Sc3) asked about the
most recent time someone on another team had asked them
about code they did not own at the time. Table I lists the
reasons (drawn from our previous studies and the research
literature) respondents could check off to explain why they

3We ask about a specific event to avoid memory and generalization biases
by respondents.

needed to communicate. In this report, we divide them into
three categories: coordination (i.e., communication requiring
negotiation or extended interaction), seeking information,
and courtesy (e.g., notifying someone that you are about
to change their code).

The most frequent reasons, marked bold, are discussing a
code change, inquiring about support of a particular use case,
and to learn how the code worked and why it was written
that way. The top three reasons were highly correlated with
one another — about half of respondents reported two of the
three, while 13 reported all three. These reasons are similar
to those found in previous studies [8], [2]. The diversity of
responses is interesting as well, as more than 80% (Sc1: 80%
(N=90),Sc2: 91% (N=82), Sc3: 81% (N=67)) of respondents
indicated that the specific conversation they referred to in
their responses was typical for them.

After deploying CARES, we expected that users would
be inspired to ask us to extend its functionality. Survey 3
respondents asked for a way to easily see and communicate
with other sets of people than just those who had made
checkins. The most popular sets were developers who had
code dependencies (i.e. called methods, used classes, etc)
(36% N=22), and testers who wrote tests for code in the
file (36% N=22). Some also wanted to see anyone who had
ever made changes to any file in the same Visual Studio
project or solution (18% N=22), and anyone who ever
reviewed a checkin to the file (14% N=22). This indicates
the need to investigate additional communication reasons
and usage scenarios in the future.

Selecting a Person
We anticipated that when a developer wants to talk about
code, he would have a difficult time finding someone rele-
vant to talk to. First, he must discover the set of possible
choices of appropriate people, and then pick the one he
believes is most relevant and expedient for his needs. To
our surprise, the majority of respondents (66%) said “it
was easy to find someone relevant to communicate with.”
Only 11% said it was not. However, in our interviews, the
developers complained that finding the right person was a
tedious process. We found that this process involves many
factors.

Why pick this person? Resp. [%] S1 S2 S3
I thought they owned the code 56 63 48
Their team owned the code 52 54 45
They contributed to the code 45 60 29
I already knew them 26 N/A 28
I knew one of their teammates wrote the code 13 N/A 30

Table II
REASONS FOR CHOOSING A PARTICULAR A PERSON TO TALK TO, WITH
RESPONSE RATE FOR EACH SURVEY SCENARIO: S1 (N=91), S2 (N=83)

S3 (N=69).

In Survey 1, we asked respondents how they choose a
relevant person. In all three scenarios (see Table II), they
indicated that code ownership and contribution are the most
important criteria. 26% (Sc1: N=91) said, if possible, they
would pick a person they already knew. In our interviews,
we explored this process further. All eight interviewees said
that they search the source code checkin history first. From
each checkin, they find the author’s (committer’s) email
address, the explanation for the checkin, and the diff showing
what changed. One interviewee explained that the owner is
the person to contact because “ownership is important for
understanding design rationale.” On some teams, the owner
is the committer with the most checkins. On others, “there
is no single owner because a lot of people touch every file.”
A third group of teams contacts the author of the most
recent change, instead of the owner: “I look at the [source
code] history and find out who last modified the file...[The]
last person makes more sense than number of times.” Each
developer’s rules appeared to be team-specific, even among
those working on different teams for the same product. This
fits in with Microsoft’s grass-roots software process culture,
in which each team is encouraged to use whatever process
works best for them, so it “would be hard to get the real
owner based on what [my] team[’s] practice is.” Of course,
if they see someone they already know, developers may pick
that person over everyone else. “The closer to me the dev
is, the easier it is [to talk to him].” We found it surprising
that no interviewee ever spoke about searching for a subject
matter expert about the code. Perhaps they expected that the
information they sought could always be provided by anyone
with knowledge about the file.

