
Noname manuscript No.
(will be inserted by the editor)

A Practical Guide on Conducting Eye Tracking Studies
in Software Engineering

Zohreh Sharafi · Bonita Sharif ·
Yann-Gaël Guéhéneuc · Andrew Begel ·
Roman Bednarik · Martha Crosby

Received: date / Accepted: date

Abstract For several years, the software engineering research community
used eye trackers to study program comprehension, bug localization, pair
programming, and other software engineering tasks. Eye trackers provide re-
searchers with insights on software engineers’ cognitive processes, data that
can augment those acquired through other means, such as on-line surveys and
questionnaires. While there are many ways to take advantage of eye trackers,
advancing their use requires defining standards for experimental design, exe-
cution, and reporting. We begin by presenting the foundations of eye tracking
to provide context and perspective. Based on previous surveys of eye tracking
for programming and software engineering tasks and our collective, extensive
experience with eye trackers, we discuss when and why researchers should use
eye trackers as well as how they should use them. We compile a list of typical
use cases—real and anticipated—of eye trackers, as well as metrics, visual-
izations, and statistical analyses to analyze and report eye-tracking data. We
also discuss the pragmatics of eye tracking studies. Finally, we offer lessons
learned about using eye trackers to study software engineering tasks. This pa-
per is intended to be a one-stop resource for researchers interested in designing,
executing, and reporting eye tracking studies of software engineering tasks.

Zohreh Sharafi
University of Michigan, E-mail: zohrehsh@umich.edu

Bonita Sharif
University of Nebraska–Lincoln, E-mail: bsharif@unl.edu

Yann-Gaël Guéhéneuc
Concordia University, E-mail: yann-gael.gueheneuc@concordia.ca

Andrew Begel
Microsoft Research, E-mail: andrew.begel@microsoft.com

Roman Bednarik
University of Eastern Finland, E-mail: roman.bednarik@uef.fi

Martha Crosby
University of Hawai’i at Mānoa, E-mail: crosby@hawaii.edu

Keywords eye tracking · practical guide · empirical software engineering ·
program comprehension

1 Introduction

Eye trackers have evolved from invasive, costly, and difficult-to-use tools (Berg-
strom and Schall, 2014) into versatile devices used to study diverse topics,
such as driver–vehicle interfaces (Grace et al., 1998; Zhang and Zhang, 2010),
airplane-cockpit usability (Duchowski, 2002), human–computer interactions
(Strandvall, 2009; Poole and Ball, 2005), gaming (Sundstedt, 2010; Alkan and
Cagiltay, 2007), and software development (Sharafi et al., 2015b).

Eye trackers allow researchers to record significant and substantial evidence
about participants’ ways of interacting with visual information, including read-
ing patterns (Rayner, 1998), visual cues during search (Crosby et al., 2002),
and interactions and engagement during oral conversations (Bednarik et al.,
2012). They are also used in software engineering research to study various
tasks, including, but not limited to, source code reading and debugging, com-
prehension of software artifacts e.g., source code and UML class diagrams,
and software traceability (Sharafi et al., 2015b). A handful of studies com-
bined neuroimaging and biometric techniques (e.g., EEG, fMRI, and fNIRS)
with eye-tracking to measure task difficulty and cognitive load (Fritz et al.,
2014; Peitek et al., 2018a; Fakhoury et al., 2018; Lee et al., 2018).

Researchers have used a large variety of eye tracking tools, techniques,
measures, and analyses. This variety reduces the chances for successfully com-
paring and reproducing others’ research methods, which impedes progress in
eye-tracking and software engineering research and confuses novice researchers
(as we have experienced ourselves with our students and collaborators). Re-
searchers also face methodological, practical, and ethical challenges when using
eye trackers.

Based on our collective, extensive experience in using eye trackers to study
software engineering tasks for over 10 years, we offer this paper as a one-
stop resource for researchers interested in designing, executing, and reporting
eye-tracking studies of software engineering tasks.

We organize the paper as follows:

– Section 2 provides a brief background on eye-tracking technology, the main
theories on which it is based, and how it should be used to collect reliable
eye movement data.

– Section 3 discusses when and why use eye trackers in software engineering
research with examples of prior eye-tracking studies from the literature and
summaries of their research questions and results.

– Section 4 provides exhaustive definitions of the metrics associated with
eye-movement data.

– Section 5 reports examples of typical studies from the literature that used
eye trackers in software engineering.

2

– Section 6 provides practical advice on designing, setting up, and specifying
eye-tracking tasks, selecting a target population, recruiting participants,
analyzing data, and reporting results. It also describes typical threats to
the validity of eye-tracking studies and ethical considerations.

– Section 7 presents how to analyze eye-tracking data along with set of vi-
sualizations and statistical analyses.

– Section 8 presents conclusions followed by future work.

This work complements our previous systematic literature review (Sharafi
et al., 2015b) and a systematic mapping study by Obaidellah et al. (2018)
which cover 63 research papers using eye tracking in software engineering re-
search. These studies provide an exhaustive list of experiments and areas that
were studied using eye trackers in software engineering. They also provide
detailed information on the programming tasks, materials, metrics, and par-
ticipants of previous studies. Obaidellah concluded, however, that there was
a lack “of a methodology in conducting such experiments, which resulted in
terminological inconsistency in the names and formulas of metrics used, which
needs to be addressed in a future qualitative review.” With this paper in par-
ticular, we strive to address this gap and help newcomers with practical advice
on how to design and perform eye-tracking studies in software engineering. We
promote the use of eye trackers in the study of program comprehension and
provide a resource to help researchers use eye trackers in software-engineering
research.

2 Foundations of Eye Tracking

Eye tracking involves collecting a participant’s overt visual attention by record-
ing eye gaze data (Rayner, 1978; Duchowski, 2007). Visual attention triggers
the cognitive processes required for comprehension and problem solving, while
cognitive processes guide visual attention to specific locations. Therefore, eye
tracking is useful to study the participant’s cognitive processes and effort while
performing software engineering tasks (Duchowski, 2007).

A visual stimulus is any object, e.g., a piece of source code, that is necessary
to perform a task and whose visual perception by the participant triggers the
participant’s cognitive processes, and ultimately, some actions, e.g., an edit of
a statement in a source code file.

Eye gaze data is studied with respect to certain areas of a stimulus called
Areas of Interest (AOIs). An AOI can be relevant to the participant while
answering a particular question and can be irrelevant for another participant
and question. For example, in a source code editor, an irrelevant AOI could
be the class comment, while a relevant AOI could be the class name.

According to indicators of ocular behavior, eye gaze data—obtained by pro-
cessing raw data recorded by an eye tracker with an event detection algorithm—
belongs to the following categories (Rayner, 1978; Duchowski, 2007):

– Fixation: a spatially-stable eye-gaze that lasts for 100 to 300ms. During a
fixation, the participant’s visual attention is focused on a specific area of

3

the stimulus and triggers cognitive processes (Just and Carpenter, 1980).
Fixation duration changes with task and participant’s characteristics.

– Saccade: common, continuous, and rapid eye movements, lasting 40–50ms,
occurring between fixations, but providing only limited visual perception.

– Pupil dilation and constriction: the pupil is the aperture through which
light enters the eye, whose dilation is controlled by the iris muscle. A larger
pupil may indicate increased cognitive effort (Poole and Ball, 2005).

– Scan path: through saccades, eyes fixate different parts of a stimulus, form-
ing series of fixations, or visited AOIs, ordered chronologically.

Researchers in psychology report that information acquisition and process-
ing mostly occurs during fixations. They also report that only a small set of
fixations is necessary for a participant to acquire and process a complex visual
stimulus (Privitera and Stark, 2000).

The meaning of fixations is context-dependent. A higher fixation rate on a
specific AOI may indicate greater interest in its content, such as when reading
some statements in a source code file. However, a cluster of fixations may also
indicate effort/difficulties in understanding (Poole and Ball, 2005).

2.1 Eye Tracker Evolution

Figure 1 shows a brief history of eye tracking. Starting from 1879, Louis Émile
Javal studied text-reading patterns via naked-eye observations. He reported
that readers do not skim across words in texts smoothly but rather through a
set of quick movements—saccades—and short pauses—fixations.

In 1898, Edmund Huey built the first eye tracker (Huey, 1908). This eye
tracker was intrusive and required participants to wear a kind of primitive
contact lens with a hole for the pupil. In 1901, Raymond Dodge and Thomas
Sparks Cline used light reflected from cornea to develop the first non-invasive
and precise eye tracker. However, this eye tracker required the participant’s
head to be absolutely still. In 1937, Guy Thomas Buswell performed the first
recordings of eye movements on film. He performed a set of experiments with
200 participants looking at pictures and gathered about 2,000 eye-movement
records, each consisting of a large number of fixations.

In 1948, Hamilton Hartridge and Landsborough C. Thomson proposed the
first head-mounted eye tracker (Hartridge and Thomson, 1948), which was
subsequently improved (Shackel, 1960; Mackworth and Thomas, 1962) to mit-
igate the constraints on head movements (Jacob and Karn, 2003).

In 1965, Alfred L. Yarbus (Yarbus, 1967) reported one of the first com-
prehensive accounts of the use of eye tracking, in his landmark book, “Eye
Movements and Vision”. In this book, translated in 1967 from Russian to En-
glish, Yarbus describes research results showing that eye movements depend
on the tasks at hand, as shown in his famous image reproduced in Figure 2.

During the 1970s and 1980s, eye-tracking research flourished. Eye track-
ers became more accurate and less intrusive. Psychologists formulated different

4

Fig. 1: A brief history of eye tracking.

theories to link eye gaze to cognitive processes (Jacob and Karn, 2003), includ-
ing the influential strong eye-mind hypothesis by Just and Carpenter (1980).
Eye-tracking technology continued to evolve and its applicability expanded to
various business and scientific purposes.

The emergence of video-based eye trackers in the 1990s drastically im-
proved their access and use in various research. In 1990, Crosby and Stelovsky
(1990) performed the first eye-tracking study in software engineering. They
investigated participants’ reading strategies and their impact on the compre-
hension of procedural code.

Between 1990 and 2006 there was little work using eye tracking in software
engineering. We posit this to be the case because (1) Crosby and Stelovskys
work in 1990 was pioneering at the time and others did not consider using
eye-tracking in software engineering research; (2) eye-tracking technology was
not convenient until 2000s for its use in software engineering research, instead
(3) research efforts were spent on underlying domains of perception, cognition,
and reading.

Since 2006, the use of eye trackers in software engineering has shown mod-
est but steady growth for the study of various topics, including collaborative

5

Fig. 2: Set of images from Yarbus with superimposed fixations and links be-
tween them. This shows that the participant’s task changes their eye move-
ments, from (Haji-Abolhassani and Clark, 2014; Yarbus, 1967).

interactions, program/model comprehension, code review, debugging, mainte-
nance, and traceability (Sharafi et al., 2015b).

2.2 Eye Tracker Operation

A large variety of eye trackers are available on the market for business and
scientific purposes (Sharafi et al., 2015b). These eye trackers vary in their
physical forms and the methods used to track eye gaze (Bojko, 2005). An eye
tracker usually includes the following hardware and software components:

– One or more cameras (usually infrared).
– One or more light sources (usually infrared).
– Image-processing software that detects and locates the eyes and the pupils

and maps eye motion and the stimulus.
– Data collection software to collect and store real-time eye gaze data.
– Real-time display showing the location of the eyes’ focus.

Currently available eye trackers mostly use the corneal-reflection/pupil-
center method. An emitter of (typically invisible infrared) light is directed
toward the eyes, entering the pupils. A significant amount of light is reflected
back, causing the pupils to light up and appear bright. Another amount of
light is reflected by the eyes and appears as glints on their surface.

Cameras can detect and track these reflections of the light source, along
with other features such as the center of the pupil. Using a pre-established cal-
ibration and trigonometric calculations, and employing a variety of modeling
approaches (Hansen and Ji, 2009), the image-processing software identifies the
eye gaze (independent of head position and motion) (Jacob and Karn, 2003;
Poole and Ball, 2005; Duchowski, 2007).

6

2.3 Eye Tracking Assumptions

The relation between eye gaze and cognitive processing is based on two as-
sumptions from the theory of reading: the immediacy assumption and the
eye-mind assumption (Just and Carpenter, 1980). The immediacy assumption
proposes that interpretation of the stimuli begins immediately as a participant
sees it, e.g., as soon as a reader reads a word. The eye-mind assumption states
that participants fixate their attention only on the part of the stimulus that
is being currently processed (Just and Carpenter, 1980).

These two assumptions are the foundation of how eye gaze represents the
participant’s cognitive processes. Eye-gaze data indicates both the target of
the participant’s attention and the effort (or lack thereof) and length of time
used to understand the stimulus. In addition, based on physiological stud-
ies, psychologists assume that participants do not have conscious control over
many attributes of their eye gaze, e.g., their pupil size, other than that for the
location of their attention.

2.4 Eye Tracking Limitations

Eye trackers come with intrinsic limitations. We discuss the most important
ones that exist at the time of writing this paper. If past history is to be our
guide, we believe that much of these limitations will lessen or disappear as
newer technologies and algorithms are invented in the years to come.

Accuracy. Accuracy (sometimes referred to as offset) is the difference between
true and measured gaze data in degrees of the visual angle (Holmqvist et al.,
2012). Current, popular eye trackers report accuracy values between 0.5 and
1 degree. An accuracy of 1 degree means that if the distance between the
participant and the stimulus is 50 cm, the eye tracker could locate the eye
gaze anywhere within a radius of 0.87 mm ≈ 1 cm of the actual, true position.

Although newer eye trackers have accuracy values below 0.5 degree, man-
ufacturers usually compute this reported accuracy in an ideal situation, mea-
sured either directly after calibration or with artificial eyes (Sharafi et al.,
2015b). They also avoid any obstacles that can interrupt the normal path of
(infrared) light, such as thick eyelashes, hard contact lenses, or eye glasses.

Precision. Precision reports how well an eye tracker can reproduce the same
results for two successive eye gazes at the same location. The precision values
of common eye trackers range from 0.01 degree to 1 degree.

Drift. Drift is the gradual decrease over time of the accuracy of the eye-
tracking data, when compared to the true locations of the eye gaze. Drift
is caused by the deterioration of calibration over time due to the physiology
of the eye, e.g., changes in wetness, and other factors (Sajaniemi, 2004) .

