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Abstract

Spoken Language Support for Software Development

by

Andrew Brian Begel

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Susan L. Graham, Chair

Programmers who suffer from repetitive stress injuries find it difficult to program by typing. Speech

interfaces can reduce the amount of typing, but existing programming-by-voice techniques make it

awkward for programmers to enter and edit program text. We used a human-centric approach to

address these problems. We first studied how programmers verbalize code, and found that spoken

programs contain lexical, syntactic and semantic ambiguities that do not appear in written programs.

Using the results from this study, we designed Spoken Java, a semantically identical variant of

Java that is easier to speak. Inspired by a study of how voice recognition users navigate through

documents, we developed a novel program navigation technique that can quickly take a software

developer to a desired program position.

Spoken Java is analyzed by extending a conventional Java programming language analysis

engine written in our Harmonia program analysis framework. Our new XGLR parsing framework

extends GLR parsing to process the input stream ambiguities that arise from spoken programs (and

from embedded languages). XGLR parses Spoken Java utterances into their many possible inter-

pretations. To semantically analyze these interpretations and discover which ones are legal, we

implemented and extended the Inheritance Graph, a semantic analysis formalism which supports

constant-time access to type and use-definition information for all names defined in a program. The

legal interpretations are the ones most likely to be correct, and can be presented to the programmer

for confirmation.

We built an Eclipse IDE plugin called SPEED (for SPEech EDitor) to support the combi-

nation of Spoken Java, an associated command language, and a structure-based editing model called

Shorthand. Our evaluation of this software with expert Java developers showed that most developers
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had little trouble learning to use the system, but found it slower than typing.

Although programming-by-voice is still in its infancy, it has already proved to be a viable

alternative to typing for those who rely on voice recognition to use a computer. In addition, by pro-

viding an alternative means of programming a computer, we can learn more about how programmers

communicate about code.

Professor Susan L. Graham
Dissertation Committee Chair
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Chapter 1

Introduction

Software development environments can create frustrating barriers for the growing num-

bers of developers who suffer from repetitive strain injuries and related disabilities that make typing

difficult or impossible. Our research helps to lower these barriers by enabling developers to use

speech to reduce their dependence on typing. Speech interfaces may help to reduce the onset of

RSI among computer users, and at the same time increase access for those already having motor

disabilities. In addition, they may provide insight into better forms of high-level interaction.

This dissertation explores two questions:

1. Can software developers program using speech?

2. How can we make a computer understand what the developer says?

Our thesis is that the answers to these questions are 1) yes, programmers can learn to

program using their voices, and 2) by creating a compiler-based speech understanding system, a

computer can successfully interpret what the programmer speaks and render it as code in a program

editor.

To explore this thesis, we took a three-pronged human-centric approach. First, we studied

developers to learn how programmers might naturally speak code. After all, programming lan-

guages were designed as written languages, not spoken ones; while intuition says that programmers

know how to speak code out loud, what they actually say and how they actually say it has never

before been formally studied. Second, we used the results of the study to design a spoken input

form that balances the programmer’s desire to speak what feels natural with the ability of our sys-

tem to understand it. Our contribution is to use program analyses to interpret speech as code. By
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extending these analyses to support the kinds of input that speech engenders, we can adapt exist-

ing algorithms and tools to the task of understanding spoken programs. The main artifact of our

work is realized as a software development system that can understand spoken program dictation,

composition, navigation and browsing, and editing. Third, we evaluated our techniques by studying

developers using our programming-by-voice software development environment to create and edit

programs. We found that programmers were able to learn to program by voice quickly, but felt

that the use of speech recognition for software development was slower than typing. In addition,

programmers preferred describing code to speaking it literally. The programmers all felt that they

could use voice-based programming to complete the programming tasks required by their jobs if

they could not type.

We identify four major challenges in this work:

1. Speech is inherently ambiguous – People use homophones (words that sound alike, but

have different spellings and meanings), use inconsistent prosody (pitch and modulation of the

voice) confusing others as to whether they are asking a question or making a statement, flub

their words or word order as they speak, or use stop words, such as “uh,” “um,” and “like”

along with other speech disfluencies. Usually, we understand the other person because we

can bring an enormous amount of context to bear in order to filter out all the inappropriate

interpretations before they even rise to the level of conscious thought. Even with all this

context, humans sometimes have trouble understanding one another. Imagine a computer

trying to do this!