After finding a person, the next step is to contact her.
Many survey respondents indicated that they initiated contact
using multiple communication channels at the same time.
Over all three scenarios, email was most common, followed
by face-to-face contact, and IM (Sc1 (N=91): Email 86%,
F2F 23%, IM 20%. Sc2 (N=83): Email 76%, F2F 31%, IM
22%. Sc3 (N=69): Email 72%, F2F 30%, IM 20%). Other
channels were rarely used.

The choice of communication channel often depends on
how well the developer knows a person, whether the person
is currently available online, and how far away he is. One
interviewee explained, “I mostly use email and IM. But,
if they are on the same floor, sometimes I’ll visit them in
person. If I know him, I’ll IM him. [But] if he’s far away,
I will ping or email. If I don’t know him, I will email
him.” Another said, “I would IM or email. If [they are]
not online, then I would email. Even if [they are] in the
building, I will IM anyway. When they get back (if [they
were] away) I will IM them back. If [they are] out of office,
then I will send email.” The person’s job level also has an
impact: “If [they are] low on the management chain, I talk
to them in person. If high up in the chain, I send an email.
It doesn’t matter if I know them.” Another interviewee who

felt similarly explained. “Usually managers are busy... I’d
send an email before [I would] knock on their door.” When
contacting a manager, they said they would ask simply for
a more appropriate IC contact.

Thus, although developers and their teams have distinct
“algorithms” for finding and selecting the most relevant
and expedient person to speak with, overall, they seem to
consider at least six criteria: ownership, checkins (most re-
cent or most numerous), a preexisting relationship, physical
distance, job level, and online availability.

The interviewees communicated most often with their own
teams, all of whom were collocated on the same floor of
their building, and frequently in the same hallway. However,
conversations with developers on other teams occurred often
as well; in Survey 2, respondents indicated that they contact
other developers two to five times per work task, and that
most contact someone at least once a day when doing coding
tasks. Most responses to emails or IMs occurred immediately
(31% N=87) or while the asker was still working on his task
(56% N=87). Though we thought it would be more difficult
to get a response from a file owner on another team, 73%
(N=91) of Sc1 respondents said that they were happy with
the timeliness of the response they received.

These kinds of conversations resulted in mainly positive
impressions. Survey 1 respondents reported being satisfied
with conversations they had for all of the scenarios (Sc1:
84% (N=91), Sc2: 94% (N=84), Sc3: 90% (N=69)). In
Scenarios Sc1 and Sc2, most respondents agreed with the
statement, “the outcome of the conversation we had is still
relevant for me” (Sc1: 81% (N=90), Sc2: 83% (N=82)). Such
frequent, positive, material communication is likely to help
engineers build and maintain positive working relationships
with one another.

B. Tool Design and Implementation
In this section, we describe the CARES tool and the factors

that influenced its design, many of which originated with
Grudin’s studies of groupware failures [9]. While building
the tool, we found that linking the email address of a
committer of a checkin to data describing who that employee
is for a long-lived codebase was a lot more difficult than
we thought. We show how we overcame this challenge, and
hope the solution can help others.

CARES is a Visual Studio 2010 extension which displays
a vertical array of photos of engineers in the whitespace in
the upper-right corner4 of the current editor window (see
Figure 1). This is done using a view-relative, embedded
editor adornment (i.e., a graphic effect layered on top of the
text view that always remains at the same position relative
to the window borders).

The photos shown are context-sensitive; in each editor,
CARES shows the faces of just those engineers who con-
tributed to the file (i.e., checked in changes on any branch).

4Source code typically has a lot of whitespace on the right margin.

This minimizes the set of people developers have to consider
speaking with about a topic related to the file’s source
code. This reduction can be significant, as product teams
often employ hundreds of developers, and anyone, on any
team, may have worked on the code in the past. Some of
the interviewees worried that a few files in their product
were edited by many colleagues, and they would not be
able to see them all. During Deployment 1, we asked the
interviewees to show us one of their own files that had many
committers, but none could find any with more than five
people. When some Deployment 2 users also complained
about too many photos, we added the ability to switch to a
more vertically compact, name-only view. Incidentally, this
name-only view addresses a potential problem among those
developers prone to making stereotypical judgments based
on seeing someone’s race, ethnicity, age, or gender in a
photo. CARES respects employee’s choice over how their
photos are used by observing a Microsoft IT-standard opt-
out option.

