
Usage and Perceptions of Agile Software Development in an Industrial

Context: An Exploratory Study

Andrew Begel

Microsoft Research

One Microsoft Way

Redmond, WA 98052

andrew.begel@microsoft.com

Nachiappan Nagappan

Microsoft Research

One Microsoft Way

Redmond, WA 98052

nachin@microsoft.com

Abstract

Agile development methodologies have been

gaining acceptance in the mainstream software

development community. While there are numerous

studies of Agile development in academic and

educational settings, there has been little detailed

reporting of the usage, penetration and success of

Agile methodologies in traditional, professional

software development organizations. We report on the

results of an empirical study conducted at Microsoft to

learn about Agile development and its perception by

people in development, testing, and management. We

found that one-third of the study respondents use Agile

methodologies to varying degrees, and most view it

favorably due to improved communication between

team members, quick releases and the increased

flexibility of Agile designs. The Scrum variant of Agile

methodologies is by far the most popular at Microsoft.

Our findings also indicate that developers are most

worried about scaling Agile to larger projects (greater

than twenty members), attending too many meetings

and the coordinating Agile and non-Agile teams.

1. Introduction

Agile software development (ASD) methodologies

[7] have been gaining acceptance among mainstream

software developers since the late 1990s, when they

were first postulated in the forms of Scrum [14],

Crystal [8], Extreme Programming [4] and other

methodologies. Today they are established to varying

degrees in the academic, educational and professional

software development communities.

We would like to understand how ASD

methodologies are used, what kind of acceptance and

spread they have, and what kind of successes and

failures occur in each of these communities. We

believe strongly in using empirical methods to explore

questions engendered by these research topics. While

there is much to be learned from looking at the

software artifacts created by developers and from

measuring developer productivity and software failure

proneness, we can gain great insights through direct

interaction with software developers. We can learn

about their development practices, their perceptions of

development processes, and how the two interact.

We conducted a web-based survey of Microsoft

employees in development, testing and management

roles who are directly involved in the production of

software. Our questions were targeted to understand

respondents’ demographics, ASD usage, penetration of

ASD practices, and their perceptions of why ASD

works well or poorly on their software teams. We

received a response rate of 17%; the nearly 500

responses make it one of the largest respondent

populations for a survey of software development at

Microsoft. From these responses, we gained a fairly

clear picture of how ASD is used at Microsoft.

Our findings indicate that around one-third of the

respondents use ASD. Scrum is the most popular ASD

methodology. ASD is a relatively new phenomenon to

Microsoft; most projects have employed Agile for less

than two years. ASD is used mostly by collocated

teams who work on the same floor of the same

building. Finally, ASD users have an overwhelmingly

positive opinion about it.

The rest of this paper is organized as follows. In

Section 2 we discuss our contributions and in Section 3

review the related research. Section 4 describes the

experimental methodology and illustrates the results.

In Section 5, we discuss the benefits and problems of

ASD as perceived at Microsoft. Section 6 concludes

with a review of our most important findings and their

implications for future research here at Microsoft and

at other sites.

mailto:andrew.begel@microsoft.com
mailto:nachin@microsoft.com

2. Contributions

ASD methodologies are becoming more popular

in industry and very little is understood about their

penetration, benefits and problems [16]. We find the

lack of such reported results surprising. Our main

contributions to the current state of the art are:

 Large scale industrial view of ASD: Our study

is one of the first performed on a large scale

(487 respondents) in an organization to assess

the extent to which groups use ASD.

 Dominant Agile practices and methodologies:

We identify the most commonly used Agile

practices, and indicate the practices that have

not gained acceptance within our

development community. In addition, we

identify the commonly used ASD

methodologies (Scrum, XP, Crystal, etc)

within Microsoft.

 Common benefits and problems associated

with ASD: We report on issues related to

Agile adoption and practice observed by the

software engineers at Microsoft.