2. Programming languages and tools were designed to be unambiguous – The entire his-

tory of programming languages is filled with examples of programming languages that were

designed to be easy to be read and written by machines rather than by humans. All of the

punctuation and precision in programs is there in order to make program analyses, compilers

and runtime systems efficient to execute and feasible to implement. This sets up an unfortu-

nate situation for voice-based programming due to the clash between the inherent ambiguity

of speech and the lack of preparation for ambiguity found in programming languages and

tools.

3. Speech tools are poorly suited for programming tasks – Speech recognizers are designed

to transcribe speech to text for the purpose of creating and editing text documents. They

are trained to understand specific natural languages and support word processing tasks. Pro-
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gramming languages are similar to but not the same as natural languages in ways that make

recognition difficult. In addition, the kinds of tasks that programmers undertake to create, edit

and navigate through programs are very different than word processing tasks. Commercial

speech recognizers do not come with any tools designed for programming tasks.

4. Programmers are not used to verbal software development – Programmers have been

programming text-based languages with a keyboard for many decades. While they may talk

about code with one another, they do not speak code to the computer. There will be a learning

curve associated with programming-by-voice, just as there is a learning curve associated with

speaking natural language documents. Certain dictation techniques are better matched with

computer-based voice recognition than others, and learning what those techniques are for

programming will need to be one of the objects of study.

In the remainder of this chapter, we describe in more detail the problem of programming

using voice recognition, describe related work in the field, and sketch out our solution in the form

of new programming languages and environments, and new lexing, parsing and semantic analysis

algorithms to make them work.

1.1 Speech Recognition

Before the advent of the integrated development environment (IDE), software developers

used text editors to create, edit, and browse through their programs. IDEs improve usability via a

graphical user interface and better tools, but the main work area is still a text editor. Programmers

with RSI and other motor disabilities can find these environments difficult or impossible to use due

to their emphasis on typing. According to the United States Department of Labor, Bureau of Labor

Statistics (BLS) [70], in 1980, 18% of all workplace injuries were due to RSI. In 1998, the number

had risen to 66%! This is the largest category of worker-related injury in the USA, and causes the

longest work outages (median 32 days for carpal tunnel syndrome, 11 days for tendonitis in 2003).

In 2004, according to the BLS, there were around three million professional computer programmers.

BLS surveys since 1992 (see Table 1.1) show that hundreds of them every year suffer from repetitive

motion injuries that cause them to lose working days. Assuming that some incidences of RSI are not

reported, there could easily be thousands of software developers that have trouble staying productive

in their work environment due to RSI.
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Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Cases 450 631 538 777 386 432 328 699 632 725 742 270

Table 1.1: Number of repetitive motion injuries per year for computer and data processing ser-
vices jobs involving days away from work. From the U.S. Department of Labor, Bureau of Labor
Statistics.

We believe that speech interfaces could be employed to reduce programmer dependence

on typing and help offset the chances of developing RSI, as well as helping those who already suffer

from RSI. Speech recognition has been commercially available for desktop computers since the mid

1990s. It was only then that commodity hardware had the horsepower and memory required to run

the huge hidden Markov models that power these recognition engines. Several speech recognizers

have enjoyed commercial success: Nuance’s Dragon NaturallySpeaking [69], IBM’s ViaVoice [39],

and Microsoft’s Speech SDK [38].

The primary use of desktop speech recognition is to create and modify text documents.

Recognizers support two modes of operation: dictation and command. Dictation transcribes what

the user speaks, word for word, and inserts the results into a word processor such as Microsoft

Word. Commands are used afterwards to format the prose, for example, to add capitalization, fix

misspellings, and add bold, italics and other font styles. In addition, commands are used to navigate

through the windows, menus, dialog boxes and the text itself.

Speech recognition is not perfect. Recognition accuracy, while usually in the 99% range

with adequate software training, requires that speakers continuously scan speech-recognized doc-

uments for typos and misrecognized words. Accuracy suffers when users have accented speech,

speech impediments, or inconsistent prosody (such as if the user has a cold or is hoarse). Noisy envi-

ronments degrade accuracy as well. Misrecognition in command mode can lead to frustration trying

to manipulate a graphical user interface that was never designed for vocal interaction. The physical

motions involved in typing and mousing are much quicker than their verbalization, and are much

less likely to be misinterpreted by the computer. Numerous studies show problems with even basic

usage of speech recognition, including errors (due to both the recognizer and the user, especially

during misdictation correction) [47], limited human working memory capacity for speech [49], and

limited human ability to speak sentences that conform to a particular grammar [87]. In addition,

users must re-learn basic word processing techniques using voice rather than keyboard and mouse.