When the developer hovers over a person, a tooltip
displays her name, email address, title, department, manager
(because managers are often more widely-known than ICs),
office location relative to the user (because developers are
more likely to walk down the hall to meet with someone than
walk up and down the stairs), and a colored bar indicating
her availability (taken from her IM and work calendar
status). The tooltip also shows her historical contribution to
the code: whether she made the most recent checkin, made
the most checkins of all of the people shown, or added the
file to the repository, and how many commits relative to the
others she made to the file. Finally, the tooltip reveals the
dates of her first and most recent checkins, enabling the user
to figure out if she is currently working on the code, or has
moved on.

Once the developer chooses a person, he can click on
email, IM, A/V chat, Visual Studio application sharing,
or screen sharing buttons in the tooltip to initiate contact.
CARES helps contextualize the ensuing conversation by
filling in the current file path, class, and method (if
applicable) as the subject of the message.5

Deployment Considerations
Many developers at Microsoft use Visual Studio, so it was
a natural choice hosting the CARES extension. CARES uses
Visual Studio’s Managed Extensibility Framework (MEF),
which enables plugins to easily extend Visual Studio inter-
nals (similar to what is possible with Eclipse) and allows
plugins to be easily extended as well. CARES supports two
kinds of extensions: source control repository access and
employee metadata crawling. When a file is opened, CARES
asks each source control extension to check if the file is

5For more information on CARES, please see
http://research.microsoft.com/cares.

managed by that source control system. If yes, the extension
asynchronously populates a list of email addresses and
associated dates for each checkin and “shelveset” recorded
for the file.6

From the CSCW literature and our own past experience
deploying tools at Microsoft, requiring any configuration
steps, server setup, or any type of waiting time between
installation and use would hurt CARES’ adoptability [9]. We
took advantage of Visual Studio’s built-in source control
connections to obtain information about committers and their
contributions to the code. We use Windows’ connection to
Active Directory (available at Microsoft and many other
enterprises) to retrieve employee information. We piggyback
onto the user’s active Microsoft Lync unified communica-
tions session to provide our various communication modes.
When the user is disconnected from the corporate network,
or disconnected from Lync, CARES gracefully degrades
the user interface by disabling the features that rely on
those servers without affecting the others. For example, if
the user’s connection to the source code control server is
severed, CARES cannot fetch the checkins and committers
at all. If a new file is opened, CARES will display an error
message to the user for five seconds and then fade out. If the
connection comes back, CARES will reactivate and attempt
to initialize itself again.
Understanding Identity
Identifying a person is much more complex than it first
appears. To the source code repository, where CARES fetches
information about checkins and shelvesets, the author is an
email address. In order to identify the name, contact info,
and organizational information of the person represented by
that email address, we simply have to find it in our Active
Directory employee database.

This may work, sometimes. But while the source code
repository is recording past events, Active Directory only has
records for current employees. If the email address cannot
be found, it may indicate the employee has left Microsoft
or changed his email address. Or, it might not be the email
address for a human, but instead represents a no-longer-
used machine account that made the checkin on behalf of
an employee.

Consider this four-step example:
1) John Doe made a checkin in 1999 with the email ad-

dress: jdoe@microsoft.com. He then left Microsoft for
a startup in February 2000. Active Directory today has
no record of a jdoe@microsoft.com, thus CARES would
have no way to find out who jdoe@microsoft.com
actually is.

2) In 2005, Jane Doe joined Microsoft and was assigned
the unused email address jdoe@microsoft.com. When
we now look up jdoe@microsoft.com in Active Direc-

6A shelveset is like a checkin, but is intended only to be temporarily
held while it is code reviewed by others.

tory, we will get Jane Doe’s contact information. But,
then CARES is misleading the user into thinking that
Jane Doe contributed to the file six years before she
joined Microsoft!

3) John Doe (the original) rejoins Microsoft in 2008
as a vendor. He receives the email address v-
jdoe@microsoft.com — the “v” prefix identifies
him as a vendor. An Active Directory lookup of
jdoe@microsoft.com still returns Jane’s contact info.
CARES still believes the committer is Jane, even though
John is a current employee.