In general, though our results are specific to

Microsoft, the results provide valuable insight into

how software organizations are adopting and adapting

ASD. We hope to identify collaborators in other

software organizations and people in academia to

replicate this study in different contexts to write a

comprehensive report on the penetration of ASD in the

software engineering community.

3. Related Work

ASD is the topic of much debate at several

software development organizations. Unfortunately

there is little or no evidence as to the extent to which

ASD is used in large commercial software

development organizations, nor the practices that are

followed, nor people’s perception towards ASD

practices, etc. Our paper aims to address these

limitations to some degree by assessing the current

state of the practice at Microsoft on the usage,

penetration and success of ASD.

Abrahamsson et al. [1] demonstrated how to

collect metrics to measure productivity, quality and

schedule estimation for an ASD project using XP.

Williams et al. [17] investigated the usage of a subset

of XP [5] practices at a group in IBM. The product

developed at IBM using XP was found to have

significantly better pre-release and post-release quality

compared to an older release. The teams using XP

reported an improvement in productivity and morale.

In addition, customers were more satisfied with the

product developed using XP because the teams

delivered more than what the customers had originally

asked for. Similar results were obtained for a case

study conducted at Sabre airline systems [10]. Maurer

et al. [11] studied the development of a web based

system by nine full time employees in a small

company that used XP and observed substantial

productivity gains compared to their pre-XP

timeframe.

Our work is closely related to the work by Melnik

and Maurer [13]. They investigated the perception of

students towards ASD by collecting qualitative and

quantitative data over three academic years. Overall,

the students were positive towards using XP. A serious

limitation to their experiment was the relative naiveté

of student perceptions of XP. For example, students

indicated that their productivity increased using XP.

But they might have used a beginning programming

course (CS1) as a yardstick for comparison which can

skew the results in favor of XP. Students are similarly

naïve about software quality. Melnik and Maurer’s

study also reports several weak correlations to draw

relationships between several survey parameters

(correlation less than + 0.5). Carver et al. [6] discuss

using students as subjects in empirical studies.

Academic case studies do provide a meaningful ground

for researchers to try out ideas before replicating them

in industry. From an industry perspective there has

been limited empirical evidence on the

usage/perception towards ASD practices. Sharp and

Robinson present an overall ethnographic picture of

XP practices in a small company [15], but other work

has only addressed individual practices such as pair

programming [2] and test-driven development [12].

4. Experimental methodology

Our research was conducted using a anonymous

web-based survey offered over a period of two weeks

in October 2006. An invitation was sent by email to

2,821 recipients, randomly selected from a much larger

pool of around 28,000 software developers, test

developers, and managers (a 10% sample was

selected). We received 492 responses, of which 4 were

invalid (for technical reasons), for an overall response

rate of 17%. Response rate for developers was 18%,

testers were 18%, and managers were 10%.

Respondents could identify themselves (separate from

their survey responses) to enter a drawing for a $250

reward.

Respondents were asked a total of 46 questions

divided into three sections: demographics, Agile

development, and pair programming. We will report on

the results of the first two sections, illustrating what we

discovered about Agile development (only 6% of

respondents reported using pair programming on their

current team). In the Agile development section, we

asked whether the respondent had ever used Agile,

whether they used it in their current team at Microsoft,

and which forms of Agile they used. We also asked

which of the common ASD practices they used (or

might use in the future) in their team. Responses for

this question were Yes, Sometimes, No, Planning To,

and Never. We then asked a series of questions to find

out their overall impressions of Agile development,

whether they liked it, and whether it was better than

any previous method they had used for collaboration,

coordination and morale. We then asked all survey

respondents whether they liked Agile and what they

thought its top three benefits and problems were,

regardless if they had used or did not use ASD. This

section of the survey was free-response. We ended by

asking if anyone had used Agile in the past but did not

now, and why they stopped using it.

All of the free response answers were printed out

on a few thousand note cards. We organized the cards

using a card sort designed to categorize the responses

by thematic similarity (as illustrated in LaToza et al.’s

earlier survey at Microsoft [9]). The themes that

emerged during the sort were not chosen beforehand.