7

Extrafoveal Vision. Extrafoveal vision (i.e., parafoveal and the peripheral vi-
sion) makes up 98% of the human visual field and is not captured by eye track-
ers. Eye trackers only record foveal fixations, which are fixations corresponding
to the central region of sight with the best visual acuity. Consequently, a lack
of fixations on parts of a stimulus does not mean that participants did not see
these parts, only that they chose not to direct their attention on them.

Although extrafoveal processing plays an important role in comprehension
and has been studied in other fields, it has rarely been studied in software
engineering research. Orlov and Bednarik (2017) performed the first study in
software engineering that looked into the impact of extrafoveal information
processing on source-code comprehension. They found that extrafoveal infor-
mation was utilized more by expert programmers than novices.

3 Usage

Some software engineering tasks are better suited to the use of eye trackers
than others. Before researchers design empirical studies, they should first an-
swer the question, “Are eye trackers necessary and/or useful for this study?”
This section presents various reasons when and why to use an eye tracker in
software engineering research.

3.1 When?

Researchers can use eye trackers when they want to understand the impact of
some visual stimuli on their participants’ thought processes, e.g., comprehen-
sion, collaboration, emotion, etc. Eye trackers can complement and enhance
data collected using automated tools, e.g., Mylyn (Murphy et al., 2006), semi-
objective collection methods, e.g., screen and audio recordings, and subjective
collection methods, e.g., surveys and questionnaires.

Any eye-tracking study will suffer from all common perceived limitations
of human studies reported by software engineering researchers (Buse et al.,
2011). It will also incur some extra research overhead. In the following, we
discuss the actual costs of carrying out eye-tracking study.

Recruiting. Eye tracking constrains remote participation, such as via Ama-
zon’s Mechanical Turk crowdsourcing. There are webcam-based eye trackers
available on the market but they may have low accuracy and precision.

Time and Cost. Experiment time and cost are significant concerns for eye
tracking studies. The total cost include (1) infrastructure, hardware, and soft-
ware purchase and maintenance, (2) training staff to manage and perform
eye-tracking experiments, (3) time and effort to conduct the eye tracking ex-
periments and (4) to analyze the resulting eye tracking data.

8

A typical eye tracking experiment lasts between 15 minutes to one hour
and at least one experimenter must supervise the process. It usually involves
one eye tracker and a PC with two screens (in a dual-screen configuration).
One screen is used to present visual stimuli to the participants and is installed
in front of the participants. The other screen, installed away from the partic-
ipants’ field of view, is used by the experimenter to perform calibration, con-
trol stimuli presentation, and monitor eye-tracking quality during the study.
This dual-screen setup allows the experimenter to detect any issues with the
equipment during the experiment, without interfering with the participants.
Because the goal is to gather the data when the participant is engaged with
the task, experiments must be performed in a quiet, dedicated room to avoid
distractions and other confounding factors.

3.2 Why?

Eye tracking is recommended when researchers wish to understand their par-
ticipants’ cognitive processes as well as the intentions that motivate their ac-
tions. Researchers could use think-aloud protocols, interviews, questionnaires,
or surveys to understand these processes and intentions, however, these meth-
ods depend on the participants’ memory and communication skills, and–or
subjective judgment to provide insight into their processes and intentions.
Moreover, studies in cognitive science showed that the participants’ perception
of their own behavior does not always agree with their underlying processes
and intentions (Bergstrom and Schall, 2014).

Eye trackers provide an objective, real-time, quantitative measure of eye
gaze, without conscious filtering. They help researchers to study processes and
intentions that participants cannot articulate (Ross, 2009). An eye tracker
provides additional insights into what participants were doing and why based
on where they focused their attention during a task.

Eye trackers help researchers determine (1) why participants have prob-
lems finishing a task, (2) where participants expect to find certain elements,
(3) whether elements are distracting, (4) how efficiently a design, layout or ar-
tifact guides participants through a task, (5) whether there are differences in
the participants’ efficiency, based on their demographics or expertise, and (6)
whether participants focus on details or briefly scanned the stimuli (Obaidel-
lah et al., 2018; Sharafi et al., 2015b). All of this is done objectively while the
task is being executed.

However, using eye trackers correctly is vital. Conducting an eye tracking
study requires dedication to fine details to make sure the data is collected cor-
rectly and accurately. The collected data must be analyzed carefully to relate
participants’ fixations with their cognitive processes and intentions (Jacob and
Karn, 2003; Karn et al., 1999). In particular, currently, there is no absolute
way of knowing whether participants indeed understood parts of the stimuli
on which they fixated.

9

4 Metrics

Analysis of eye-tracking data is challenging (Jacob and Karn, 2003) and the
same applies in software engineering eye-tracking research, such as program
comprehension (Bednarik, 2007). We now present definitions and metrics that
can help analysing this data.

Karn et al. (1999) and Jacob and Karn (2003) classified eye tracking metrics
as follows:

First Order Data. They are raw data, i.e., unfiltered eye tracking outputs:

– X,Y position: the spatial coordinates of each gaze point, mapped to a
location on the stimulus. These coordinates indicate the participants’ focus
of attention but not their understanding of the stimulus.

– Pupil diameter: the physical size of the pupil, usually its diameter in
millimeters. Pupil size variations are more important than actual sizes
because they vary across participants. Variations in pupil size, however,
depend on cognitive workload and task difficulty, i.e., increased effort and
heavier cognitive workloads are related to larger pupil sizes (Beatty, 1982).

– Eye blinks: the number of blinks per unit of time, e.g., per minute. These
are associated by psychologists with cognitive workload. Lower blink rates
indicate more attention (Poole and Ball, 2005; Beatty, 1982). Blink rates
are not a common eye-tracking output, however. Blinks require vision algo-
rithms to calculate them, and only certain trackers, such as the Smart Eye
trackers, provide blinks as part of their output. Additional methods are
necessary to accurately detect blinks in realtime, e.g., using a video-based
eye tracker (Divjak and Bischof, 2008).

X,Y positions, pupil diameters, and eye blinks, like other biometric data,
are inherently noisy and contain outliers and invalid data. Therefore, this data
must be cleaned before analysis (Soh et al., 2018). Researchers can clean this
data visually, e.g., by replaying the fixations and saccades and removing those
obviously off, or statistically, e.g., by removing outliers long fixations.

Several factors, including ambient light levels, participants’ emotional and
cognitive states, distance to the eye-tracker, and image quality of the camera
impact this data. For example, blink rates increase with stress and anxiety
but decrease with intense concentration.

Second Order Data. they include fixations and saccades, derived from the
first order data using physiological thresholds. Eye trackers implement event
detection algorithms to distinguish fixations from saccades using spatial and
temporal criteria. These algorithms may impact the results of the analyses of
the data (Salvucci and Goldberg, 2000).

Fixations can be voluntary or involuntary. Involuntary fixations stem from
reflexes, e.g., the optokinetic reflex that leads the eyes (and therefore, atten-
tion) to focus on moving objects. Eye tracking researchers are mostly con-
cerned with voluntary fixations, although involuntary fixations may happen

10

in software engineering tasks, too, e.g., when a window pops up to alert the
participant to an event.

Third Order Data. They are obtained by eye tracking software through anal-
yses of fixations and saccades:

– Fixation count: the number of fixations in an area of interest (AOI) or
the whole stimulus.

– Fixation duration or fixation time: duration of all the fixations on an
AOI or the stimulus.

– Percentage of fixations or fixation rate: ratio of the total number of
fixations on one AOI or stimulus to another.

– Time to the first fixation in an AOI: time from the beginning of an
experiment until the participant fixates on a given AOI.

– All fixations within a selected time: the number of fixations on an
AOI or the stimulus in a given period of time.

Previous eye tracking studies used fixation count, fixation duration, and fix-
ation rate to find the AOIs that attract more attention (Crosby and Stelovsky,
1990; Crosby et al., 2002; Uwano et al., 2006) and to measure the efficiency of
participants’ task-solving strategies (Soh et al., 2013).

A smaller fixation rate indicates a lower efficiency in search tasks: partici-
pants spend more effort to find relevant areas (Poole and Ball, 2005). Higher
rates indicate that more effort is required to complete tasks, i.e., find defects
(Bednarik, 2012; Sharif et al., 2012) or fix bugs (Sharif et al., 2013), understand
source-code statements (Binkley et al., 2013), recall the names of identifiers
(Sharif and Maletic, 2010a), or explore different stimulus layouts (Guéhéneuc,
2006a; Yusuf et al., 2007).

When using these metrics to compare two AOIs or stimuli, the values must
be adjusted by the sizes of the AOIs/stimuli to perform fair comparisons. For
example, when working with text, the fixation count must be divided by the
number of words in each AOI to compare two AOIs that do not contain the
same numbers of words.

Fixation counts and durations are not correlated with one another (Sharafi
et al., 2015a). Previous studies used both fixation counts and durations to-
gether to characterize participants’ efforts:

– Average Fixation Duration (AFD) is also referred to as Mean Fixation
Duration (MFD) is an average of fixation duration over all the fixations in
an AOI, with respect to the fixations counts in all the AOIs or stimulus.

– Ratio of On-target to All-target Fixations (ROAF): the sum of the
fixation durations of all the fixations in an AOI divided by the fixation
counts in all the AOIs or stimulus.

AFD has been proposed and used for relevant and non-relevant AOIs sepa-
rately: Average Duration of Relevant Fixations (ADRF) and Average Duration
of Non-Relevant Fixations (ADNRF) (Jeanmart et al., 2009; De Smet et al.,

11

2014; Soh et al., 2012). Higher ROAF values indicate higher efficiency associ-
ated with lower effort. They also indicate the importance of an AOI relative
to other AOIs or the stimulus.

To compare fairly two stimuli with each other, the size of each stimulus
must be taken into account. Jeanmart et al. (2009) proposed the Normalized
Rate of Relevant Fixations (NRRF) to compare two (or more) stimulus with
each other. Higher values of NRRF indicate increased effort to understand the
corresponding stimulus.

AFD, ROAF, and related metrics were used to measure and compare the
amount of visual effort (or difficulty) to perform a task (Crosby and Stelovsky,
1990; Bednarik and Tukiainen, 2005, 2006; Jeanmart et al., 2009; Cepeda and
Guéhéneuc, 2010; Busjahn et al., 2011; Bednarik, 2012; Soh et al., 2012; Sharafi
et al., 2012; Petrusel and Mendling, 2012; Binkley et al., 2013; Cagiltay et al.,
2013; Sharafi et al., 2013; De Smet et al., 2014) and to find the AOIs that
are most important for the participants to perform their tasks (Bednarik and
Tukiainen, 2006; Jeanmart et al., 2009; Cepeda and Guéhéneuc, 2010; De Smet
et al., 2014).

Similarly to fixations, several third order metrics exist based on saccades:

– Saccade count: the total number of saccades in an AOI or the stimulus.
– Saccade duration or saccade time: the duration of all the saccades in

an AOI or the stimulus.
– Regression rate: the percentage of backward or regressive saccades, e.g.,

leftward in left-to-right source-code reading, over the total number of sac-
cades (Poole and Ball, 2005; Busjahn et al., 2011).

Higher regression rates indicate increased difficulty in performing and com-
pleting a task (Goldberg and Kotval, 1999; Poole and Ball, 2005). Busjahn
et al. (2011) reported higher regression rates for source-code reading com-
pared to natural-language text reading. Fritz et al. (2014) used saccades to
study the impact of the difficulty of some stimuli on participants.

Fourth Order Data. Sequences of fixations or AOIs are called scan paths. Scan
paths describe the durations and lengths of eye gazes. They are indicators
of search efficiency. Longer and longer-lasting scan paths indicate that the
participants took more time or effort to explore a stimulus to find relevant
AOIs, which in turn indicate less efficient scanning and searching.

Scan paths naturally become longer as participants spend time in an ex-
periment, which make them difficult to analyze and compare. They must be
studied by taking into account the numbers and locations of fixations as well
as their temporal order and duration.

Scan paths can be studied using the following algorithmic tools:

– Transition matrix: a tabular representation of transition frequencies be-
tween AOIs. The matrix density can be computed as the number of nonzero
cells divided by the total number of cells to compare two transition matri-
ces with each other. Figure 3 shows an example of a scan path on a visual

12

Fig. 3: Example of scan path and corresponding transition matrix, from
(De Smet et al., 2014). A 1 in each matrix cell indicates a directed edge in the
scan path between the points labeled by the row and column.

grid and its transition matrix with a spatial density of 12% (10 cells out
of 81 are filled). Increased spatial density indicates more extensive search
with inefficient scanning (Sharafi et al., 2015a).

– Scan path recall, precision, F-measure: measures of the relations be-
tween AOIs and scan paths. Scan path recall is the number of fixated,
relevant AOIs divided by the number of all relevant AOIs. Scan path pre-
cision is the number of fixated, relevant AOIs divided by the number of all
AOIs. Scan path F-measure is a weighted average of scan path precision
and recall (Petrusel and Mendling, 2012).

– Edit distance: uses the Levenshtein algorithm to compute the minimum
editing cost of transforming one scan path to another with basic operations,
such as insertion, deletion, and substitution (Levenshtein, 1966).

– Sequential PAttern Mining (SPAM): a depth-first algorithm that can
be used to compare scan paths based on the fixation locations and durations
(Ayres et al., 2002).

– ScanMatch: based on the Needleman-Wunsch algorithm used in bioin-
formatics to compare sequences of DNA (Cristino et al., 2010). It uses
temporal binning to adjust the length of two (or more) scan paths based
on fixation durations. It outputs a similarity value of the two scan paths.

Studies compared scan paths to identify and analyze participants’ viewing
strategies to explore stimuli and solve tasks (De Smet et al., 2014; Sharafi
et al., 2013; Hejmady and Narayanan, 2012; Busjahn et al., 2015). Lower edit-
distance and SPAM values indicate similarity among participants and show
that they used similar reading strategies (De Smet et al., 2014; Sharafi et al.,
2013; Hejmady and Narayanan, 2012).

Other fourth order data include:

– Attention switching: the total number of switches between a list of AOIs
per unit time, e.g., one minute.

13

– Fixation Spatial Density (SD): represents the stimulus coverage, the
dispersion of the participants’ fixations (Goldberg and Kotval, 1999). If a
stimulus is divided into equal cells to form a grid, then SD is the number of
visited cells, i.e., a cell that received at least one fixation. Smaller spatial
density values indicate less coverage.