4) Jane got married in 2011 and changed her name
to Jane Public. To go with her name change, she
changed her email address to jpublic@microsoft.com.
Now, Active Directory will again have no record of
jdoe@microsoft.com, thwarting CARES’ lookup. Yet,
John Doe does work at Microsoft, but is stuck with
his vendor email address v-jdoe@microsoft.com. This
leaves Microsoft with the right John Doe, but no way
to link him to his former email address.

To address these scenarios, CARES makes use of the
Codebook [5] web service which maintains a graph of
software process information mined from the software repos-
itories used by product teams at Microsoft. This information
includes people, checkins, bugs, documents, tests, etc. Cru-
cially for CARES, Codebook retains and make available the
entire history of all of the repositories. Every graph node
in Codebook has the potential for recording a start date and
end date when it was valid. Person nodes can store multiple
sets of start and end dates, since people can leave and rejoin
Microsoft many times. Each property of a graph node may
be declared to be “revisable,” which means it too retains a
record of every value it ever had along with the date range
for which the property had that value.

Codebook mines its employee data from Human Re-
sources, rather than Active Directory. Human Resources
uses a much more complex employee database that contains
historical information about current, former, and contingent
(vendors, interns, contractors, etc.) employees. They dis-
tinguish employees not by name or email address, but by
a personnel number, which is unique to each individual
and never reused. Even when a person leaves and rejoins
Microsoft, they are assigned the same personnel number.

Unfortunately, the Human Resources database contains a
lot of “dirty” data. Some data is missing when we expected
it to be there (e.g., the identity of the second author’s
manager is missing from the database for his first year of
his employment). Some data is not applicable for a given
date range (e.g., a salesman working out of his home has no
“office” phone number). And many date ranges themselves
are inconsistent across different tables in the same database.
We spent six months after building CARES learning how to
clean the data into a coherent, consistent form. This cleaned
data is what is stored in the Codebook graph.

CARES invokes a Codebook web service API that provides
the personnel number for any email address when also
supplied with a single date. On any given day at Microsoft,
only one person has a particular email address, so the
combination of email address plus date is unique. CARES
looks up each committer (or shelver) using the date of the
checkin (or shelveset), and then retrieves (using another
Codebook web service API) the complete historical record
of that person’s employment at Microsoft.

Codebook does not contain all of the information about
people. Active Directory alone contains the person’s photo
and their instant messenger email address, both needed by
CARES. Another employee database contains an important
opt-out bit that indicates whether the employee wishes to
make their photo public to people inside Microsoft. We must
combine information from all three data sources in order to
properly display the CARES UI. Codebook contains every
historical email address for a person and their personnel
number, while Active Directory contains every employee’s
current email address and personnel number. We can use
Codebook’s information to obtain the personnel number, and
use that to look up the photo and IM address in Active
Directory. We can then use the current employee email
address to look up the opt-out bit in the third database.

Building such a pair-wise data lookup model made it
difficult to design CARES with an extensible architecture that
can incorporate additional employee information databases.
However, if we could sufficiently modularize the employee
lookup extensions, we could speed up CARES by paralleliz-
ing the lookups. Our solution is to use an AggregatePerson
facade object which can dynamically aggregate and cache
information from individual Person objects returned by each
employee lookup extension. Each extension is requested to
lookup an employee given a pair of an email address and
a date. If found, the extension creates a Person object with
whatever data it has available (including historical) and adds
it into a CARES global Person Repository. Several of a
person’s properties can be used to uniquely identify them,
either the personnel number, or a pair of a date range plus
an email address, Exchange name (a person’s name with
qualifier, when necessary to distinguish the person from
others with the same name), GUID, Windows Security ID,
IM address. Whenever a Person is added into the Person
Repository, its unique identifiers are intersected against those
already in the repository. Whenever there is a match, those
Person objects are aggregated into a single AggregatePerson
facade.