Respondents reported 687 Agile benefits, for which

there were 44 common themes. 565 problems were

reported, and grouped into 58 themes.

5. Experimental results

In this section, we report on the findings from the

survey demographics and the free response perceptions

of ASD.

5.1 Demographics

Respondents had an average of 9.20 years

experience in the software profession (standard

deviation was 7.06; minimum 0 years; maximum 35

years). They worked on their current team for an

average of 2.4 years (standard deviation 2.5). The

respondents were spread across different geographical

locations in North America, Asia and Europe. Of all

our respondents, 72.6% were individual contributors,

16.5% were managers and 7.2% were managers of

managers.

Our demographics indicate that our survey

respondents were fairly experienced and had spent

more than two years on their current team. They

understood their development practices well enough to

provide a relative assessment. Also the distribution of

our respondents across North America, Asia and

Europe increases the diversity of our responses by

providing a global perspective.

5.2 Extent of adoption

From an adoption standpoint we observed that 156

out of the 487 people said that their team used ASD.

This is significantly higher than what was believed to

have been known / perceived at Microsoft about the

penetration of ASD practices. Table 1 provides the raw

data. Further, we observe that among teams 59.6% of

the people who use Agile methodologies work on

legacy products, i.e. not a version 1 product. This is

contrary to popular opinion that ASD is not used in

legacy systems.

Table 1: Adoption of ASD

Does your team use Agile Methodology?

 No Yes Total

Is this Version 1 of

your product?

n/a 45 7 52

No 204 93 297

Yes 72 55 127

Total 322 156 478

5.3 ASD methodologies

There are several ASD methodologies available

today. 125 out of 192 of this question’s responses

indicated they used the Scrum [14] ASD methodology.

Figure 1 shows the extent of adoption of different ASD

methodologies. The respondents who answered other

(22) were asked to specify the ASD process they used.

Most mention a variant of Scrum or a practice loosely

based on Scrum.

Figure 1: Different ASD Methodologies

Figure 2: Percentage of Usage for Agile Practices

5.4 Agile practices used

We asked survey respondents to tell us the extent

of their usage of various Agile practices. Figure 2

represents the responses sorted in order of greatest use

(Yes + Sometimes + Planning to) among the practices.

The top Agile practices that teams followed were team

coding standards and continuous integration of code.

The least followed practices were pair programming

and test driven development (TDD). All the practices

except pair programming had at least greater than 60%

(current and planned) adoption.

5.5 Time of adoption

We analyzed how long ASD has been used at

Microsoft in order to identify how recent a trend is

ASD at Microsoft. Figure 3 shows the distribution of

the number of months ASD has been practiced in the

respondents’ teams. The figure indicates that the length

of time is skewed heavily towards zero. More than

90% of the projects have used Agile for less than 24

months (2 years). The average time extent is 8.3

months (standard deviation is 8.9).

Figure 3: Length of Time of ASD Usage

5.6 Are Agile teams collocated?

In Microsoft a fair amount of development takes

place in multiple locations (both physical and

geographical). An important question for software

development organizations is the location of teams

adopting ASD methodologies. From Table 2 we

observe that among the teams practicing Agile

software development, collocated teams (same office,

hallway, floor, or building) account for more than

83.9% (shown in bold) of the respondents. Very few

teams distributed across cities and countries use ASD

methodologies. The demographics for the teams that

do not use ASD is also shown in Table 2 for

comparison. An interesting point to note is that teams

are collocated regardless of which software

methodology they use (83.4% - shown in italics)).

Table 2: ASD Collocation Data

 Use Agile?