– A convex-hull area: the smallest convex set of fixations that contains
all of participants’ fixations (Goldberg and Kotval, 1999). A smaller value
indicates that the fixations are close together and that the participants
spent less effort to find relevant areas in a stimulus.

– Linearity: associated with participants’ search strategies (Poole and Ball,
2005). It is defined using eye gaze linearity, e.g., left-to-right and top-to
bottom for readers of Latin-based natural languages.

Studies have used SD and convex-hull area to study the coverage of fixa-
tions (Sharafi et al., 2012; Soh et al., 2012; Sharafi et al., 2013), which relates
to the efficiency of the search strategies used by participants. It also indicates
the preferred parts of visual stimuli.

In source code, “linearity represents how closely readers follow a texts
natural reading order” (Busjahn et al., 2011).

Metrics based on the spatial distributions of fixations are sensitive to in-
valid data. For the convex-hull area, just one fixation deviating from its actual
location can change the shape and the area of the convex hull significantly.
Thus, noise removal and data cleaning is necessary to use fourth order data.

5 Typical Eye-tracking Studies in Software Engineering

Based on the current literature and state-of-the art, we now describe examples
of studies that used eye trackers for software engineering tasks. These examples
cover the main usages of eye trackers in software engineering research and some
representative studies in terms of objectives, designs, metrics, etc.

5.1 Program Comprehension

Turner et al. (2014a) studied the effects of programming languages on de-
velopers’ performance in a number of programming tasks. One of their re-
search questions asked if there was a significant difference in visual effort in
overview and bug localization tasks between C++ and Python programs. They
recruited 38 undergraduate and graduate students, some with C++ and some
with Python experience to explain what C++ and Python code samples did
(overview) and to look for and explain any error they could find in the pro-
grams (bug localization). To measure visual effort, the authors recorded four
metrics: (1) fixation count and (2) duration for the entire program and (3) fix-
ation count and (4) duration on the buggy lines of the programs. Each of these
metrics should increase with the participants’ visual effort. The authors com-
pared the metrics recorded for the median of each group who studied C++ and

14

Python programs using the non-parametric Mann-Whitney test. They found
no significant differences between any of the metrics but more fixations on the
buggy lines of the Python programs than on the C++ programs.

Binkley et al. (2013) conducted two eye-tracking studies on the impact of
identifier styles on program comprehension. They asked 169 students to recall
English words and comprehend C++ source code. They analyzed fixation rate,
average fixation duration, ratio of on-target to all-target fixations (ROAF)
with a set of statistical methods, including linear mixed-effects regression,
Generalized Linear Mixed Models, and logistic regressions. They concluded
that experts are less affected by the identifier styles than novices. They also
concluded that source-code reading and comprehension are different from that
of natural text because the effects of style on quality assessment and thinking
time varied between natural text and source code.

5.2 Diagram Comprehension

Guéhéneuc (2006a) and Yusuf et al. (2007) independently investigated the
impact of layout, color, and stereotypes of UML diagrams on comprehension.
The later asked 12 students and faculty members to work on three UML class
diagrams with different layouts (orthogonal, three-cluster, and multi-cluster
layouts). After calculating fixation count, first fixation time, and comparing
the distribution of fixations via heat maps and gaze plots, they concluded
that experts use extra information, e.g., color, layout, and stereotypes, more
efficiently than novices to browse UML diagrams. They also showed that the
layouts with additional, design, semantic information are more effective.

5.3 Code Review

Uwano et al. (2006) investigated the impact of scan time on source code review,
i.e., reading the entire code before investigating the review. After recording
the eye movements of 5 students debugging C code, they computed the fix-
ation count. They used an algorithm to generate a set of graphs depicting
the time sequence of focused code lines. They used these graphs to compare
the participants’ viewing strategies and fixation counts to compare the scan
times. Results showed that a longer scan time leads to faster bug finding.
They showed the tendency of novices to go back and forth between code and
graphical representations.

Begel and Vrzakova (2018) studied participants’ source-code scanning be-
haviour during code review to identify how suspicious patterns of code are
recognized. They studied of 35 developers performing 40 code reviews. By
playing back the eye gazes, they observed that code review was mainly a code-
scanning task in which the majority of the code is skimmed rapidly.

15

5.4 Traceability

Ali et al. (2015) performed an eye-tracking study to understand how partici-
pants verify requirement traceability links and identify the most used source
code entities (SCEs). They asked 26 undergraduate and graduate students
to read a set of Java code snippets and answer one comprehension question
about each. They used the total fixation duration to calculate the time spent
on each SCE, including class, method, variable names, and comments, and
ranked the developers preferred SCE. Then, they used the ranked SCEs to
propose two new weighting schemes to recover RT links with an IR technique.
One is called SE/IDF (source code entity/inverse document frequency) and the
other is DOI/IDF (domain or implementation/inverse document frequency).
They reported that participants have distinct preferences for different SCEs,
method names and comments over others, and that the proposed weighting
schemes statistically improve the accuracy of their IR-based techniques.

5.5 Education

Busjahn et al. (2014) performed a case study to evaluate the feasibility of
the use of eye trackers in computing education and teaching. They recruited
two developers to read Java code and answer a comprehension question while
recording their eye movements. Then, they provided the participants with two
videos showing the Java code overlaid with their eye movements and asked
them to encode them according to a multi-tier coding scheme, e.g., blocks vs.
lines. They presented the lessons and challenges learned from the data analysis
and their participants’ comprehension of the encoded scan paths.

5.6 Eye tracking and Other Psycho-physiological Measures

Fritz et al. (2014) performed an eye tracking study while gathering other
psycho-physiological measures using electroencephalography (EEG), electro-
dermal activity (EDA), and NASA TLX scores, to evaluate task difficulty.
While previous studies focused on post hoc data analysis, they proposed a
new approach to detect when developers experience difficulty while working
with source code. They recruited 15 professionals to work on ten short tasks.
They trained a Naive Bayes classifier using a combination of these measures
to predict whether a participant would feel a task was difficult. Their classifier
achieved over 70% precision and over 62% recall. They confirmed that the
duration of saccades is related to the participants’ cognitive effort.

5.7 Source Code Summarization

Rodeghero et al. (2014) developed a code summarization tool based on eye
movements of ten developers, asked to read Java code and wrote English sum-

16

maries of Java methods in the snippets. They extracted common keywords
from the code based on the amount of fixation time spent by participants on
these keywords. They then used Vector Space Model Summarization (Haiduc
et al., 2010) (VSM TF/IDF) to extract keywords and compare the results
with the keywords obtained by their proposed method and those from the
developers. They showed that developers focused more on the keywords that
they found relevant and also used these keywords to write their summaries.
Developers spent a different amount of visual attention on different keywords.
Method signatures attracted more attention than method invocations, which
in turn attracted more attention than control flows.

Abid et al. (2019b) recruited 18 developers to work on 63 methods from
five different systems. In contrast with previous studies that used short meth-
ods in isolation, they asked developers to work in Eclipse, using scrolling in
files and switching between files. They collected eye-gaze data, written sum-
maries, and the time spent by the participants to complete each summary.
They showed that keywords in the control flows of the methods were revisited
frequently rather than read for a long period of time. They also compared ex-
perts and novices and found that the sizes of the methods mattered: as their
sizes increased, experts revisited the method bodies more frequently than their
signatures. They also compared mental cognition models (i.e., bottom–up or
top–down) during code summarization (Abid et al., 2019a) and reported that
both experts and novices using the bottom–up mental model: they read meth-
ods closely rather than browsing methods. However, novices needed more gaze
time then experts to apply the bottom–up strategy.

6 Pragmatics of a Typical Eye Tracking Study

This section presents a practical approach to eye-tracking experimental design
and setup. We direct the reader to general guides on controlled experiments
(Ko et al., 2015), which we extend to include other important setup and prag-
matic issues that arise when using an eye tracker as part of data collection.
Some of these issues were reported in previous works while others were iden-
tified through our own experiences while yet others could pertain to any em-
pirical studies. Whenever possible, we provide references to the works, if any,
that reported the issues first.

6.1 Experimental Setup

We now discuss setting up experiments with eye-trackers, from their purchase
to the recording of their data.

6.1.1 Eye Tracking Device

Eye trackers have improved greatly since their beginning, and are now both
accurate and readily available. There are differences between affordable eye

17

trackers and high-end eye trackers on the market. Sampling rate, accuracy,
and freedom of movement are key factors that determine the quality and,
ultimately, the price of an eye tracker.

Webcam-based eye trackers provide a practical, low-cost, or even free solu-
tion (by getting eye-tracking data from a “normal” camera, already installed
in almost all laptops). The main advantage of these eye trackers is to collect
gaze data on any population quickly, just like sending out a typical online
survey. However, researchers do not use these devices often because they are
inaccurate when compared to infrared eye trackers1. The environment is also
not as controlled (with regards to the noise level and lightning and ambiance,
cf. Section 6.1.2) as appropriate for precise study. If the goal of the study is
to find out whether a specific part of the screen has been looked at by partic-
ipants, a webcam-based eye tracker suffices. However, if precise temporal or
spatial resolutions are required (e.g., a line by line or word by word comparison
of the source code or text), then an infrared eye tracker is needed.

There is a large range of prices for the various models of video-based remote
eye trackers. Low-end eye-trackers cost from $100 to $2,000 and are not gen-
erally used for advanced research, especially if the researchers are interested
in spatio-temporal resolution for saccade detection. Mid-end eye trackers cost
from $2,000 to $10,000, while high-end ones can cost over $10,000.

To decide which eye tracker to purchase, we recommend checking the two
following resources: (1) Obaidellah et al. (2018) list a variety of manufacturers
and eye trackers for software engineering research and (2) Farnsworth (2019a)
presents an overview of the price points for various eye trackers. Some eye
trackers are more extensible, creating a 3D model of the world around them,
whereas others do not allow this setup. Researchers must choose the right eye
tracking device for their study.

6.1.2 Eye Tracking Environment

The environment in which an eye tracking study is performed is important.
Researchers should conduct their studies in quiet, windowless rooms with good
lighting. The room should be calm and with a stable lighting that does not
produce glare on the screens or interfere with the infrared light of the eye
tracker. Environmental changes (e.g., light conditions and humidity) may re-
sult in drift and inaccurate data (Pernice and Nielsen, 2009; Sajaniemi, 2004).

To avoid inaccurate data due to participants’ head and body movements,
researchers should place participants in a stationary seat with a headrest but
without wheels or leaning capability. Slight head movements are acceptable
and participants should sit with a normal posture in front of the eye-tracking
screen. A chair and desk with vertical adjustment capability are useful to
accommodate different participants’ heights. Some eye tracking software tools
provide indication of the optimal distance and head placement.

1https://imotions.com/blog/webcam-eye-tracking-vs-an-eye-tracker/

18

Most studies use only a small number of participants as shown in previous
works, e.g., (Sharafi et al., 2015b), and only one participant can use an eye
tracker at a time. Therefore, the room and eye tracker should be straightfor-
ward and simple in accommodating one participant at a time.

6.1.3 Overview and Calibration

At the start of a study, researchers must provide participants with relevant
information including:

1. The procedure and policy for the data analysis, storing, and discarding, in
particular whether the data is anonymous or not.

2. The number of tasks that must be completed, including the number of
questions for each task, and an estimation of the task duration.

3. The procedure for a participant to inform researchers when a task is com-
pleted or when a task is abandoned.

4. The means by which a participant can relax and work as if they are alone.
Participants should not explain what they are doing (i.e., no think-aloud
as the cognition required alters low-level eye movements).

Then, researchers must calibrate the eye tracker to participant’s eyes:

1. Researchers must inform the participants at all times about their actions,
e.g., when adjusting the participant’s chair or the screen.

2. Researchers must ensure that the participant’s head appears in the middle
of the screen and at a distance of about 50–60 cm, which may vary with
the specifications of the eye tracker and the participant’s height.

6.1.4 Pilot Study

We recommend to conduct a pilot study with at least one participant to iden-
tify any potential problem in the experimental design/setup:

1. Check that the eye tracker and room are set up correctly.
2. Check that recording properly acquires and saves data to disk.
3. Check the quality of recorded data to make sure that the light conditions

are appropriate to capture eye movements.
4. Observe how the participant reacts to the research questions, setup, stimuli,

and tasks.
5. Record the time taken by the participant to complete the study.
6. Analyze the data to evaluate the results and avoid any data loss.

6.1.5 Recording

Researchers must check participants at all time to ensure the quality of the
data, including avoiding:

19

– Holding any material in between the eye tracker and the participant’s face,
e.g., an answer sheet or the participants’ hands.

– Leaning back, forward, or sideways in a manner that makes the eyes move
out of the tracked zone.

– Squinting or closing eyes at length and–or repeatedly.

If such events happen, the researchers must record the time of the event
(timestamp) to analyze later whether the data (or part thereof) can still be
used or should be discarded entirely. If the researcher notices that the partic-
ipant is moving too much, they should consider re-running the eye tracking
calibration procedure after each task.

6.2 Stimuli and Tasks

Stimuli. In most previous eye tracking studies, participants worked with a
set of static stimuli. A static stimulus is an image shown on a screen and
on which participants have no control. The majority of previous studies used
small source-code snippets that fit on one screen with appropriate font size
and type for reading. We provide guidelines for designing a static stimulus:

– Ask only one question per stimulus. A static stimulus limits the number
of elements that can be displayed. We recommend presenting one question
per image to conserve display space and simplify data analysis. If several
questions are necessary, then the stimulus can be repeated.

– Show the question on the top-left corner of the stimulus to avoid that
elements placed there receive undue attention: previous work showed par-
ticipants tendency to look to the top-left corner (Goldberg et al., 2002).

– Avoid over-crowding the stimulus. Eye trackers have a specific resolution
below which it is not possible to distinguish whether attention was focused
on one element or another of the stimuli.

– Use fixed-width fonts (mono-spaced and mono-type), e.g., Courier, for the
stimulus. These fonts provide the same horizontal space for all characters
and, thus, better control over the visual stimuli.

– Use appropriate font size: smaller fonts have the advantage of allowing more
text on the screen, but hinder capturing fixations of participants natural,
smooth reading. The font size needs to be big enough to support mapping
of gaze to words. A trial/test needs to be done prior to conducting the
study to determine what size works best.

Font types and sizes can make fixation positions less accurate, data nois-
ier, and data analysis more difficult. Choosing a proper font type and size is
particularly important if word-level analysis must be done (e.g., source code
and identifiers understanding).