For example, let us say that John Doe made a checkin.
TFS identifies him as “jdoe@microsoft.com @ 1999-
04-20.” Active Directory identifies John Doe as “v-
jdoe@microsoft.com @ current,” as “John Doe @ current,”
and as “Personnel Number 1234567.” Codebook identifies
John Doe as “jdoe@microsoft.com @ 1997-01-03 to 2001-
02-10,” as “v-jdoe@microsoft.com @ 2008-04-20 - current,”

as “Personnel Number 1234567,” “John Doe @ 1997-01-
03 to 2001-02-10,” and as “John Doe @ 2008-04-20 -
current.” The third database identifies John Doe as “v-
jdoe@microsoft.com opt-in @ current.” The Active Direc-
tory Person and Codebook Person overlap in the personnel
number, so they are merged together. The email address
of the third database’s John Doe overlaps with the email
address of the Active Directory Person, allowing it to be
merged into the AggregatePerson object as well. Finally, the
email address and date of the TFS Person overlaps with the
date range of the Codebook person’s first email address. This
last match lets CARES associate its checkin with the John
Doe AggregatePerson object and display his correct, current
contact and organizational information in its user interface.

So, what if the person who made the checkin is found
in Active Directory but not in Codebook? This can happen
when employee checkins are gated by quality testing — all
employee checkins in the same time period (e.g. hour) are
grouped together and tested. If the tests succeed, a machine
account then commits all of the checkins to the repository.
Machine accounts are Windows principals, and thus exist in
Active Directory, but since they are not employees, they do
not exist in the Human Resources database that supplies data
to Codebook. We noticed that a secondary way to confirm
the email address belongs to a machine account is that its
Active Directory record contains no manager.

Sometimes an email address from a checkin cannot be
found. If the Human Resources employee database were
infallible, we would be able to conclude it is a machine
account that is no longer used. However, the HR database
has some missing rows in its email address to personnel
number table, preventing us from linking his contact in-
formation to his email address. To reduce the incidence of
these “missing” employees, we have manually curated 1,500
former employee’s table entries, using manual inspection.
The names and email addresses are often very similar to
one another making them easy for a person to identify.

C. CARES Usage Case Studies

We deployed CARES twice, first in a pilot to 30 develop-
ers, and then in a Microsoft-wide internal release. To this
date, it has been used by 106 additional employees. The
reaction to CARES by most individual contributor developers
has been primarily positive, however, a few people felt that
it did not fit with the ways they preferred to communicate
with others. In this section, we describe both the positive
and negative reactions to CARES, illustrating the diversity of
communication styles used by employees sharing the same
role.

Eight pilot users were interviewed. All of them liked the
CARES tool itself. “CARES is pretty cool” and “awesome.”
One developer liked it enough to show it to his manager,
who said, “[it] puts a face to the code. Now I know who
to talk to.” That manager went on to ask his entire team to

start using CARES. All of the Survey 3 respondents said it
was clear why the people who showed up in CARES were
there (100% N=23).

They told us that CARES simplified and sped up their
process for finding relevant engineers. One interviewee said,
I “would use the CARES tool to get their name, email and
contact card with their office address. [It] saves me time
from running [a code history tool] and [an address book
tool].” Another said “The more I can just stay here [in
the IDE] where I’m doing my work, the better it is.” A
third said he “looks at [CARES’] availability indicator to
confirm [that someone is] free” “before walking over. Green:
yes, Red: message, Yellow: wait or email.” 56% (N=18)
of Survey 3 respondents reported that seeing the person’s
availability indicator helped them to decide who to contact
at that moment.

Developers spoke of situations where CARES had helped
them. One said, “The add-in is helpful for me... There’s lots
of people who have implemented [code] in the past, and I
have to understand them all.” Another said it was “handy
to know who worked on that particular code, especially
when it was developed by someone on a different team years
and years ago.” Two others predicted that people who used
CARES would end up asking them questions, one because
he worked on the product’s core which everyone else used,
and the other because he was in the same team for many
years, and had contributed to almost every file.