Collocated dynamics Yes No

Not-collocated 12 29

Same country 4 10

Same city 1 2

Same campus 8 12

Same building 24 35

Same floor 68 138

Same hallway 25 76

Same office 14 18

Total 156 321

5.7 Individual attitudes towards ASD

We then asked participants whether they liked

ASD. Figure 4 shows the results. Among people who

currently use Agile (left side of the graph), 89.7% like

or are neutral to ASD. A more important point is that

among groups that do not use ASD, 92.8% said they

liked or were neutral to ASD, indicating that a vast

majority of developers are open to trying ASD in the

future. From an analysis perspective we correlated the

age of the respondents to their inclination to

like/dislike ASD. There was no correlation between

the factors, indicating that age was not related to

people’s like or dislike of Agile. Similar results were

obtained correlating the collocation information with

the inclination of developers to like or dislike ASD.

5.8 Team attitudes and morale factors

Figure 4 also shows team attitudes and morale

concerning ASD. Around 60% of the respondents

agree that ASD is working well for them and their

team. Less than 40% however, agree that ASD is

working well for the larger group. We discuss some

reasons why in Section 7. Less than 20% of the

respondents say that their team morale has decreased

due to ASD, and only 10% mention that ASD has

affected communication (negatively) between the

development and test teams.

Figure 4: Team Attitudes and Morale Factors Concerning ASD

5.9 ASD Benefits

We asked the survey participants what they

thought were the top three benefits and problems with

Agile Development. Comments from the respondents

are presented in italicized form to add more contextual

information as appropriate for our discussion. Table 3

presents the top 10 problems of ASD as perceived by

the respondents and the number who cited it as a

benefit.

Table 3: Benefits to Agile Development

Methodologies

1. Improved Communication and

Coordination

121

2. Quick Releases 101

3. Flexibility of Design – Quicker

Response to Changes

86

4. More Reasonable Process 65

5. Increased Quality 62

6. Better Customer Focus 50

7. Improved Focus -- Better

Prioritization

28

8. Increased Productivity 26

9. Better Morale 23

10. Testing First 22

The top benefit was improved communication and

coordination among team members. Specifically, the

daily scrums were seen as instrumental, and were

especially useful to bring testers and developers

together. Improved awareness of team members’

activities was another benefit. One respondent said

“Team members are aware of what each of the others

is working on.” Another promoted the benefits of

earlier discovery and handling of development issues:

“Better overall communication (quicker discovery of

problems, etc).”

The second most cited benefit was Quick

Releases. This was a consequence of Continuous

Integration, a feature of Extreme Programming.

Developers create demo-able releases every few weeks

instead of every few months or years. This makes it

easier to keep track of progress and monitor software

quality, as one respondent said, “Software functionality

progress can be checked and monitored much more

frequently rather than at end of long milestones.” It

makes it easier to evaluate the value of features and the

product, provides feedback to improve the product, and

improves turnaround time for fixing bad bugs. A tester

commented, “When you integrate early and often, the

product can be tested early and often, too.”

In third place is Flexibility of Design. Developers

noted that short sprints combined with more emphasis

on customer feedback led to better agility and

efficiency in responding to changing requirements,

internal processes, reorganizations or politics, and

flushed out bad designs more quickly. “You don’t have

to commit prematurely (for example, to design

decisions).” An Agile process “anticipates changes to

requirements so that they do not destroy a schedule.”

Flexibility was not solely based on the product, but the

development process itself, i.e. “Ability to change

directions quickly i.e. cancel a sprint and start

another.” Another said “quick results lead to iteration

which helps us to fail cheaply instead of in an

expensive way (if we fail).” “Agile embraces change,

which is a fact and part of software development.”

The fourth most popular benefit of ASD is a More

Reasonable Process. Many developers complained

about rigid development processes that were relaxed in

an Agile environment. Developers wasted less time on

tasks they perceived as irrelevant, such as “large specs

that are out of date before they are finished.” Some of

this perception may be a reaction to earlier more

waterfall-like processes used at Microsoft, but some

may come from the haphazard adoption of Agile

methodologies by various groups, very few of which

would characterize themselves as Agile experts.