The participants’ viewing distance from the screen, the eye-tracker accu-
racy, and ecologically valid study design are all critical factors in choosing a
font size (Godfroid, 2019). Results in vision research reported a range of 4pt to

20

40pt for eye-tracking studies (Godfroid, 2019). We recommend choosing a size
closer to the middle of this range. If a fixed-width font is used and participants
sit at approximately 50 cm from the screen, then a 16 to 18 point font is a
good choice.

In some previous eye tracking studies, participants worked with dynamic
stimuli, i.e., stimuli with which they could interact. In particular, Clark and
Sharif (2017) developed iTrace and iTraceVis, which provide an automatic
mapping of eye-gaze data on source-code elements displayed in an IDE, such
as Eclipse or Visual Studio, even with scrolling in and switching between files.
Thus, researchers can study participants’ complex interactions with IDEs and
the elements displayed in these IDEs.

Tasks. The tasks should be engaging and easy to understand. Appropriate
tasks must trigger the participants’ cognitive processes when performing their
tasks. There is currently no absolute way of telling whether participants un-
derstood the elements on which they fixated. Therefore, studies must include
comprehension questions/measures to asses whether participants understood
the elements presented by the stimuli.

To avoid fatigue, it is important to strike a balance when preparing the
stimuli between completeness and duration and to avoid long sessions. An
eye-tracking session should not last longer than 90 minutes. Changes in the
physiology of the eye over time, e.g., dryness caused by fatigue, may result in
measurement errors. As a general rule, if a session is longer than 30 minutes,
then participants should be given time to relax their eyes between successive
stimuli, for example, by working on questions printed on paper.

6.3 Recruiting Participants

Researchers must define the population from which they will select the partic-
ipants. The ideal target population may be that of all software engineers who
perform development and–or maintenance activities. However, around 77%
of previous eye tracking studies used populations of students and–or faculty
members (Sharafi et al., 2015b). Indeed, they argued that students are akin
to junior software engineers, while faculty members may have considerable
development/maintenance experience.

Researchers should consider the following benefits when selecting partici-
pants from a population of students:

– Students come to the school regularly and they are more accessible (sched-
ules, willingness) to academic researchers than professionals who work in
industry. Researchers already in industry will find that their software de-
velopment colleagues may be easier to recruit.

– Students in the same year often have comparable experience and expertise,
potentially increasing the homogeneity of the population and comparability
of the data collected from different participants.

21

Researchers should recruit professionals if their research questions pertain
to the impact of expertise and experience Kitchenham et al. (2002). One way
to increase the number of participants is to run the study for a long time.
Another possibility is to bring eye trackers to conference venues with many
professional developer attendees. A third possibility is to visit and recruit
participants from the local area beyond the researchers’ organizations.

Researchers must strive to recruit enough participants to obtain statisti-
cally significant results. There is no unique sample size for eye-tracking studies
because the size depends on many factors, including the research questions and
the experimental design (e.g., within subjects vs. between subjects) (Bojko,
2005). Previous eye tracking studies had from 5 to 169 participants, with a
mean value of 56.9 and median value of 18. 56% of these studies had fewer
than 20 participants.

Researchers must define exclusion criteria to reject participants who cannot
participate in an eye-tracking experiment. These criteria mostly pertain to the
use of visual aids. While modern eye trackers can collect eye gaze data even if
participants wear eyeglasses, some cautions (Pernice and Nielsen, 2009) should
be taken with other visual aids/vision impairments, in particular:

– Bifocal or progressive glasses.
– Dirty or damaged glasses.
– Dyslexia and other such disorder.
– Thick rimmed glasses.
– Droopy eye and/or lazy eyelids.
– Heavy eyelashes or mascara.
– Fringes covering eyes, hats, or other artifacts.
– Eye problems such as uncorrected astigmatism.
– Photosensitive epilepsy.

McChesney and Bond (2019), for example, compared 28 developers, with
and without dyslexia, performing program comprehension tasks. They re-
ported that dyslexic developers had a different gaze behaviour than non-
dyslexic developers and that their gaze behaviour was also different from what
was expected from the literature on dyslexia and natural text.

Prior to the session, the experimenters might include instructions to miti-
gate some of the aforementioned barriers, including: wearing minimal or no eye
makeup to the session, bringing or wearing corrective optics, such as single-
vision glasses or contact lenses, checking the cleanliness of the eye-glasses, and
having headbands/hairpins to put up long hair and bangs to provide the eye
tracker a clear view of the eyes. Some eye trackers also require a view of the
participant’s ears to build the appropriate models necessary for eye detection.
So hair should be moved behind ears before beginning the study.

22

6.4 Background Questionnaire

It is common to ask participants to fill out a survey regarding their experience
or knowledge of software development and maintenance. The questionnaire
should ask for any existence of eye problems, epilepsy, or reading disorders.

Questionnaires are typically asked before the study begins. However, care
should be taken to avoid the stereotype threat (Spencer et al., 1999; Shapiro
and Neuberg, 2007). Women and underrepresented minorities are at higher
risk of being judged by the negative stereotype that they have weaker ability
(Steele and Aronson, 1995; Spencer et al., 1999). To alleviate this threat,
we recommend asking questions that might interfere with the participants’
performance, such as ones related to expertise and proficiency, at the end of
the study. Moreover, unless it is part of the design, researchers must avoid
priming in the questions with information that may lead to heightening the
salience of participants’ personal identity.

6.5 Experimental Design

We now discuss the design of an eye tracking experiment, including defining
research questions and hypotheses, identifying dependent, independent, and
mitigating variables and calibration.

6.5.1 Research Questions

After reviewing previous eye tracking studies in software engineering (Sharafi
et al., 2015b), we classify research questions into the following categories:

– To evaluate the usefulness of some systems, artifacts, or tools when partic-
ipants perform a specific task with one of these.

– To evaluate the participants’ effectiveness and efficiency when performing
a specific task while using some systems, artifacts, or tools.

– To find the areas of interest in some stimulus by studying the distribution
and the intensity of participants’ visual attention.

– To detect navigation strategies used by participants by studying their scan
paths when performing software engineering tasks.

Table 1 summarizes the types of research questions asked by researchers
and answered with eye-tracking studies. Tables 2, 3, and 4 provide examples of
research questions of eye-tracking studies in software engineering; most com-
mon are questions to evaluate usability, efficiency, and–or effectiveness.

6.5.2 Variables and Measures

After expressing research questions and hypotheses, researchers must define
dependent, independent, and mitigating variables. In eye-tracking studies, the

23

Table 1: Types of research questions in eye-tracking software engineering ex-
periments.

Categories Types of Questions

Usability, Efficiency,
and Effectiveness
Evaluation

Is (X) useful for task (Y)?
What types of (X) are most effective for task (Y)?
What types of tasks (Y) benefit from artifacts (X)?
Do the participants’ individual characteristics (Z) impact their
effectiveness and efficiency when performing task (Y)?

Finding the Areas of
Interest

What items or what parts of artifact (X), do participants view
when performing task (Y)?

Navigation Strategies

How do participants navigate through artifact/system (X)
when performing task (Y)?
Does the type of artifact (X) impact the participants’ naviga-
tion strategies when they perform task (Y)?
Do the participants’ individual characteristics (Z) impact their
strategies when performing task (Y)?
Do developers follow any pattern when they are working on
task (Y)?

independent variables are the elements presented in the stimuli while the de-
pendent variables are mainly the measures of the participants’ eye-gaze data
and how well the participants answered the questions asked in the study.

The choice of the stimuli and that of the dependent variables depends on
the research questions. Eye-gaze data has been extensively used to measure the
visual (cognitive) effort that is representative of the tasks and stimuli being
assessed. Sharafi et al. (2015a) provided a list of visual effort metrics while
discussing how previous studies used and interpreted them. Table 5 presents
an examples of variables used in previous eye-tracking studies.

6.5.3 Calibration between Saccades and Fixations

Researchers study a variety of stimuli and tasks in software engineering, such
as diagrams, requirements documents, and source code. Depending on stimuli
and tasks, they must use appropriate fixation identification algorithms (FIAs).
Indeed, a FIA used for natural text might not work well for source code.

Salvucci and Goldberg (2000) compared FIAs. They categorized algorithms
with respect to their spatial and temporal characteristics. They found that the
dispersion-threshold identification (I-DT) and Hidden Markov Model fixation
identification (I-HMM) algorithms are the FIAs, independent of the domain,
e.g., image scanning, driving, etc.

FIAs require researchers to set some parameters. Two main parameters
are (1) the number of raw data samples that should be considered a fixation
and (2) the maximum distance in pixels between a raw data point and the
average fixation point to be still considered a fixation. Most eye trackers and
data analysis tools come with default parameters values that can be changed.
Default parameters must be used with caution and we advise running pilot
studies to tune these parameters.

24

Table 2: Examples of research questions for usability, efficiency, and effective-
ness.

Does SeeIT 3D help a participant in solving overview, new feature, and bug fixing tasks?
(Sharif et al., 2013)
Is there an improvement in the comprehension of certain software-maintenance tasks for
stereotyped class diagram layouts vs. layouts based on pure aesthetics? (Sharif and Maletic,
2010b)
Which software comprehension tasks benefit most from stereotyped class diagram layouts?
(Sharif and Maletic, 2010b)
Does the layout of a class diagram affect the visual effort needed during a software mainte-
nance task? (Sharif and Maletic, 2010b)
Does the type of requirement representations (graphical vs. textual) impact the participants
effort, time, and answer accuracy in requirements comprehension tasks? (Sharafi et al., 2013)
Does identifier style impact readability? (Binkley et al., 2013)
Assuming a difference in readability, does identifier style affect higher-level comprehension
activities? (Binkley et al., 2013)
Does programming language affect the effectiveness and efficiency of solving overview and
bug-finding tasks? (Turner et al., 2014a)
Do the participants’ genders impact their effort, their required time, and their ability to recall
identifiers in source-code reading? (Sharafi et al., 2012)
What is the relation between a participant’s professional status and her class diagram com-
prehension? (Soh et al., 2012)
What is the relation between the expertise of a participant and class diagram comprehension?
(Soh et al., 2012)
Is there a difference between experts and novices with respect to the SeeIT 3D tool? (Sharif
et al., 2013)
Do stereotyped layouts help design experts and novices in the same way? (Sharif and Maletic,
2010b)
Is there a difference in visual effort while reading and analyzing source code in C++ vs.
Python? (Turner et al., 2014a)
Do blind programmers take less time to complete a task using AudioHighlight as compared
to StructJumper? (Armaly et al., 2018)

Table 3: Examples of research questions for finding areas of interest.

What do participants really look at in class diagrams? (Yusuf et al., 2007)
On which items in class diagrams do participant fixate the most? (Yusuf et al., 2007)
Does experience influence a participant’s focus on critical areas of the algorithm? (Crosby
and Stelovsky, 1990)
What are the important source-code entities (SCEs) to which participants pay attention
when verifying traceability links? (Ali et al., 2015)
Do developers read error messages? (Barik et al., 2017)

6.6 Definition of the Areas of Interest

While designing an eye-tracking study, researchers must define the Areas of
Interest (AOIs) based on the research questions, hypotheses, and variables.
AOIs are used to describe visual stimuli but there are no standard method for
defining AOIs in terms of size and granularity (Goldberg and Helfman, 2010).
In the following, based on our collective experience and guidelines by Goldberg
and Helfman (2010), we provide our recommendations:

25

Table 4: Examples of research questions to identify navigation strategies.

How do participants navigate through class diagrams? (Yusuf et al., 2007)
Does the layout of a class diagram affect the eye gaze behavior of experts and novices? (Sharif
and Maletic, 2010b)
Does the structure of the representations lead participants to use specific task-solving strate-
gies (top-down vs. bottom-up) during requirements comprehension tasks? (Sharafi et al.,
2013)
Is there a difference between reading simple text and complex text, such as algorithms?
(Crosby and Stelovsky, 1990)
Do the viewing patterns of experienced participants differ from those of novices? (Crosby
and Stelovsky, 1990)
Is there a difference in eye gaze behavior between novices and non-novices between C++ and
Python? (Turner et al., 2014a)
Do developers follow any pattern when they are required to comprehend regular code? In
particular, are their efforts equally divided among regular segments? (Jbara and Feitelson,
2017)

Table 5: Examples of dependent, independent, and mitigating variables.

Dependent Variables

Number or the percentage of correct answers (accuracy)
(Turner et al., 2014b)
The amount of time spent on the stimulus (Binkley et al.,
2013)
The amount of visual effort spent (Sharafi et al., 2013)

Independent Variables

The presence of a tool, an artifact, or an issue (e.g., the pres-
ence of defects in the code vs. no defects (Uwano et al., 2006))
Identifier styles (camel case vs. underscore) (Binkley et al.,
2013)
Different types e.g., graphical vs. textual representations, or
Python code vs. C++ code (Sharafi et al., 2013)

Mitigating Variables
Participant’s knowledge and experience (Sharif et al., 2012)
Language proficiency (Sharafi et al., 2013)
Study level (Ali et al., 2015)

Fig. 4: The rectangular orange AOI overlaps the rectangular red AOI. Try not
to do this because it makes analysis much more confusing.

Sizes and Positions of AOIs. Eye tracking accuracy and precision impact the
size of AOIs. To limit the impact of fixation precision and accuracy, researchers
must define AOIs large enough to capture all relevant fixations. They can add

26

Fig. 5: When comparing two AOIs of different sizes, normalization is required.

extra space, padding, around AOIs to ensure that all relevant fixations are
attributed to the appropriate AOIs.

Although participants fixate on specific elements of stimuli, they may not
fully perceive these elements. A source of noise in eye-gaze data is incidental
fixations. On the one hand, participants can fixate within a 1° visual angle and
still encode the information displayed by the stimuli. On the other hand, par-
ticipants may perceive information with their peripheral vision. Consequently,
researchers should define AOIs separated by at least 1°. Different lines of code
should be set apart appropriately so AOIs are clearly separated.

Overlapping AOIs. Researchers should not define overlapping or nested AOIs
because they complicate data analysis. For example, as illustrated in Figure
4, three fixations are in both the red and orange rectangular AOIs and Tobii
Studio, a popular experiment analysis tool, counts the shared fixations twice.
In addition, researchers must re-define the concept of transition between AOIs.
An AOI should not encompass the entire stimulus because an AOI should
capture just one area of interest in a stimulus.