In the CARES design, we chose to show photos instead of
names because we wanted to encourage communication. The
photos are always visible, giving the developer the feeling
that someone out there cares about his work, and is keen
to be contacted about it. The CSCW literature backs up our
intuition, suggesting that visual cues provided by photos can
help people identify individuals’ relevant social categories
and promote shared social identity among colleagues [10].
48% (N=21) of Survey 3 respondents strongly agreed or
agreed with the statement, “Seeing the faces of the con-
tributors to the code helps me to feel like I am part of a
community.” 43% were neutral and only 1 respondent (5%)
disagreed.

CARES’ photos enable group members to easily recognize
one another, which increases their sense of belonging. One
interviewee said it was “definitely easier to figure out who
the people are with the pictures.” Another showed us how
he investigated pointers to Visual Studio solutions that he
received in his email. Having never looked at the solution’s
code before, and then opening it into his CARES-enabled
IDE, he exclaimed, “that’s [name omitted]! He’s actually on
my new team. It’d be real easy for me to talk to him. [Pause]
That would have definitely taken me longer without CARES.
I would be trying to hunt people down.” His feeling was
shared by many in Deployment 2. 57% (N=21) of Survey
3 respondents strongly agreed or agreed with the statement
“For those people whom I had met before, seeing their faces

in CARES helped me to recognize them.”
Not everyone found that CARES was the right tool for

them or their team. While 81% (N=21) of Survey 3 respon-
dents reported that CARES showed enough information to
understand the recency of a person’s contribution to the file,
only 39% (N=23) felt there was enough information to see
the magnitude of a person’s contribution to the file. 5 Survey
3 respondents requested that CARES show line-by-line attri-
bution each file, rather than aggregate all contributors to the
file. We have been reluctant to add this feature since it would
duplicate the functionality of the “annotate” function (i.e.,
blame) in Visual Studio with TFS. Showing relevant people
per line also presents a user interface challenge because you
do not want your tool to attract the user’s attention with UI
changes when it is irrelevant to the user’s main task. [11].

In our interviews, we spoke with one developer who said
that while it was useful to know which developer in India
wrote some code, he still preferred to contact the developer’s
team liaison in India to ask questions. He explained that his
way enabled the liaison to delegate his question to anyone
who was relevant and available to answer the question. With
our tool, if the chosen developer was unavailable, or out of
office, the answer would have been delayed at least 24 hours.

Another developer, the most senior member of his team,
said that people came to him to find out who to talk to. “I
could gauge whether their question was appropriate, or in
my estimation, they should have done more homework.” He
worried that people on his team would use CARES to speak
directly to more relevant colleagues without “demonstrating
that they had any mental model at all.” He noted further
that CARES was of no use to him because “it’s almost
always clear who the author is, or who the right person
is to contact... I know, based on my years of experience...
who the author is.”

Figure 2. Usage logs of CARES users. The X axis is the date and the Y
axis shows each unique user. A dot on a row shows when the person used
CARES in his or her Visual Studio session. The timeline begins on March
8, 2012 and ends on June 24, 2012.

In Deployment 2, CARES employed logging to record
developers’ interactions with the tool. We have not yet
analyzed the detailed data, but have processed basic usage
data (shown in Figure 2). In its second deployment (on-
going), CARES has been used by 106 software engineers
all across Microsoft (not including Deployment 1 users).
More importantly, CARES was not just used once or twice,
but continues to be used on a regular basis by 36 of those
engineers. Most small utilities deployed in an enterprise lose
users quickly, due to serious bugs, overcomplexity, or user
boredom; that CARES has remained installed and used by
developers bodes well for its future.

IV. RELATED WORK

Coordination studies have a long history in software
engineering and CSCW research. Sarma [12] presents a
comprehensive review of coordination tools, with features
ranging from live team awareness (Palantir (ASE 2007),
TUKAN, FastDash, Jazz, CollabVS), to top-down socio-
technical exploration (STC) (Expertise Browser, Palantir
(ICSE 2003), FastDash, Ariadne and Tesseract (both use
Cataldo’s STC), BeeHive, Codebook), to IDE-based tools
(IBM Rational Team Concert (née Jazz), CollabVS, Palantir,
TUKAN [13], Deep Intellisense, TeamTracks), to context-
sensitive tools (TUKAN, TeamTracks, Deep Intellisense).