Documentation and planning are viewed as just-in-

time and just-enough for the next sprint. One developer

notes that “process improvement is built into the

process.” A program manager said that running the

process is more manageable and less bureaucratic than

earlier processes. The process supports “real-time

tracking of progress and ability to adjust future

forecasts based on real data.” Agile methodologies are

more dynamic and incur less overhead. One manager

said the Agile process costs less.

Not far behind was Improved Quality. The quality

of the software is a strong concern of developers. The

effects were manifested as fewer bugs, and a more

stable set of features. Test-driven development and test

automation were seen as factors that contributed to

higher code quality. All aspects of software are

improved, from design and architecture to performance

of the products of each sprint. Improved

communication leads to faster turnaround time for

blocking bugs. One developer said “ongoing

refactoring leads to higher code reuse and better

quality.”

Rounding out the top ten benefits of Agile

development were better focus on customers, better

prioritization of development and focus on the product,

improved productivity, increased morale (often tied to

continuous integration with deliverables at the end of

each sprint), and more reliance on test-driven

development. The Appendix at the end of the paper

lists the other perceived benefits of ASD from a

completeness perspective.

5.10 ASD Problems

Many developers perceived problems with Agile

development processes. Table 4 highlights the top 10

problems with ASD as perceived by the respondents

and the number who cited it as a problem.

Table 4: Problems with Agile Development

Methodologies

1. Does not scale to larger projects 52

2. Too many meetings 44

3. Management Buy-in 37

4. Unfamiliar with Agile 36

5. Coordination with other teams 29

6. Lose sight of big picture 29

7. Culture 27

8. No up-front design, bad design 23

9. Lack of schedule 19

10. Dev/Test Integration is Difficult 19

The top concern of developers at Microsoft with

Agile development is whether these methods scale to

larger software teams. We did not gather data on team

size of those who said they used Agile development,

but our data does show that most Agile teams are on

the same hallway or floor of a building, limiting group

size to 30 people or so. Several people on the survey

expressed concern about scaling to group sizes of

several hundred or even higher. One developer said

that Agile “works for small co-located teams, but not

for complex large projects.” It can be difficult for

larger teams to be as flexible as smaller teams with

respect to design and architectural changes. Scrum

meetings were sometimes considered inefficient,

especially when the team was inexperienced with

Agile, or it was large (over 8-10 people).

Apprehensions concerning scaling to products with

long release cycles or large legacy codebases were also

mentioned.

The second concern was about the Scrum. Scrum

meetings involve all members of a team and often

occur daily. Many respondents complained about the

inefficiency of these meetings, especially when they

were poorly run by a Scrum Master who was not

disciplined and focused enough to run the meeting

quickly. We did not correlate whether respondents who

said that Scrums take too long also said whether they

get anything positive from the Scrum. Meetings were

also viewed as ways for managers to micromanage

their teams: “what have you done in the last 24

hours?” Some developers were uncomfortable

reporting their progress: “Personally for me, the daily

standup scrum meetings were more distracting than

helpful. The pressure to daily report percentage of

progress was uncomfortable, especially when I had to

report progress (or call an item ‘done’) without

actually testing in integrated fashion.”

Management buy-in was the third concern. Many

program managers were worried that upper-level

management would ask for progress reports and

productivity metrics that would be hard to gather in an

Agile work environment. Management ignorance of

Agile methodologies was also a worry. Will Agile

advantages be able to overcome the well-known

existing problems in software development?

Management sometimes worries that not all

development teams are cut out for Agile development.

The flexibility in scheduling afforded by sprints is

unfamiliar to managers used to hearing about feature

milestones planned at the beginning of a project. In

addition, because it is easy to move features to later

sprints as work piles up, it is not easy to predict when a

particular feature will go into the product. “Upper

management still tries to get specific dates for specific

deliverables.” This scheduling difficulty is combined

with problems estimating the cost of a project before it

starts. Sometimes management tries to covertly switch

back to a Waterfall model. They “want to use an Agile

development process that is in fact a more ‘classic’

engineering process or are extremely date-driven

combined with ‘gotta-have’ deliverables.”