Edges of Calibrated Area. Usually, the calibration process includes displaying
known points (typically five to nine points) on a screen and mapping their
locations with the coordinates of the participants’ fixations on these points.
Eye trackers typically perform calibration based on both eyes and use the
average display location to improve accuracy. If AOIs are located towards the
edges of the calibrated area, then error increases because only one eye is used
(Goldberg and Helfman, 2010). For participants with only one working eye,
single eye calibration is required.

Normalized AOIs. When comparing two AOIs, researchers must normalize
the measured value (e.g., fixation duration) based on the sizes of the AOIs to
ensure a fair comparison, as illustrated by Figure 5. With graphical stimuli,
researchers can divide the measured value by the area of an AOI. With text
stimuli, researchers can use the numbers of words or lines in each AOI.

27

6.7 Ethics Approval

When performing an experiment involving people, researchers must guarantee
and preserve the participants’ dignity and rights. Universities and–or govern-
ments have their own ethical guidelines and codes of conduct, e.g., a Research
Ethics Board (REB) or an Institutional Review Board (IRB), that govern the
recruitment and the studies.

In software engineering, researchers do not study participants themselves
but rather want to understand participants’ uses of some systems, artifacts,
or tools when performing some tasks. Therefore, with some ethics boards, re-
searchers can apply for an umbrella agreement to perform a set of experiments
instead of applying for each study individually.

Researchers must preserve the confidentiality of the participants’ data at all
times. They must assure participants that their information/data is confiden-
tial. They must also assure participants that an eye tracker does not collect any
images or videos of the participants. Therefore, they must explain to partici-
pants the functioning and output of the eye tracker as well as, if appropriate,
the analyses that they will perform on the data. The General Data Protection
Regulations of the European Union (GDPR) is a good source of information
regarding participants’ privacy rights and researchers’ responsibilities.

6.8 Discussion of Threats to Validity

We now discuss threats that may influence the validity of the results of an eye
tracking study.

Internal Validity. Internal validity relates to the quality of the study. The
following biases may jeopardize the internal validity of an eye tracking study.

– Order effect: in a within-subjects experimental design, in which each
participant works with all conditions, some participant may show better
performance in the second task because they practiced on the first. Par-
ticipants may also perform worse because they are tired. Researchers can
minimize the order effect by using a factorial design or randomization using
the Latin-square method, with the need for more participants.

– Instrument bias: the eye tracker used in a study may change its mea-
surements in time. The use of video-based eye trackers reduces instrument
bias because participants can move their heads without decalibration.

– Hawthorne effect: researchers must provide guidance to the participants,
calibrate the eye tracker, and check the recording. The researcher’s pres-
ence may bias the data because participants may feel being watched. Re-
searchers should sit inconspicuously away from the participants.

– Experimenter bias: researchers may unintentionally influence the partic-
ipants to achieve certain outcomes. The experimenter bias can be mitigated
either by minimizing the interaction between researchers and participants
or by implementing a double-blind procedure.

28

Construct Validity. Researchers should not inform the participants about the
precise goals of the study to avoid hypothesis guessing. They should clearly
explain to the participants the process of the study, the number and duration
of the sessions, and the type of questions before running the experiment.

External Validity. This validity is related to the generalization of the results
from the participants to the population as a whole. Researchers must consider
individual differences while selecting and assigning participants. Researchers
can assign randomly participants to different groups or use stratified sampling.
Participants drawn from a population of students reduce the researchers’ abil-
ity to generalize to a wider population, as discussed in Section 6.3.

Conclusion Validity. Conclusion validity is related to incorrect conclusions
about relationships between measures. Researchers analyze the eye-gaze data
to find relationships between dependent and independent variables. Calibrat-
ing the eye tracker for each participant and using well-documented measures
can mitigate this threat. Also, any results must be discussed and if possible,
explained using some theories of cognition from psychology.

6.9 Results Presentation

After analyzing the results, researchers must present their results. We suggest
to start by explaining the definitions of eye tracking and related concepts,
i.e., first order data, fixations, saccades, scan paths, AOIs, and stimuli. Apart
from these concepts, few other eye-tracking concepts have well accepted names
such as the metrics defined in Section 4. We recommend to avoid excessive
eye-tracking jargon, and instead communicate findings in a way that is com-
prehensible to those outside of the field.

It is also beneficial to use visual representations, such as heat maps and
gaze plots, to describe the data. They must be accompanied with proper and
complete explanations of the data that they present.

Provide replication packages is crucial to improve external validity Kitchen-
ham (2004). We refer the avid reader to these work for an in-depth discussion
and guidelines on the replication of empirical studies in software engineer-
ing (Siegmund et al., 2015; Lung et al., 2008; Kitchenham et al., 2002).

No specific standard format exists to provide replication packages for eye-
tracking studies. Previous work uses popular hosting services, such as GitHub2,
or team Web sites to offer replication packages3. We recommend that replica-
tion packages report the following information to facilitate replications:

– Description of the dataset, including: (1) raw and processed eye-tracking
data (gaze, events, and pupil dilation), (2) demographic data (age, pro-
gramming experience, gender, etc.), and (3) responses to the various ques-
tionnaires, surveys, and tasks.

2https://github.com/brains-on-code
3http://www.ptidej.net/downloads/replications/

29

– Stimuli, code snippets, and any other artifacts presented before, during, or
after the eye-tracking experiment to participants.

– Setup information, including: (1) screen layout, (2) participants’ viewing
distance, (3) font sizes and font types, and (4) screen size and resolution.

– Data analysis results and scripts, including: (1) eye-tracking metrics used
in the study, 2) types and results of the statistical analyses, along with
their scripts.

6.10 Combining Eye Tracking with Other Physiological Measures

Over the last 20 years, the software engineering research community has ben-
efited from the use of eye trackers. However, eye trackers are not without lim-
itations and, unlike neuroimaging devices, they do not provide insights into
the brain activities, only a proxy to cognitive processes, through the mind–eye
hypothesis. As a result, some researchers use eye tracking simultaneously with
electroencephalography (EEG) Fritz et al. (2014), fMRI (Peitek et al., 2018b),
and fNIRS (Fakhoury et al., 2018).

From a participants perspective, there is almost no extra effort with incor-
porating eye tracking into EEG, fMRI, or fNIRS studies. The majority of fMRI
devices come with built-in eye trackers. Also, eye trackers can be installed in
front of a monitor while participants are wearing EEG or fNIRS sensors. Only
extra minutes are required to calibrate and validate the eye tracker at the be-
ginning of such studies. Peitek et al. (2018b) showed that adding eye tracking
to fMRI studies results in more fine-grained fMRI analyses.

However, adding fMRI or fNIRS as an additional modality to eye-tracking
experiments brings many difficulties. fMRI and fNIRS rely on the participants’
hemodynamic response, which is a metabolic change (e.g., oxygen, glucose) in
neuronal blood flow to active brain regions (Buxton et al., 2004). This response
saturates over time, which imposes a stringent limitation on the amount of time
that a stimulus is shown to the participants (commonly 30 seconds). They also
require robust mathematical analyses to avoid false discovery. Finally, fMRI
and fNIRS are expensive per se and their uses are expensive as well, about
$500 to $600 per hour for a fMRI.

7 Data Analyses and Interpretation of the Results

Eye trackers typically generate a massive amount of data, so it is important
to make sure that the data used for analysis is accurate and reliable. It is
our experience that due to the lack of standardized protocols and tools, most
of the advanced analyses must be customized and implemented on a case by
case basis. This lack causes variations in the analytical approaches and make
comparisons across studies difficult.

Most eye tracking software packages do not come with advanced data anal-
ysis tools for software engineering tasks. Therefore, researchers must leverage

30

specialized tools to obtain insights into the software engineers’ cognitive pro-
cesses and intentions from their eye movement data. We strongly recommend
that researchers perform a preprocessing step to assess the quality of the data
before visualizing and analyzing statistically the data.

7.1 Data Quality Assessment

Good quality eye gaze data is essential for the validity of the research. Eye
gaze data contains noise and errors. Holmqvist et al. (2012) discussed the
magnitude and the importance of the effect of data quality on eye-tracking
study results with examples of accuracy, precision, and data loss.

Although associations, like COGAIN4, work on standardizing eye-gaze data
quality, there are no guidelines for evaluating the quality of eye-tracking data.
In the following, we provide our recommendations:

– Replay the eye gaze using the analysis tools provided with the eye tracker.
The replay can roughly show when, where, and for how long a participant
viewed different parts of the stimuli. Observing eye gaze behaviors can also
reveal parts in which no recorded data is available to be displayed on the
screen, a situation which could potentially make the dataset sparse.
Some analysis tools offer automatic evaluation of data quality, for example,
in the form of a percentage of the time eyes could be reliably tracked
during a trial. In our studies, we considered only trials with at least 70%
trackability. However, trackability depends on the length of the recordings
and other factors so a replay must be performed to verify where missing
data occurred and determine whether the loss could impact the study at
hand.
Several reasons can explain missing data. Participants may have moved and
their eyes/heads went out of the range of the eye tracker, which caused a
total data loss. Extensive head movements also may lead to decalibration,
which may result in offsets or data loss. By replaying the captured eye
movements, researchers can visually identify time frames during which data
is missing or offset to exclude these frames or correct the offsets.

– Look for offsets in the eye gaze data and apply corrections. Offsets happen
when a participant moved beyond the capability of an eye tracker to follow
or when decalibration occured. Researchers can use offset-correction algo-
rithms provided by some analysis tools or third-party tools, e.g., Taupe
(De Smet et al., 2014), to correct offsets.

7.2 Visualizations

An eye-tracking experiment generates a large amount of data. Visualizations
allow researchers to explore the temporal and spatial characteristics of the
eye-tracking data.

4http://www.cogain.org/eye-tracking/

31

Blascheck et al. (2017) presented a taxonomy of existing visualizations.
This comprehensive overview classifies visualizations based on the granular-
ity of the data (fixation-based or AOI-based) and the representation of data
(temporal, spatial, or spatio-temporal).

We now discuss visualizations that have been used by the software engi-
neering community. In addition to presenting a detailed description of these
visualizations, we compare and discuss various aspects of these techniques.

(a) Fixed diameter of the fixation circles (b) Varied diameter of the fixation circles

Fig. 6: Examples of gaze plots plotted with EyeCode. (a) uses the same size
for all fixation circles, (b) takes fixation duration into account.

Gaze Plots. Gaze plots provide a static view of the eye-gaze data and show the
time sequence of looking using the locations, orders, and duration of fixations
on stimuli. Each fixation is represented as a circle. Some gaze plots use the
same size for all fixation circles. Others take fixation duration into account,
correlating the circle’s radius with the fixation duration. The longer the fixa-
tion, the larger the circle as shown using EyeCode5 in Figure 6). As shown in
Figure 7, Sharif and Maletic (2010b) used gaze plots to compare experts and
novices performing design pattern comprehension tasks.

Heat Maps. A heat map is a color spectrum that represents the intensity of
a measure, for example, fixations. Heat maps are the most common visualiza-
tions in eye tracking studies (Kitchenham, 2004). They show the distribution
and focus of visual attention over the stimuli. However, in contrast to gaze
plots, they do not provide any information about the order of the fixations.

A heat map is usually superimposed on top of a stimulus to highlight the
areas at which participants looked, as illustrated by Figure 9. The colors red,
orange, green, and blue indicate the fixation counts or duration from highest
to lowest; thus, the longer the observation, the warmer (redder) the color.

5https://github.com/synesthesiam/eyecode

32

(a) Expert (b) Novice

Fig. 7: Gaze plots on portion of a stimulus comparing an expert and novice
for Singleton pattern comprehension task (Sharif and Maletic, 2010b).

(a) Multi-cluster layout (b) Orthogonal layout

Fig. 8: The heat map of a participant working with (a) multi-cluster and (b)
orthogonal layouts (Sharif and Maletic, 2010b).

A heat map can be generated based on fixation counts or fixation duration.
When using fixation counts, as illustrated by Figure 8, it treats all fixation
duration equally, even though fixation duration play an important role in un-
derstanding eye tracking data (Henderson and Pierce, 2008). Bojko (2009)
presents various types of attention maps while providing guidelines on the
usage of heat maps to avoid common misuses and pitfalls.

33

(a) Male vs. female participants (b) Attention distribution of various
code areas

Fig. 9: (a) A heat map of (Left) a female participant and (Right) a male
participant in a study asking each to recall the name of identifiers (Sharafi
et al., 2012). (b) Areas of source code that attract higher interests (Busjahn
et al., 2011).

Sharif and Maletic (2010b) used heat maps to compare multi-cluster vs.
orthogonal layout for design pattern comprehension, as shown in Figure 8.
Busjahn et al. (2011) and Ali et al. (2015) used heat maps to illustrate areas
in the source code that attract more visual attention, as shown in Figure 9.
Sharafi et al. (2012) used heat maps to compare the different viewing strategies
deployed by a small number of male and female developers while recalling
the names of identifiers. Jbara and Feitelson (2017) compared the attention
distribution of average participant for regular code (code with repetitions of
the same basic pattern) vs. irregular one, using heat-maps.

Color Coded Attention Allocation Map. A color-coded attention-allocation
map is generated for a textual stimulus based on either the fixation counts
or duration. It assigns a color to each word separately from a color spectrum
between light green (lowest attention level) to light red (highest attention
level) (Busjahn et al., 2011), as illustrated in Figure 10. Busjahn et al. (2011)
used color-coded attention-allocation maps to identify and study the different
parts of source code that attracts different levels of attention (based on the
fixation numbers). Ali et al. (2015) used similar maps to identify the parts of
texts and source code used in traceability tasks.

34

Fig. 10: Color-coded attention allocation map based on the number of fixations
per word (Busjahn et al., 2011).

Radial Transition Graph. A radial transition graph is a circular heat map
(Blascheck et al., 2017). AOIs are shown on a circle in which the size of each
circle segment specifies the total fixation duration within an AOI. The circles
are color-coded based on the fixation numbers inside the AOIs while arrows
indicate the transitions between AOIs. The thickness of the arrows represents
the numbers of transitions between AOIs.

Blascheck and Sharif (2019) used radial transition graphs to compare par-
ticipants’ viewing strategies while reading natural text and source code. Pe-
terson et al. (2019) used radial transition graphs to compare participants’ line
reading behavior between novice and expert developers. As shown in Figure
11, a novice developer, P16, goes back and forth between lines that are rela-
tively close by. In contrast, an expert developer, P05, transitions between lines
of code that are further away.

All these visualizations (and the many others that exist in and are de-
veloped by various research communities) have strengths and weaknesses for
eye-tracking data. Various factors impact the choice of a visualization.