Unlike the live awareness tools, CARES aims at developers
on large enterprise software teams working independently
on components of a software product [2], [8], [14], [15],
[16]. Each developer may care little of the daily work of
people on other teams (if they know them at all), except
when a coordination request or information need arises. As
in Costa et al.’s study [16], the products we studied are
also long-lived; relevant contributors may have moved on
to unrelated projects. This reduces the need to see others’
current activities and allows a simpler display of availability
in line with the literature’s recommendations [11]. While
some of CARES’ design elements overlap with Schummer’s
awareness design patterns [13], other aspects harmonize with
Nakakoji’s guidelines for communication with experts: being
personalized, contextualized, and socially aware (though we
do not limit users’ communication modes) [4].

CARES is context-sensitive and contextualized to the IDE,
only showing the people relevant to the user’s focus. This
design (also used by TUKAN and Deep Intellisense [17])
requires a simple glance and mouse hover to choose with
whom to communicate. The top-down STC tools require
search, browse, or information-pivoting operations to move
from a global view to the desired context. Jazz, CollabVS,
and Palantir always show everyone on the team, while Team-
Tracks anonymizes the people and displays their aggregated
IDE actions. Only Ariadne and CARES show how people are
related to one another and to the tool user. Ariadne shows a
similarity-metric-based person graph, while CARES shows

concrete relations, such as relative office and organizational
location, and relative code contributions.

There are many possible methods to select relevant peo-
ple to show (e.g. organizational charts, program analysis,
whole-system STC graph analysis [18], email [19], degree
of interest functions [20], [21], and newsfeeds [22]). Our
CARES prototype uses committers as a simply-computed,
ecologically valid proxy for ownership and knowledge.
This choice drastically improves CARES’ deployability by
avoiding the need for offline analysis and custom servers
(which are required by many of the other tools). CARES
is auto-configured from the project’s source control context
and works immediately after installation.

While many coordination studies have looked at why
software engineers communicate and then pondered the
implications of too little or too much communication, ours
is the first to discover the criteria engineers use to select
the right person to speak with. In addition, we noticed that
very little of the literature describing communication and
coordination tools offers any longitudinal data about use over
the long term, whereas our report describes two deployments
over a total of five months of tool use at a large software
enterprise.

V. CONCLUSION

Enterprise software development is notable for supporting
large numbers of engineers working for long periods of
time on projects that have significant amounts of legacy
code. At Microsoft, we noticed that ad hoc, asynchronous,
intermittent communication between software developers
about the source code was common, yet poorly supported
by the general communication tools in daily use: email
and IM. We found, after several months of study, the
methods and “algorithms” that software engineers use to
discover and select relevant people to speak with about their
code. We learned that although their communication was
intermittent, it was a key factor in establishing long-lasting
work relationships that help make future collaborations less
difficult.

By building an IDE-based tool to specifically support
the person discovery and selection process, we realized
that modeling employee identification in a large long-lived
enterprise was very complex, and was often made so by
the multitude of complementary, yet inconsistent employee
metadata databases maintained by various corporate de-
partments. Correlating information and dates across the
databases was essential to uniquely identifying individuals
who had long ago contributed to source code repositories
but had since changed their organizational affiliation or PII.
Our techniques can be used to disambiguate or “unify”
individuals across many different kinds of PII metadatabases
in an efficient manner.

After distributing our tool twice (once for three weeks
and once for four months (ongoing)) we confirmed that

deployability is strongly influenced by ease of installation,
simplicity of use, and effectiveness at a single task. We plan
to continue studying the impact CARES has on developer
to developer communication at Microsoft. Our long-term
goal is to learn about and support communication scenarios
between developers and non-developers. With communica-
tion comes cooperation and trust, and with both comes more
effective and successful collaboration.

REFERENCES

[1] T. Fritz and G. C. Murphy, “Using information fragments
to answer the questions developers ask,” in ICSE’10, Cape
Town, South Africa, 2010.

[2] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs
in Collocated Software Development Teams,” in ICSE ’07,
Minneapolis, MN, USA, 2007, pp. 344–353.