The fourth concern was an apprehension about

learning Agile development. Some developers wished

they had formal training to do Agile, noting that there

were few training options available to them. Many who

commented on training appeared to have the idea that

if they did not do Agile perfectly then the product or

process would suffer. There was also some concern

that some developers are not cut out for Agile: Agile

“requires some interpersonal skills which may not be

abundant in the IT sector.” Social issues also play a

role here as social cliques may form and become the

dominant means of communication between group

members. Those not in the clique may miss out on

important communications. Agile development “is

simple, but requires a lot of discipline from the team.”

Cultural issues also play into adoption of Agile

development. “We are not patient enough to make a

plan, do the design work, then make a schedule, and

then execute.” Agile development often requires a

change in mindset that developers may not be eager to

undertake. Several developers also note that unless

there is full adoption by the team, Agile methodologies

do not work very well.

The fifth concern is about coordinating with other

teams. This is especially worrisome in larger projects

where only a few groups are Agile and the rest are

using a typical Waterfall model. Problems arise in the

scheduling of deliverables between dependent projects.

Non-Agile groups deliver builds only when they’re

fully coded and tested, and these milestones are few

and far between. Agile groups often schedule features

to be complete during each sprint and may race ahead

of their non-Agile peers. There is a perception that

non-Agile groups do not understand the scheduling

requirements that Agile groups use and those that they

require of their dependencies. “Interaction with non-

Agile teams is hard because they don’t understand that

you can guarantee that all the sprint items will be

completed because the prioritization meeting involves

very loose time estimates.” Also, as the number of

modules in the project grows larger, respondents noted

more difficulty, cost, and time integrating modules into

the whole.

Losing sight of the big picture rounds out the top

six concerns with Agile development. This is because

“you’re so focused on the day to day deliverables.”

The “focus is on today’s work” more “than what the

feature team is trying to achieve.” In addition,

development items that require more time than a single

sprint or never rise to high priority can get completely

forgotten. One developer would like to see a kind of

“forcing function for envisioning process beyond one

or two sprints.” Another notes that it is difficult

concentrate on the design properly; instead of getting it

right in the first place, teams rely on design

improvements as they go.

The rest of the top ten problems include culture

clashes during Agile adoption, lack of a precise and

overarching design before the project starts, the lack of

a fixed and predictable schedule, and a perceived

difficulty integrating developers and testers. The

Appendix at the end of the paper lists the other

perceived problems of ASD that had a lower frequency

of occurrence in the problems list.

5.11 ASD Attrition

Analyzing people who no longer use ASD, 53

developers had used ASD in the past but no longer use

it on their current project. They provided a variety of

reasons. Table 5 lists these reasons and the count of the

respondents who cited them.

Table 5: If you used Agile in the past, but do not

now, why?

1. Changed jobs; new team doesn’t use Agile 23

2. Not coding anymore 3

3. Management in the way 3

4. Practice something similar to Agile 3

5. Tried to introduce Agile, but failed 3

6. Hard to coordinate with non-Agile teams 2

7. Agile projects suffer from poor design 2

8. Used Agile in school but not anymore 2

The most common reason was that they had

switched jobs and their current team no longer used

Agile. Some were no longer programming, thus Agile

did not make sense. A couple had used Agile

development in school, but did not join an Agile

development group. A few used practices that were

similar to Agile, such as buddy reviews instead of pair

programming and unit testing instead of TDD. Several

tried to introduce Agile development to their team, but

failed either in management buy-in or in the actual

implementation of Agile, so it was abandoned. Some

others expressed concerns similar to those reported

above about the problems with Agile development.

These included the difficulty coordinating with other

non-Agile teams, and the lack of good design for Agile

projects. Other lesser-reported reasons were difficulties

starting Agile due to workload, too much legacy code,

too much documentation to write or to not finding

enough people who could adapt to Agile.

6. Threats to Validity

From an internal validity point of view the study

was conducted by two researchers at Microsoft

Research. Microsoft Research is a parallel organization

when compared to the Microsoft product groups.