Generally, independent of a particular task, researchers can use visualiza-
tions as a starting point for analyzing eye-tracking data and later as illustra-
tions (Pernice and Nielsen, 2009). They can help identify patterns, trends, and
outliers in eye-tracking data. However, they must also use statistical analyses
to support their conclusions about the participants’ eye gaze data.

35

Fig. 11: Left: Radial transition graphs for P05, an expert, and P16, a novice.
Right: SignCheckerClassMR, which returns the sign of the input integer (Pe-
terson et al., 2019).

Specifically, the task at hand is a key factor to identify which visualiza-
tions work best. Gaze plots are useful for scan paths comparisons to identify
and compare some participants’ viewing strategies. Heat maps work best for
comparing some participants’ attention distributions and identifying whether
the fixated areas either are difficult to process or contain relevant content.

However, heat maps and gaze plots must be used with care (Holmqvist
et al., 2011). Pernice and Nielsen (2009) showed that different factors, including
tasks, motivation, familiarity with the stimuli, affect how heat maps and gaze
plots are drawn. Thus, researchers must consider these mitigating factors when
comparing different heat maps and gaze plots to draw conclusions.

We recommend using a combination of visualizations to analyze the eye-
tracking data. For example, researchers can use heat maps and gaze together
to identify participants’ viewing trends through the distribution of visual at-
tention along with the visual paths. Then, further statistical analyses of eye-
tracking metrics would support or refute these findings.

Classic attention maps, such as heat map and gaze plot, only take into
account the spatial aspect of the eye gaze data and ignore its temporal distri-
bution. Thus, they have been mainly used by the research community for static
stimuli, e.g., images. However, as eye-tracking research advances, reseachers
proposed new visualizations for dynamic stimuli, e.g., videos, by adjusting
fixation data based on a moving object (Blascheck et al., 2017).

The number of AOI-based visualizations is limited, especially if researchers
are interested in spatio-temporal analyses. Radial transition graphs became
popular recently and are being adopted by the research community. However,
they only support small numbers of AOIs. In general, scalability is the main

36

limitation of AOI-based visualizations and there is a need for new visualiza-
tions to overcome this limitation (Blascheck et al., 2017). Achieving scalability
in eye tracking visualization on large systems is a non-trivial problem which
visualization researchers are working on (Blascheck et al., 2017). Various types
of filters and focus plus context approaches are needed.

7.3 Statistical Analyses

Table 6: Summary of the statistical tests used for eye-tracking data analysis.
(B) and (W) are for between- and within-subjects designs, respectively. The
distribution (Dist.) of the data is either normal (N) or non-normal (NN).

Purpose Dist.
Factor
(Level)

Statistical Test

To confirm a
theory

N

1 (2) Student’s t-test (B)
1 (2) Paired samples t-test (B)
1 (>2) F-statistics (One-way ANOVA) (W)
1 (>2) One-way repeated-measure ANOVA (W)

NN

1 (2) Mann-Whitney U (B)
1 (2) KruskalWallis H (B)
1 (>2) Wilcoxon signed-rank (W)
1 (>2) Friedman test (W)

T
o

q
u

a
n
ti

fy
a
n

a
ss

o
c
ia

ti
o
n

Measure of
association

N 1 (2) Spearman’s correlation coefficient
NN 1 (2) χ2 test

Equation of
association

N

>=1
(>=2)

Linear models (W)
Factorial ANOVA (B)

>=1
(>=2)

Linear mixed model (W)
Factorial repeated-measure ANOVA (W)

NN

>=1
(>=2)

Aligned Rank Test (ART) (B)

>=1
(>=2)

ART or Generalized linear mixed model (W)

This section discusses statistical analyses applicable to eye-tracking data
and how to choose appropriate ones.

The first step in analyzing eye-tracking data is to explore the data and
to search for any relationship between two or more variables. Box plots, his-
tograms, and scatter plots are statistical graphs that researchers can use to
analyze eye-tracking data at first. Although there were not developed for eye-
tracking data, they provide valuable, visual information about such data.

A box plot shows the distribution of some data using their minimum, first
quartile, median, third quartile, and maximum. It can be used by researchers to
identify outliers and compare distributions. Sharafi et al. (2012) provided box
plots for three effort metrics: fixation counts, fixation rates, and fixation counts
on relevant and irrelevant AOIs to compare male and female participants.

A scatter plot displays the correlation between two set of data. It also shows
a line of best fit (regression line) highlighting the spread or dispersion of the

37

data (closeness to the line). Sharafi et al. (2012) used scatter plots to visualize
efficiency and accuracy trade offs between male and female participants.

After qualitatively examining the data using some statistical plots, re-
searchers must perform quantitative analyses to confirm their theory and–or
to quantify associations between sets of data. They must consider different
factors when choosing statistical tests, including the type and distribution of
the data, the purpose of an experiment, and the experimental design (Pfleeger,
1995). Table 6 presents a set of statistical tests and the factors impacting their
usages, e.g., distribution of the data.

To find a valid statistical test, researchers must consider the normality of
the distribution of the data. Researchers can ascertain the normality of some
data using various statistical tests, including the Shapiro–Wilk test or Pear-
son’s χ2 test. Wohlin et al. (2012) explains in great detail, in the context of
software engineering research, how to study data distributions. We recommend
to adhere to their guidelines. If the data is normally distributed, then paramet-
ric tests can be used, which are more “powerful” than their non-parametric
counterparts. Non-parametric tests are usually appropriate only with small
sample sizes (Kitchenham et al., 2002), which are common in eye-tracking
studies (Sharafi et al., 2015b).

The type of experimental design is also a factor in choosing a valid test.
In between-subjects (or between-groups) study designs, different participants
are being exposed to each levels of some treatments. In within-subjects (or
repeated-measures) study designs, the same participants test all the treat-
ments. For example, Sharif and Maletic (2010b) investigated the effective-
ness of three different UML layout techniques on comprehension in a within-
subjects design in which all participants worked with all three layouts.

Then, researchers must use the tests that help them with their studies:
either to confirm a theory or to quantify an association between two data sets.

To Confirm a Theory. The goal of an experiment may be to validate the truth
of a theory, e.g., to investigate the impact of a technique on participants’
effectiveness. It is usually formally expressed using a set of hypotheses and
researchers can use a test to verify their hypotheses and confirm their theory:

1. The data is normally distributed. If the comparison is between two treat-
ments, the Student’s t-test is appropriate (Wohlin et al., 2012). For exam-
ple, Bednarik (2012) compared experts and novices looking for bugs. Their
null hypothesis was the lack of statistically significant difference between
novices and experts regarding the number of bugs found. They used the
t-test and concluded that experts found more bugs than novices.
If there are more than two treatments, then ANalysis Of VAriance (ANOVA)
is appropriate to determine whether the means of three or more groups are
different. ANOVA uses a F-test to assess the equality of means. An F-test
returns a F-statistics, its related degrees of freedom, and its p-value, used
to reject the null hypothesis. For example, Stein and Brennan (2004) di-
vided their participants into two groups, recorded the eye gaze of those

38

in the first group, and displayed the records to those in the other group.
They analyzed the impact of watching other participants’ eye gazes on the
performance of the second group using ANOVA. They concluded that a
participant’s eye gaze provides useful cues to other participants and im-
proves their performance. (Linear models are increasingly used as a robust
alternative to ANOVA.)

2. The data is not normally distributed. If the comparison is between two
treatments, the Mann-Whitney U or Wilcoxon signed-rank tests are ap-
propriate. Sharafi et al. (2012) compared male and female developers’ ac-
curacy and efficiency in time when performing a program comprehension
task. They applied the Wilcoxon test separately on accuracy and time data
and reported that there was no statistically significant difference between
male and female developers.
If there are more than two treatments, then the Kruskal–Wallis test (One-
Way ANOVA) (Wohlin et al., 2012) can tell whether the data originated
from a same distribution. For example, Ali et al. (2015) computed the sum
of the fixation duration that participants applied to specific source-code
entities (SCEs), e.g., class names. They used Kruskal–Wallis test to assess
whether participants had equal preferences for the different SCEs.

To Quantify Associations between Two Sets of Data. Researchers can use a
correlation analysis to find and quantify the association between two sets of
data, for example to analyze the impact of a factor X on participants’ charac-
teristics Y. A correlation analysis is obtained either by generating a measure
of association or by providing an equation that describes the association. Lin-
ear regression can also be used to understand the type of the association.
Cagiltay et al. (2013) used Pearson correlation coefficients to investigate the
relationship between defect difficulty levels and fixation duration. First, they
computed the defect difficulty levels for all participants based on the time
that they took to find the defects and the order in which they found the de-
fects. Second, they assessed the normality of the data. Finally, they applied
Pearson’s correlation coefficients to identify a significant correlation between
the two variables: a longer mean fixation duration is associated with a higher
defect difficulty level.

7.4 Tools

Various tools are available for analysing eye tracking data. Commercial eye
trackers suppliers sells, e.g., FaceLAB and Tobii are selling their own data anal-
ysis tools. In addition, there are free-of-charge tools that offer some capabilities
required and–or work with a subset of commercial eye trackers. Farnsworth
(2019b) also listed ten eye-tracking software tools, along with their functions
and accessibility. The majority of these tools support testing of stimuli through
non-commercial Webcam-based eye trackers.

39

Based on our previous experience with commercial, high-precision eye track-
ers, we feature a non-exhaustive list of six open-source data analysis tools.
These tools work well with the commercial eye trackers that have been fre-
quently used by software engineering researchers. Table 7 captures the essen-
tials of the eye-tracking analysis tools discussed below.

Table 7: A rundown of capabilities of eye tracking analysis tools. = Provides
capability, G# = Partially provided capability, # = Does not provide capability.

Capabilities Tools

O
g
a
m

a
T
a
u
p
e

iT
ra

ce
E

y
eC

o
d
e

P
a
n
d
a
sE

y
e

P
y
G

a
ze

AOI Analysis
Plots
Metrics
ML Analysis
Realtime Recording
Support Scrolling
Programming Required
Ongoing Support
Hardware Compatibility G# G#
Multi-input Integration
Open source

Ogama6 is an open-source software, published under GPL license that al-
lows simultaneous recording and analyzing eye-gaze and mouse-tracking data.
It supports filtering of eye gaze and mouse data, creating attention maps, defin-
ing and modifying AOIs, calculation of saliency and Levenshtein distance. In
addition, the replay of the recording is available while recording is also possible
with various commercial and open-source eye trackers.

Taupe7 stands for Thoroughly Analyzing the Understanding of Programs
through Eyesight. Published under GPL license, It was introduced by Guéhéneuc
(2006b) and extended by De Smet et al. (2014) as an open-source software sys-
tem designed for analyzing eye-tracking data. Taupe supports the data coming
from various commercial eye trackers, including FaceLAB and Tobii eye track-
ers. A set of well-known software engineering practices, such as design patterns
and a plug-in architecture, were used to make Taupe extensible by developers.

After importing eye-movement data, Taupe can calculate various fixation
statistics including fixation count, fixation count per AOI, fixation duration,
normalized fixation count per AOI, fixation rate, ROAF, and spatial density.
Also, Taupe supports calculating saccade statistics (e.g., Transition Density),
convex hull area, scan paths and their comparisons, accuracy, and duration.

6http://www.ogama.net/
7http://www.ptidej.net/tools/programcomprehension/

40

Moreover, Taupe comes with an AOI creation tool allowing users to draw
polygons around a set of fixations superimposed on top of a stimulus. Each
AOI has a unique ID used by Taupe to calculate AOI-based metrics.

iTrace8 is an eye-tracking infrastructure designed for experiments on large
software artifacts, including source code, bug reports, and requirement docu-
ments (Guarnera et al., 2018; Shaffer et al., 2015). Current eye-tracking sys-
tems only support static stimuli fixed in place, while iTrace allows participants
to interact with source code and other artifacts naturally, supporting scrolling
in and switching between files. It comes with three plugins to support Visual
Studio, Eclipse, and Google Chrome, which are open source under the GPL
license.

Two main components9 of iTrace are Gaze2Src and iTraceVis. Gaze2Src
processes iTrace gaze data offline after the recording. This post-processing
tool supports three fixation algorithms, including the basic fixations, based
on a method proposed by Olsson (2007), velocity-based fixations (I-VT), and
dispersion-based fixations (I-DT). All these fixation algorithms can be ad-
justed based on the tasks and the stimuli. Gaze2Src maps fixations to syn-
tactic tokens of the source code using srcML10. Currently, Gaze2Src supports
programs written in C, C++, C#, and Java. A submodule of iTrace named
iTrace-Toolkit plans to support high-speed trackers along with support for
code editing (which is a non-trivial feature to add).

iTraceVis (Clark and Sharif, 2017) supports the visualization of large-scale
eye-tracking data in the presence of scrolling and switching between files. It
currently supports four types of visualizations: heat maps, gaze skylines, static
gaze-maps, and dynamic gaze-maps.

EyeCode11 (Hansen, 2014) is a Python library for analyzing and visualizing
eye tracking data. It is built on top of the of the pandas statistical computing
library. It contains specialized functions for processing eye gaze data, creating
AOIs, calculating various fixation and saccade metrics (including those based
on AOIs), and displaying the data and metrics. The plugin is open source
under the GPL license and it is freely available.

PandasEye12 (Vrzakova, 2019) is a collection of Python libraries for ad-
vanced analysis of raw eye tracking data for the purpose of machine learning
experiments. The tool has been previously employed for intention detection
and multimodal affect recognition, and includes all primary building blocks of
a machine learning pipeline for eye tracking data.

PyGaze13 (Dalmaijer et al., 2014) is an open source package under the
GPL license for creating eye-tracking experiments in Python syntax. It sup-
ports both visual and auditory stimulus presentation. It collects data from

8http://www.i-trace.org/
9http://www.i-trace.org/features/

10http://www.srcml.org/#home
11http://github.com/synesthesiam/eyecode
12http://github.com/hanav/PandasEye
13http://www.pygaze.org/

41

various inputs including keyboard, mouse, joystick, and etc. It works with
many commercial eye trackers (EyeLink, SMI, and Tobii systems).

8 Conclusions

Eye tracking provides invaluable insights in experimental studies in software
engineering by collecting participants’ eye-gaze data on visual stimuli. They
provide insights to researchers that are not possible to obtain with ques-
tionnaires or surveys. However, they are not without shortcomings and they
present practical and ethical difficulties.