These problems and the steep initial learning curve cause, for most users, speech recognition-based

editing to be significantly (and often prohibitively) slower than editing using keyboard and mouse.
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1.2 Programming-By-Voice

Desktop speech recognition tools were designed for manipulating natural language text

documents. This makes them poorly suited for programming tasks because they are based on statis-

tical models of the English language; when they receive code as input, they turn it into the closest

approximation to English that they can.

Efforts to apply speech-to-text conversion for programming tasks using conventional nat-

ural language processing tools have had limited success. IBM ViaVoice and Nuance Dragon Natu-

rallySpeaking support natural language dictation and commands for controlling the operating sys-

tem GUI, application menus, and dialog boxes. Inside a text editor, the most common place to find

program code, supported editing commands are oriented towards word processing, supporting font

and style changes and clipboard access. Commands for common programming operations, such as

structurally manipulating text, are absent.

Some disabled programmers have successfully adapted the command grammars that drive

speech recognition for programming tasks. However, these grammars are necessarily prescriptive

and provide only limited flexibility for ways of programming not anticipated by the authors. Com-

mand grammars are not context-free; they cannot have recursion. This immediately limits an au-

thor’s ability to describe programming languages with these grammars. In addition, grammars are

not easily extensible by end-user programmers, unless they spend a great deal of time analyzing their

own programming behaviors and using this information to create their own command grammars.

Jeff Gray at University of Alabama speech-enabled the Eclipse programming environ-

ment [90]. The word “speech-enabled” means that a command grammar was created for the menus,

dialog boxes and GUI of the IDE. The program editor itself was not accessible by speech. T.V. Ra-

man has speech-enabled Emacs, making accessible all of the Meta-X commands and E-Lisp func-

tions defined within [80]. In addition to speech input, Raman has also enabled Emacs for speech

output. Even without a screen reader, Emacs can now output its text and commands in spoken form.

Speech-enabling IDEs is only the first step to making a usable programming environment.

To author, edit and navigate through code by voice, developers need to speak fragments of program

text interspersed with navigation, editing, and transformation commands. Recent efforts to adapt

voice recognition tools for code dictation have seen limited success. Command mode solutions, such

as VoiceCode [20, 101], sometimes suffer from awkward, over-stylized code entry, and an inability

to exploit program structure and semantics. VoiceCode compensates for this lack of analysis by

providing detailed support for a large number of language constructs found in Python and C++
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for loop ... after left paren ...
declare india of type integer ...

for(int i = 0; i < 10; i++) { assign zero ... after semi ...
... recall one ... less than ten ...

} after semi ...
recall one ... increment ...
after left brace

(a) (b)

Figure 1.1: To get the for loop in (a), a VoiceCode user speaks the commands found in (b).

code. An example using VoiceCode to enter a for loop is shown in Figure 1.1. The commands are

interpreted as follows.

1. for loop: Inserts a for loop code template with slots for the initializer, predicate and incre-

menter.

2. after left paren/semi/left brace: Command to move to the next slot in the code template.

Analogous commands exist to move to the previous slot. Once all slots have been filled in,

future navigation is based on character distance and regular expression searches.

3. declare india: Creates a new variable named “i.” Most speech recognizers require the speaker

to use the military alphabet when spelling words.

4. of type integer: A command modifier to “declare”, that adds the type signature to a declara-

tion.

5. assign zero: Assignment in VoiceCode is “assign,” not “equals.”

6. recall one: Identifiers in VoiceCode can be stored in a cache pad, a table of slots each of

which is addressable by a number from one to ten. To reference a previously verbalized

identifier, the user says “recall” and the number of the slot.

7. increment: VoiceCode’s way to say “plus plus.”

Lindsey Snell created a program editor that eased some of the awkwardness of the com-

mand grammar approach by automatically expanding keywords into code templates [92]. In addi-

tion, her work could use temporal lexical context to detect when the user was trying to say an iden-

tifier rather than a keyword, and act appropriately. For example, when multiple words are spoken
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in a row, they might all form part of the same identifier. Context-sensitivity enables the environ-

ment to detect this and automatically concatenate the words together in the appropriate style for that

programming language. This context is limited to the initial dictation of the code, however. The

system does not appear to take advantage of spatial context to provide the same support for editing

pre-existing code. In addition, the context is detected lexically, which limits the ability to provide

appropriate behavior inside function bodies where the necessary context is often ambiguous.

Taking a different approach, the NaturalJava system [79, 78] uses a specially developed

natural language input component and information extraction techniques to recognize Java con-

structs and commands. This is a form of meta-coding, where the user describes the program he or

she wishes to write instead of saying the code directly. Parts of that work are promising, although

at present there are restrictions on the form of the input and the decision tree/case frame mechanism

used to determine system actions is somewhat ad hoc. Worse, the tool is not interactive, but rather

a batch processor that produces code only after the programmer has described the entire section of

code.