Neither of the two authors, nor any of the respondents

shares any common management nor are they part of

the same management chain. The survey was

conducted anonymously, and there was no necessity

for the respondents to answer for/against ASD. The

benefits and problems were self-reported in free-form

to remove any bias that could have been introduced by

the authors asking the respondents to pick the benefits

and problems of ASD from a list. Furthermore, the

authors have no influence on the use or perception of

ASD in the product groups. Another threat to internal

validity would be that people practicing ASD would

have been more likely to respond to a survey on ASD.

Two other threats to internal validity are on

statistics for number of people using ASD on legacy

systems. It is possible that this might be a reflection of

the organizational layout of Microsoft/any other large

software company. Additionally we do not have

statistics on each individual’s team size as teams can

be a flexible and not necessarily reflected by the

management hierarchy. We plan to address these

issues in our future work.

From an external validity point of view, this study

is based on only one large organization. But within that

organization, our respondents are from various groups

that are involved all the way from designing operating

systems to games to web service applications.

Drawing general conclusions from empirical studies in

software engineering is difficult because any process

depends to a large degree on a potentially large number

of relevant context variables. For this reason, we

cannot assume a priori that the results of our study

generalize beyond the specific environment in which it

was conducted [3]. Researchers become more

confident in a theory when similar findings emerge in

different contexts [3]. Towards this end we intend that

our case study will be replicated in different software

organizations. The future work section discusses this

aspect in more detail.

7. Conclusions and future work

 To summarize our main findings, around one-

third of respondents are using ASD methodologies in

some form. The Scrum methodology is by far the most

popular, with 65% of respondents using it on their

software teams. Our respondents were fairly

experienced with a mean work experience in the

software profession of 9.2 years. Team working on

legacy systems were used ASD. Out of 14 ASD

practices, 60% of respondents used 12 or more of

them. The two least used practices are test-driven

development and pair programming.

Respondents also told us what they liked and

disliked about ASD methodologies. Most view ASD

favorably due to improved communication between

team members, quick releases and the flexibility of

designs in the Agile process. On the other hand,

developers worry about scaling Agile to larger projects

(greater than 20-30 members), attending too many

meetings which contribute to excessive overhead, and

experiencing difficulty getting management to buy into

ASD methods. Some respondents no longer use ASD,

but have in the past. Usually this was due to switching

jobs to a group that did not practice ASD, but was also

due to difficulties getting one’s new group to adopt

Agile. Some tried it and failed to make it work, some

had trouble with gaining management buy-in and

others adapted Agile beyond recognition until they felt

it would be better called something “like” Agile, but

not specifically Agile. In general, there was an

impression by developers that there was a one true way

to practice ASD and if they were not following this

way to the letter, that they were somehow doing it

wrong and would engender unforeseen consequences.

This is somewhat ironic since Agile methods are above

all supposed to be adaptive to the needs of the project.

The results of our study contribute to our

understanding of how ASD methodologies are being

implemented in the workplace. Our research goals are

to understand first the state of the practice at Microsoft

and delve into the details from there. The follow up

work for our analysis is outlined below:

 Scaling: In prior reported results on the use of

ASD, teams have typically between 2-20

members. Teams at Microsoft and other

companies can be much larger, between 500-

5000. We would like to investigate how Agile

can be adapted to work for these large teams.

 Coordination: In large companies Agile is

not adopted simultaneously by all teams. We

plan to study how Agile teams coordinate

dependencies and deliverable with non-Agile

teams.

 Empirical body of knowledge: Collaborate

with people in the empirical community to

replicate these studies in industry and

academia to build an empirical body of

knowledge about the various facets of ASD.

 Product and process measurement:
Measuring product measures (LOC,

complexity, failures etc.) and process

measures (productivity, requirement volatility

etc.) for ASD projects to compare against

non-ASD projects. This would enable us to

identify the proper contexts in which ASD

should be used.