Based on our collective experience using eye trackers and a previous, sys-
tematic literature-review of eye-tracking studies (Sharafi et al., 2015b), we pre-
sented the history and technological evolution of eye trackers. We discussed
why, when, and how it is appropriate to use eye trackers in software engineer-
ing research. We also provided practical suggestions on conducting eye-tracking
studies. With this paper, we help software engineering researchers plan, design,
and conduct experimental studies with eye trackers.

Eye trackers now represent a middle ground for studies on human factors
in software development activities for several reasons. They are a valuable tool
that can provide additional insights into participants’ cognitive processes than
surveys or questionnaires can. They are also cheaper, less invasive, and less
complex than fMRI.

First, eye trackers are now inexpensive and convenient to use. Nowadays,
webcam-based eye trackers are a good compromise between price and data
quality. Most eye trackers come with their own analysis tools, which are usually
well-supported. Third-party tools are also available.

Second, all models of eye trackers provide invaluable data to illustrate
participants’ cognitive processes, following the mind-eye hypothesis. Such data
can not be collected easily through surveys, or at cheaper cost with fMRI.

Third, eye trackers fit in well to software engineering research because
almost all software engineering activities, from requirements analysis to per-
formance profiling, make use of visually-oriented artifacts, e.g., deployment
diagrams or debugging tools.

Fourth, eye trackers allow systematic studies of software activities and
artifacts while participants perform representative tasks, albeit in controlled
environments. These studies could improve both the quality of the artifacts
and the quality of the developers’ interactions with these artifacts.

Fifth, however, eye trackers must be carefully used for their data to be
correct and relevant. They also provide a wealth of data that must be carefully
collected, stored, and analysed to provide valid conclusions.

Following this paper, we suggest four main directions of future work.

1. More eye-tracking studies should be performed in ecologically valid setups
to bring in-depth understanding of various software maintenance activities

42

and to help make developers more effective. These studies should be per-
formed in a variety of settings and with different sets of participants to
reduce validity threats.

2. More research on the uses of eye trackers should be performed to improve
the tools that support software developers. In addition to the availability
of cheaper and more precise eye trackers for research, eye trackers could
be embedded directly into the software developers’ workstations to provide
timely interventions based on their visual attention.

3. More research should incorporate advances in eye trackers to refine the data
collected by and analyses performed with eye trackers to further understand
the participants’ cognitive processes, using metrics, such as pupil dilatation
or virtual reality glasses.

4. Suitable tools should be developed to ease the simultaneous recording and
analysis of eye tracking and neuroimaging (i.e., fMRI and fNIRS) data.
This simultaneous measurement of software engineering tasks is challeng-
ing, but promising (Peitek et al., 2018b). The high cost, restrictive environ-
ment, and high rate of data loss due to participant motion of fMRI impose
limits on the practicality for a broad spectrum of use cases.

Acknowledgements The authors would like to thank the anonymous reviewers for their
insightful comments and suggestions. This work has been partly funded by the US NSF under
Grant Numbers CCF 18-55756 and CCF 15-53573, as well as the NSERC Discovery Grant
program and the Canada Research Chair in Software Patterns and Patterns of Software.

References

Abid NJ, Maletic JI, Sharif B (2019a) Using developer eye movements to exter-
nalize the mental model used in code summarization tasks. In: Proceedings
of the 11th ACM Symposium on Eye Tracking Research & Applications,
ACM, New York, NY, USA, ETRA ’19, pp 13:1–13:9, DOI 10.1145/3314111.
3319834, URL http://doi.acm.org/10.1145/3314111.3319834

Abid NJ, Sharif B, Dragan N, Alrasheed H, Maletic JI (2019b) Developer read-
ing behavior while summarizing java methods : Size and context matters. In:
Proceedings of the 41th International Conference on Software Engineering,
ACM, New York, NY, USA, ICSE 2019, p To Appear

Ali N, Sharafi Z, Guéhéneuc YG, Antoniol G (2015) An empirical study on the
importance of source code entities for requirements traceability. Empirical
Software Engineering 20(2):442–478

Alkan S, Cagiltay K (2007) Studying computer game learning experience
through eye tracking. British Journal of Educational Technology 38(3):538–
542

Armaly A, Rodeghero P, McMillan C (2018) Audiohighlight: Code skimming
for blind programmers. In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp 206–216

Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential pattern mining us-
ing a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD

43

International Conference on Knowledge Discovery and Data Mining, ACM,
New York, NY, USA, KDD ’02, pp 429–435, DOI 10.1145/775047.775109,
URL http://doi.acm.org/10.1145/775047.775109

Barik T, Smith J, Lubick K, Holmes E, Feng J, Murphy-Hill E, Parnin C (2017)
Do developers read compiler error messages? In: Proceedings of the 39th
International Conference on Software Engineering, IEEE Press, Piscataway,
NJ, USA, ICSE ’17, pp 575–585, DOI 10.1109/ICSE.2017.59, URL https:

//doi.org/10.1109/ICSE.2017.59

Beatty J (1982) Task-evoked pupillary responses, processing load, and the
structure of processing resources. Psychological bulletin 91(2):276

Bednarik R (2007) Methods to analyze visual attention strategies: Applications
in the studies of programming. University of Joensuu

Bednarik R (2012) Expertise-dependent visual attention strategies develop
over time during debugging with multiple code representations. Interna-
tional Journal of Human-Computer Studies 70(2):143–155, DOI 10.1016/j.
ijhcs.2011.09.003

Bednarik R, Tukiainen M (2005) Effects of display blurring on the behavior
of novices and experts during program debugging. In: CHI ’05 Extended
Abstracts on Human Factors in Computing Systems, ACM, New York,
NY, USA, CHI EA ’05, pp 1204–1207, DOI 10.1145/1056808.1056877, URL
http://doi.acm.org/10.1145/1056808.1056877

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for character-
izing program comprehension processes. In: Proceedings of the 2006 Sym-
posium on Eye Tracking Research & Applications, ACM, New York, NY,
USA, ETRA ’06, pp 125–132

Bednarik R, Eivazi S, Hradis M (2012) Gaze and conversational engagement
in multiparty video conversation: an annotation scheme and classification of
high and low levels of engagement. In: Proceedings of the 4th workshop on
eye gaze in intelligent human machine interaction, ACM, p 10

Begel A, Vrzakova H (2018) Eye movements in code review. In: Proceedings of
the Workshop on Eye Movements in Programming, ACM, New York, NY,
USA, EMIP ’18, pp 5:1–5:5, DOI 10.1145/3216723.3216727, URL http:

//doi.acm.org/10.1145/3216723.3216727

Bergstrom JR, Schall A (2014) Eye tracking in user experience design. Elsevier
Binkley D, Davis M, Lawrie D, Maletic JI, Morrell C, Sharif B (2013) The

impact of identifier style on effort and comprehension. Empirical Software
Engineering 18(2):219–276, DOI 10.1007/s10664-012-9201-4

Blascheck T, Sharif B (2019) Visually analyzing eye movements on natural
language texts and source code snippets. In: ETRA 2019-ACM Symposium
on Eye Tracking Research & Applications

Blascheck T, Kurzhals K, Raschke M, Burch M, Weiskopf D, Ertl T (2017) Vi-
sualization of eye tracking data: A taxonomy and survey. Computer Graph-
ics Forum 36(8):260–284

Bojko A (2005) Eye tracking in user experience testing: How to make the most
of it. In: Proceedings of the UPA 2005 Conference

44

Bojko AA (2009) Informative or misleading? heatmaps deconstructed. In: Pro-
ceedings of the 13th International Conference on Human-Computer Inter-
action. Part I: New Trends, Springer-Verlag, Berlin, Heidelberg, pp 30–39,
DOI 10.1007/978-3-642-02574-7 4, URL http://dx.doi.org.proxy.lib.

umich.edu/10.1007/978-3-642-02574-7_4

Buse RPL, Sadowski C, Weimer W (2011) Benefits and barriers of user eval-
uation in software engineering research. In: Object-Oriented Programming,
Systems, Languages and Applications, pp 643–656

Busjahn T, Schulte C, Busjahn A (2011) Analysis of code reading to gain more
insight in program comprehension. In: Proceedings of the 11th Koli Calling
International Conference on Computing Education Research, ACM, New
York, NY, USA, Koli Calling ’11, pp 1–9, DOI 10.1145/2094131.2094133

Busjahn T, Schulte C, Sharif B, Simon, Begel A, Hansen M, Bednarik R,
Orlov P, Ihantola P, Shchekotova G, Antropova M (2014) Eye tracking in
computing education. In: Proceedings of the Tenth Annual Conference on
International Computing Education Research, ACM, New York, NY, USA,
ICER ’14, pp 3–10, DOI 10.1145/2632320.2632344, URL http://doi.acm.

org/10.1145/2632320.2632344

Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B,
Tamm S (2015) Eye movements in code reading: Relaxing the linear order.
In: Proceedings of 22th International Conference on Program Comprehen-
sion, ICPC ’15

Buxton RB, Uludağ K, Dubowitz DJ, Liu TT (2004) Modeling the hemody-
namic response to brain activation. Neuroimage 23:S220–S233

Cagiltay NE, Tokdemir G, Kilic O, Topalli D (2013) Performing and analyz-
ing non-formal inspections of entity relationship diagram (erd). Journal of
Systems and Software 86(8):2184–2195, DOI 10.1016/j.jss.2013.03.106

Cepeda G, Guéhéneuc YG (2010) An empirical study on the efficiency of
different design pattern representations in uml class diagrams. Empirical
Software Engineering 15(5):493–522, DOI 10.1007/s10664-009-9125-9

Clark B, Sharif B (2017) itracevis: Visualizing eye movement data within
Eclipse. In: Working Conference on Software Visualization (VISSOFT),
IEEE, pp 22–32

Cristino F, Mathot S, Theeuwes J, Gilchrist ID (2010) Scanmatch: A novel
method for comparing fixation sequences. Behaviour Research Method
42:692–700

Crosby ME, Stelovsky J (1990) How do we read algorithms? a case study.
Computer 23(1):24–35

Crosby ME, Scholtz J, Wiedenbeck S (2002) The roles beacons play in compre-
hension for novice and expert programmers. In: Proceeding of Programmers,
14th Workshop of the Psychology of Programming Interest Group, Brunel
University, pp 18–21

Dalmaijer ES, Mathôt S, Van der Stigchel S (2014) Pygaze: An open-source,
cross-platform toolbox for minimal-effort programming of eyetracking ex-
periments. Behavior research methods 46(4):913–921

45

De Smet B, Lempereur L, Sharafi Z, Guéhéneuc YG, Antoniol G, Habra
N (2014) Taupe: Visualizing and analyzing eye-tracking data. Science of
Computer Programming 79:260–278, DOI 10.1016/j.scico.2012.01.004, URL
http://dx.doi.org/10.1016/j.scico.2012.01.004

Divjak M, Bischof H (2008) Real-time video-based eye blink analysis for detec-
tion of low blink-rate during computer use. In: First International Workshop
on Tracking Humans for the Evaluation of their Motion in Image Sequences
(THEMIS 2008), pp 99–107

Duchowski AT (2002) A breadth-first survey of eye-tracking applications. Be-
havior Research Methods, Instruments, & Computers 34(4):455–470

Duchowski AT (2007) Eye tracking methodology: Theory and practice.
Springer-Verlag New York Inc

Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source
code lexicon and readability on developers’ cognitive load. In: Proceedings
of the 26th Conference on Program Comprehension, ACM, New York, NY,
USA, ICPC ’18, pp 286–296, DOI 10.1145/3196321.3196347, URL http:

//doi.acm.org/10.1145/3196321.3196347

Farnsworth B (2019a) 10 Free Eye Tracking Software Programs [Pros and
Cons]. https://imotions.com/blog/free-eye-tracking-software/,
[Online; accessed 30-December-2019]

Farnsworth B (2019b) 10 Free Eye Tracking Software Programs [Pros and
Cons]. https://imotions.com/blog/free-eye-tracking-software/,
[Online; accessed 30-December-2019]

Fritz T, Begel A, Müller SC, Yigit-Elliott S, Züger M (2014) Using psycho-
physiological measures to assess task difficulty in software development. In:
Proceedings of the 36th International Conference on Software Engineering,
ACM, New York, NY, USA, ICSE ’14, pp 402–413

Godfroid A (2019) Eye tracking in second language acquisition and bilingual-
ism: A research synthesis and methodological guide. Routledge

Goldberg JH, Helfman JI (2010) Comparing information graphics: A criti-
cal look at eye tracking. In: Proceedings of the 3rd BELIV’10 Workshop:
BEyond Time and Errors: Novel evaLuation Methods for Information Visu-
alization, ACM, New York, NY, USA, BELIV ’10, pp 71–78, DOI 10.1145/
2110192.2110203, URL http://doi.acm.org/10.1145/2110192.2110203

Goldberg JH, Kotval XP (1999) Computer interface evaluation using eye
movements: methods and constructs. International Journal of Industrial Er-
gonomics 24(6):631–645

Goldberg JH, Stimson MJ, Lewenstein M, Scott N, Wichansky AM (2002)
Eye tracking in web search tasks: Design implications. In: Proceedings of
the 2002 Symposium on Eye Tracking Research & Applications, ACM, New
York, NY, USA, ETRA ’02, pp 51–58, DOI 10.1145/507072.507082, URL
http://doi.acm.org/10.1145/507072.507082

Grace R, Byrne VE, Bierman DM, Legrand JM, Gricourt D, Davis RK,
Staszewski JJ, Carnahan B (1998) A drowsy driver detection system for
heavy vehicles. In: Digital Avionics Systems Conference, 1998. Proceedings.,
17th DASC. The AIAA/IEEE/SAE, IEEE, vol 2, pp I36–1

46

Guarnera DT, Bryant CA, Mishra A, Maletic JI, Sharif B (2018) itrace: eye
tracking infrastructure for development environments. In: Proceedings of the
2018 ACM Symposium on Eye Tracking Research & Applications, ACM, p
105

Guéhéneuc YG (2006a) Taupe: Towards understanding program comprehen-
sion. In: Proceedings of the 2006 Conference of the Center for Advanced
Studies on Collaborative Research, IBM Corp., Riverton, NJ, USA, CAS-
CON ’06, DOI 10.1145/1188966.1188968, URL http://dx.doi.org/10.