[3] J. Sillito, G. C. Murphy, and K. De Volder, “Questions pro-
grammers ask during software evolution tasks,” in SIGSOFT
’06/FSE-14. New York, NY, USA: ACM, 2006, pp. 23–34.

[4] K. Nakakoji, Y. Ye, and Y. Yamamoto, “Comparison of
coordination communication and expertise communication in
software development: motives, characteristics, and needs,”
in JSAI-isAI ’09. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 147–155.

[5] A. Begel, Y. P. Khoo, and T. Zimmerman, “Codebook:
Discovering and Exploiting Relationships in Software Repos-
itories,” in ICSE’10, Cape Town, South Africa, 2010.

[6] A. M. Grubb and A. Begel, “On the perceived interde-
pendence and information sharing inhibitions of enterprise
software engineers,” in CSCW, Bellevue, WA, USA, 2012,
pp. 1337–1346.

[7] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and
J. Patterson, “How a good software practice thwarts collabo-
ration: the multiple roles of apis in software development,” in
FSE. Newport Beach, CA: ACM Press, 2004, pp. 221–230.

[8] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: a study of developer work habits,” in ICSE,
2006, pp. 492–501.

[9] J. Grudin, “Groupware and social dynamics: eight challenges
for developers,” Commun. ACM, vol. 37, pp. 92–105,
January 1994. [Online]. Available: http://doi.acm.org/10.
1145/175222.175230

[10] M. K. Rabby and J. B. Walther, Maintaining relationships
through communication. Mahwah, NJ: Lawrence Erlbaum
and Associates, 2003, ch. Computer-mediated communication
effects in relationship formation and maintenence, pp. 141–
162.

[11] L. Dabbish and R. Kraut, “Research note—Awareness Dis-
plays and Social Motivation for Coordinating Communica-
tion,” Info. Sys. Research, vol. 19, pp. 221–238, June 2008.

[12] A. Sarma, D. Redmiles, and A. van der Hoek, “Categorizing
the spectrum of coordination technology,” Computer, vol. 43,
pp. 61–67, 2010.

[13] T. Schümmer and J. M. Haake, “Supporting distributed soft-
ware development by modes of collaboration,” in ECSCW.
Bonn, Germany: Kluwer Academic Publishers, 2001, pp. 79–
98.

[14] J. DiMicco, D. R. Millen, W. Geyer, C. Dugan, B. Brown-
holtz, and M. Muller, “Motivations for social networking at
work,” in CSCW, 2008, p. 711.

[15] C. R. B. de Souza and D. F. Redmiles, “An empirical study
of software developers’ management of dependencies and
changes,” in ICSE, Leipzig, Germany, 2008, pp. 241–250.

[16] J. M. Costa, M. Cataldo, and C. R. de Souza, “The scale
and evolution of coordination needs in large-scale distributed
projects: implications for the future generation of collabora-
tive tools,” in CHI. Vancouver, BC, Canada: ACM, 2011,
pp. 3151–3160.

[17] R. Holmes and A. Begel, “Deep intellisense: a tool for
rehydrating evaporated information,” in MSR ’08, Leipzig,
Germany, 2008, pp. 23–26.

[18] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley, “Identification of Coordination Requirements: Impli-
cations for the Design of Collaboration and Awareness Tools,”
in CSCW, Banff, Alberta, Canada, 2006, pp. 353–362.

[19] R. Holmes and R. J. Walker, “Customized awareness: recom-
mending relevant external change events,” in ICSE ’10, 2010,
pp. 465–474.

[20] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in FSE. Portland, OR: ACM
Press, 2006, pp. 1–11.

[21] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-
of-knowledge model to capture source code familiarity,” in
ICSE, Cape Town, South Africa, 2010, pp. 385–394.

[22] T. Fritz, “Determining Relevancy: How Software Developers
Determine Relevant Information in Feeds,” in CHI, Vancou-
ver, BC, Canada, 2011.

http://doi.acm.org/10.1145/175222.175230
http://doi.acm.org/10.1145/175222.175230

	Introduction
	Methodology
	Lessons Learned
	Developer Communication
	Tool Design and Implementation
	CARES Usage Case Studies

	Related Work
	Conclusion
	References