 Tools and resources: Identify areas to

develop tools for ASD to improve

communication, quality and scheduling and

estimation.

 Ethnographic studies: Now that we know

what methodologies are used, we can conduct

interviews and study groups using

ethnographic techniques to learn how to

identify and alleviate some of the more

specific problems they face deploying ASD.

Acknowledgements

We would like to thank the anonymous respondents at

Microsoft for the feedback that made this paper

possible. We would also like to thank Rob DeLine,

Gina Venolia and Tom Ball for their support and

feedback on this work.

Contact

Researchers interested in replicating this study should

contact the authors: andrew.begel@microsoft.com,

nachin@microsoft.com to obtain an editable/reusable

copy of the survey.

References

[1] P. Abrahamsson, Koskela, J., "Extreme

Programming: A Survey of Empirical Data from a

Controlled Case Study", Proceedings of

International Symposium on Empirical Software

Engineering, pp. 73-82, 2004.

[2] E. Arisholm, Gallis, H.E., Dybå, T., Sjøberg, D.,

"Evaluating Pair Programming with Respect to

System Complexity and Programmer Expertise",

IEEE Transactions in Software Engineering,

33(2), pp. 65-86, 2007.

[3] V. Basili, Shull, F.,Lanubile, F., "Building

Knowledge through Families of Experiments",

IEEE Transactions on Software Engineering,

25(4), pp. 456-473, 1999.

[4] K. Beck, Extreme Programming Explained:

Embrace Change, Second ed. Reading, Mass.:

Addison-Wesley, 2005.

[5] K. Beck, Extreme Programming Explained:

Embrace Change. Reading, Mass.: Addison-

Wesley, 2000.

[6] J. Carver, Jaccheri, L., Morasca, S., and Shull, F.,

"Issues Using Students in Empirical Studies in

Software Engineering Education ", Proceedings

of IEEE Metrics, pp. 239-249, 2003.

[7] A. Cockburn, Agile Software Development.

Reading, Massachusetts: Addison Wesley

Longman, 2001.

[8] A. Cockburn, Crystal Clear: A Human-Powered

Methodology for Small Teams: Addison Wesley,

2004.

[9] T. D. LaToza, Venolia, G., DeLine, R.,

"Maintaining mental models: a study of developer

work habits", Proceedings of International

Conference on Software Engineering, pp. 492-

501, 2006.

[10] L. Layman, L. Williams, and L. Cunningham,

"Motivations and Measurements in an Agile Case

Study", Proceedings of ACM SIGSOFT

Foundation in Software Engineering Workshop

Quantitative Techniques for Software Agile

Processes (QTE-SWAP), Newport Beach, CA,

2004.

[11] F. Maurer and S. Martel, "Extreme Programming:

Rapid Development for Web-Based Applications",

IEEE Internet Computing, 6(1), pp. 86-91,

Jan/Feb 2002.

[12] E. M. Maximilien and L. Williams, "Assessing

Test-driven Development at IBM", Proceedings

of International Conference of Software

Engineering, Portland, OR, pp. 564-569, 2003.

[13] G. Melnik, Maurer, F., "A Cross-Program

Investigation of Students' Perceptions of Agile

Methods", Proceedings of International

Conference on Software Engineering, pp. 481-

488, 2005.

[14] K. Schwaber and M. Beedle, Agile Software

Development with SCRUM: Prentice-Hall, 2002.

[15] H. Sharp, Robinson, H., "An Ethnographic Study

of XP Practice", Empirical Software Engineering,

9(4), pp. 353-375, 2004.

[16] M. Stephens, Rosenberg, D., Extreme

Programming Refactored: The Case Against XP:

Apress, 2003.

[17] L. Williams, W. Krebs, L. Layman, A. Antón, and

P. Abrahamsson, "Toward a Framework for

Evaluating Extreme Programming", Proceedings

of Empirical Assessment in Software Eng.

(EASE) 2004, Edinburgh, Scot., pp. 11-20, 2004.