1145/1188966.1188968

Guéhéneuc YG (2006b) Taupe: Towards understanding program comprehen-
sion. In: Proceedings of the 2006 Conference of the Center for Advanced
Studies on Collaborative Research, IBM Corp., Riverton, NJ, USA, CAS-
CON ’06

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated
text summarization techniques for summarizing source code. In: 2010 17th
Working Conference on Reverse Engineering, IEEE, pp 35–44

Haji-Abolhassani A, Clark JJ (2014) An inverse yarbus process: Predicting
observers task from eye movement patterns. Vision research 103:127–142

Hansen DW, Ji Q (2009) In the eye of the beholder: A survey of models for eyes
and gaze. IEEE transactions on pattern analysis and machine intelligence
32(3):478–500

Hansen M (2014) eyecode: An eye-tracking experimental framework for pro-
gram comprehension. PhD thesis, School of Informatics and Computing,
2719 E. 10th Street Bloomington, IN 47408 USA

Hartridge H, Thomson L (1948) Methods of investigating eye movements. The
British journal of ophthalmology 32(9):581

Hejmady P, Narayanan NH (2012) Visual attention patterns during program
debugging with an IDE. In: Proceedings of the 2012 Symposium on Eye
Tracking Research & Applications, ACM, New York, NY, USA, ETRA ’12,
pp 197–200, DOI 10.1145/2168556.2168592, URL http://doi.acm.org/

10.1145/2168556.2168592

Henderson JM, Pierce GL (2008) Eye movements during scene viewing: Evi-
dence for mixed control of fixation durations. Psychonomic Bulletin & Re-
view 15(3):566–573

Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, Van de Wei-
jer J (2011) Eye tracking: A comprehensive guide to methods and measures.
OUP Oxford

Holmqvist K, Nyström M, Mulvey F (2012) Eye tracker data quality: what it
is and how to measure it. In: Proceedings of the symposium on eye tracking
research and applications, ACM, pp 45–52

Huey EB (1908) The psychology and pedagogy of reading. The Macmillan
Company

Jacob RJ, Karn KS (2003) Eye tracking in human-computer interaction and
usability research: Ready to deliver the promises. Mind 2(3):4

Jbara A, Feitelson DG (2017) How programmers read regular code: a
controlled experiment using eye tracking. Empirical software engineering

47

22(3):1440–1477
Jeanmart S, Guéhéneuc YG, Sahraoui HA, Habra N (2009) Impact of the

visitor pattern on program comprehension and maintenance. In: Proceedings
of 3rd International Symposium on Empirical Software Engineering and
Measurement, pp 69–78

Just MA, Carpenter PA (1980) A theory of reading: from eye fixations to
comprehension. Psychological review 87(4):329

Karn KS, Ellis S, Juliano C (1999) The hunt for usability: tracking eye move-
ments. In: CHI’99 extended abstracts on Human factors in computing sys-
tems, ACM, pp 173–173

Kitchenham BA (2004) Procedures for undertaking systematic reviews. Tech.
rep., Joint Technical Report, Computer Science Department, Keele Univer-
sity (TR/SE- 0401) and National ICT Australia Ltd

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam
KE, Rosenberg J (2002) Preliminary guidelines for empirical research in
software engineering. IEEE Trans Softw Eng 28(8):721–734, DOI 10.1109/
TSE.2002.1027796

Ko AJ, Latoza TD, Burnett MM (2015) A practical guide to controlled
experiments of software engineering tools with human participants. Em-
pirical Softw Engg 20(1):110–141, DOI 10.1007/s10664-013-9279-3, URL
http://dx.doi.org/10.1007/s10664-013-9279-3

Lee S, Hooshyar D, Ji H, Nam K, Lim H (2018) Mining biometric data
to predict programmer expertise and task difficulty. Cluster Computing
21(1):1097–1107

Levenshtein V (1966) Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals. Soviet Physics Doklady 10:707

Lung J, Aranda J, Easterbrook SM, Wilson GV (2008) On the difficulty of
replicating human subjects studies in software engineering. In: Proceedings
of the 30th international conference on Software engineering, ACM, pp 191–
200

Mackworth NH, Thomas EL (1962) Head-mounted eye-marker camera. JOSA
52(6):713–716

McChesney I, Bond R (2019) Eye tracking analysis of computer program com-
prehension in programmers with dyslexia. Empirical Softw Engg 24(3):1109–
1154, DOI 10.1007/s10664-018-9649-y, URL https://doi.org/10.1007/

s10664-018-9649-y

Murphy GC, Kersten M, Findlater L (2006) How are java software developers
using the eclipse ide? IEEE Software 23(4):76–83, DOI 10.1109/MS.2006.
105, URL http://dx.doi.org/10.1109/MS.2006.105

Obaidellah U, Al Haek M, Cheng PCH (2018) A survey on the usage of
eye-tracking in computer programming. ACM Comput Surv 51(1):5:1–5:58,
DOI 10.1145/3145904, URL http://doi.acm.org/10.1145/3145904

Olsson P (2007) Real-time and offline filters for eye tracking
Orlov PA, Bednarik R (2017) The role of extrafoveal vision in source code

comprehension. Perception 46(5):541–565

48

Peitek N, Siegmund J, Apel S, Kstner C, Parnin C, Bethmann A, Leich T,
Saake G, Brechmann A (2018a) A look into programmers’ heads. IEEE
Transactions on Software Engineering pp 1–1

Peitek N, Siegmund J, Parnin C, Apel S, Hofmeister J, Brechmann A (2018b)
Simultaneous Measurement of Program Comprehension with fMRI and Eye
Tracking: A Case Study. In: Symposium on Empirical Software Engineering
and Measurement, to appear.

Pernice K, Nielsen J (2009) Eyetracking methodology: How to conduct and
evaluate usability studies using eyetracking. Nielsen Norman Group Tech-
nical Report

Peterson C, Saddler J, Blascheck T, Sharif B (2019) Visually analyzing stu-
dents’ gaze on c++ code snippets. In: EMIP 2019-6th International Work-
shop on Eye Movements in Programming

Petrusel R, Mendling J (2012) Eye-tracking the factors of process model com-
prehension tasks. In: Proceedings of the Conference on the Advanced Infor-
mation Systems Engineering, Springer, CAiSE ’13, pp 224–239

Pfleeger SL (1995) Experimental design and analysis in software engineering,
part 5: Analyzing the data. SIGSOFT Softw Eng Notes 20(5):14–17, DOI 10.
1145/217030.217032, URL http://doi.acm.org/10.1145/217030.217032

Poole A, Ball LJ (2005) Eye tracking in human-computer interaction and
usability research: Current status and future. In: Prospects, Chapter in C.
Ghaoui (Ed.): Encyclopedia of Human-Computer Interaction. Pennsylvania:
Idea Group, Inc

Privitera CM, Stark LW (2000) Algorithms for defining visual regions-of-
interest: Comparison with eye fixations. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22:970–982

Rayner K (1978) Eye movements in reading and information processing. Psy-
chological Bulletin 85(3):618–660

Rayner K (1998) Eye movements in reading and information processing: 20
years of research. Psychological bulletin 124(3):372

Rodeghero P, McMillan C, McBurney PW, Bosch N, D’Mello S (2014) Im-
proving automated source code summarization via an eye-tracking study
of programmers. In: Proceedings of the 36th International Conference on
Software Engineering, ACM, New York, NY, USA, ICSE 2014, pp 390–
401, DOI 10.1145/2568225.2568247, URL http://doi.acm.org/10.1145/

2568225.2568247

Ross J (2009) Eyetracking: Is It Worth It? http://www.uxmatters.com/

mt/archives/2009/10/eyetracking-is-it-worth-it.php/, [Online; ac-
cessed 20-March-2019]

Sajaniemi J (2004) Comparison of three eye tracking devices in psychology of
programming research. In: Proceedings of the 16th Annual Psychology of
Programming Interest Group Workshop, PPIG ’04, pp 151–158

Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-
tracking protocols. In: Proceedings of the 2000 Symposium on Eye Track-
ing Research & Applications, ACM, New York, NY, USA, ETRA ’00, pp
71–78, DOI 10.1145/355017.355028, URL http://doi.acm.org/10.1145/

49

355017.355028

Shackel B (1960) Note on mobile eye viewpoint recording. JOSA 50(8):763–768
Shaffer TR, Wise JL, Walters BM, Müller SC, Falcone M, Sharif B (2015)

itrace: Enabling eye tracking on software artifacts within the ide to support
software engineering tasks. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ACM, pp 954–957

Shapiro JR, Neuberg SL (2007) From stereotype threat to stereotype threats:
Implications of a multi-threat framework for causes, moderators, mediators,
consequences, and interventions. Personality and Social Psychology Review
11(2):107–130

Sharafi Z, Soh Z, Guéhéneuc YG, Antoniol G (2012) Women and men - differ-
ent but equal: On the impact of identifier style on source code reading. In:
Proceedings of 20th International Conference on Program Comprehension,
ICPC ’13, pp 27–36

Sharafi Z, Marchetto A, Susi A, Antoniol G, Guéhéneuc YG (2013) An em-
pirical study on the efficiency of graphical vs. textual representations in
requirements comprehension. In: Proceedings of 21st International Confer-
ence on Program Comprehension, ICPC ’13, pp 33–42

Sharafi Z, Shaffer T, Bonita S, Guéhéneuc YG (2015a) Eye-tracking metrics
in software engineering. In: Proceedings of 22nd Asia-Pacific Software En-
gineering Conference, IEEE CS Press, APSEC ’15

Sharafi Z, Soh Z, Guéhéneuc YG (2015b) A systematic literature review on
the usage of eye-tracking in software engineering. Information and Software
Technology (IST)

Sharif B, Maletic JI (2010a) An eye tracking study on camelcase and un-
der score identifier styles. In: Proceeding of 18th IEEE International Con-
ference on Program Comprehension, IEEE Computer Society, ICPC ’10, pp
196–205

Sharif B, Maletic JI (2010b) An eye tracking study on the effects of layout
in understanding the role of design patterns. In: Proceedings of the 26th
IEEE International Conference on Software Maintenance, IEEE Computer
Society, pp 1–10

Sharif B, Falcone M, Maletic JI (2012) An eye-tracking study on the role of
scan time in finding source code defects. In: Proceedings of the Symposium
on Eye Tracking Research & Applications, ACM, New York, NY, USA,
ETRA’12, pp 381–384, DOI 10.1145/2168556.2168642

Sharif B, Jetty G, Aponte J, Parra E (2013) An empirical study assessing the
effect of seeit 3D on comprehension. In: Proceeding of 1st IEEE Working
Conference on Software Visualization, IEEE, VISSOFT ’13, pp 1–10

Siegmund J, Siegmund N, Apel S (2015) Views on internal and external validity
in empirical software engineering. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, IEEE Press, pp 9–19

Soh Z, Sharafi Z, den Plas BV, Porras GC, Guéhéneuc YG, Antoniol G (2012)
Professional status and expertise for UML class diagram comprehension:
An empirical study. In: Proceedings of 20th International Conference on
Program Comprehension, ICPC ’13, pp 163–172

50

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013) On the ef-
fect of program exploration on maintenance tasks. In: 2013 20th Working
Conference on Reverse Engineering (WCRE), pp 391–400, DOI 10.1109/
WCRE.2013.6671314

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2018) Noise in mylyn
interaction traces and its impact on developers and recommendation
systems. Empirical Software Engineering 23(2):645–692, DOI 10.1007/
s10664-017-9529-x, URL https://doi.org/10.1007/s10664-017-9529-x

Spencer SJ, Steele CM, Quinn DM (1999) Stereotype threat and women’s
math performance. Journal of experimental social psychology 35(1):4–28

Steele CM, Aronson J (1995) Stereotype threat and the intellectual test per-
formance of african americans. Journal of personality and social psychology
69(5):797

Stein R, Brennan SE (2004) Another person’s eye gaze as a cue in solving
programming problems. In: Proceedings of the 6th International Conference
on Multimodal Interfaces, ACM, New York, NY, USA, ICMI ’04, pp 9–
15, DOI 10.1145/1027933.1027936, URL http://doi.acm.org/10.1145/

1027933.1027936

Strandvall T (2009) Eye tracking in human-computer interaction and usabil-
ity research. In: Gross T, Gulliksen J, Kotzé P, Oestreicher L, Palanque P,
Prates RO, Winckler M (eds) Human-Computer Interaction – INTERACT
2009: 12th IFIP TC 13 International Conference, Uppsala, Sweden, August
24-28, 2009, Proceedings, Part II, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp 936–937

Sundstedt V (2010) Gazing at games: Using eye tracking to control virtual
characters. In: ACM SIGGRAPH 2010 Courses, ACM, New York, NY, USA,
SIGGRAPH ’10, pp 5:1–5:160, DOI 10.1145/1837101.1837106, URL http:

//doi.acm.org/10.1145/1837101.1837106

Turner R, Falcone M, Sharif B, Lazar A (2014a) An eye-tracking study assess-
ing the comprehension of C++ and Python source code. In: Proceedings
of the Symposium on Eye Tracking Research & Applications, ACM, New
York, NY, USA, ETRA ’14, pp 231–234, DOI 10.1145/2578153.2578218

Turner R, Falcone M, Sharif B, Lazar A (2014b) An eye-tracking study as-
sessing the comprehension of c++ and python source code. In: Proceedings
of the Symposium on Eye Tracking Research and Applications, ACM, New
York, NY, USA, ETRA ’14, pp 231–234, DOI 10.1145/2578153.2578218,
URL http://doi.acm.org/10.1145/2578153.2578218

Uwano H, Nakamura M, Monden A, Matsumoto Ki (2006) Analyzing individ-
ual performance of source code review using reviewers’ eye movement. In:
Proceedings of the 2006 symposium on Eye tracking research & applications,
ACM, ETRA ’06, pp 133–140

Vrzakova H (2019) Machine learning methods in interaction inference from
gaze. In: Dissertations in Forestry and Natural Sciences, University of East-
ern Finland

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012)
Experimentation in software engineering. Springer Science & Business Media

51

Yarbus AL (1967) Eye movements during perception of complex objects.
Springer

Yusuf S, Kagdi HH, Maletic JI (2007) Assessing the comprehension of UML
class diagrams via eye tracking. In: Proceeding of 15th IEEE International
Conference on Program Comprehension, IEEE Computer Society, ICPC ’07,
pp 113–122

Zhang Z, Zhang J (2010) A new real-time eye tracking based on nonlinear
unscented kalman filter for monitoring driver fatigue. Journal of Control
Theory and Applications 8(2):181–188

52