Arnold, Mark, and Goldthwaite [4] proposed to build a programming-by-voice system

based on syntax-directed editing, but their approach is no longer being pursued.

An important part of programming is entering mathematical expressions. Fateman has

developed techniques for entering complex mathematical expressions by voice [29] that could be

used in our programming-by-voice solution.

Voice synthesis has been applied to speaking programs. Francioni and Smith [32, 91]

developed a tool for speaking Java code out loud for blind programmers. Punctuation is verbalized

in English, and structure beginnings and ends are explicitly noted (with associated class and method

names when applicable). Modulation of speech prosody is used to indicate spacing, comments and

special tokens or structures. Verbalization of programs like this can be used in a programming-by-

voice system to train developers to speak Java code out loud.

1.3 Our Solution

Our research adapts voice recognition to the software development process, both to miti-

gate RSI and to provide insight into natural forms of high-level interaction. Our main contributions

are to use a human-centric approach in the design of our voice-based programming environment,

and to use program analysis to interpret speech as code. This enables the creation of a program

editor that supports programming-by-voice in a natural way.
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We began our work by studying programmers to learn how they might speak code in

a programming situation without any advanced training or preparation. We wanted some ground

truth data on which to base a new input form for voice-based programming, one that would be both

natural to speak and easy to learn. We found that there are some significant differences between

written and spoken code, categorizable into roughly four classes: the lexical, syntactic, semantic,

and prosodic properties of input. There is considerable lexical ambiguity, since spoken text does not

include spelling, capital letters or an indication of where the spaces in between the words belong.

Syntactically, the punctuation that helps a compiler analyze written programs is often unverbalized,

leading to structural ambiguities. In addition, some phrases from the Java language prove difficult

to speak out loud due to differences in sentence structure from English. Semantically, programmers

speak more than the literal code; they paraphrase it, and talk about the code they want to write.

Finally, we found that prosody is often used by native English speakers to disambiguate similar

sounding phrases, but is not employed by non-native speakers.

We then studied voice recognition users to learn how existing speech recognition tools

supported other important tasks, such as navigation through a document. We found that navigation

commands provided by speech recognizers fall into a variety of categories, ranging from context-

independent commands to navigate using relative and absolute coordinates, to context-dependent

commands to navigate using absolute coordinates, and to search tools like the Find dialog in a word

processor. Each of these mechanisms suffers from two problems: too much delay between the

start of the navigation and the end because too many spoken commands are required, and a high

cognitive load, due to the need for constant supervision and feedback of the navigation process and

the correction of recognition errors.

We attempted to design an alternate form of navigation to address these issues, but ran into

technology problems caused by long voice recognition delay. In the process, however, we learned

several lessons about navigation that we have applied to a new technique that is especially appro-

priate for navigation through programs: context-sensitive mouse grid. Context-sensitive mouse grid

enables programmers to identify and select program constructs by number in a hierarchical manner.

It works well because the most successful adaptations of user interfaces for speech recognition rely

on labeling possible user selections with on-screen numbers in order to allow the user to simply

speak the numbers that he sees. Labeling interesting locations or actions on-screen means that a

user does not have to verbalize the locations or actions himself, decreasing the cognitive load and

increasing the recognition success rate.

Based on our studies of programmers, we have created Spoken Java, a variant of Java
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which is easier to verbalize than its traditional typewritten form, and an associated spoken command

language to manipulate code. Spoken Java more closely matches the verbalization in our study than

does the original Java language. In this program verbalization, programmers speak the natural

language words of the program, but must also include verbalizations of some punctuation symbols.

Spoken Java is not a completely new language – it has a different syntax, but it is semantically

identical to Java. In fact, the language grammar that describes Spoken Java is a superset of the

grammar for Java, with only fifteen extra grammar rules. Each of these additional rules maps easily

onto a Java rule. This syntactic similarity makes it possible for semantic analyses based on parse

tree structure to be constructed from analyses built for the original Java language without many

changes.

Moving towards this more flexible input form introduces ambiguity into a domain that

heretofore has been completely unambiguous. Spoken Java is considerably more lexically and syn-

tactically ambiguous than Java. We have developed new methods for managing and disambiguating

ambiguities in a software development context. In our new SPEED (SPEech EDitor) programming

environment, lexical ambiguities such as homophones (words that sound alike) are generated from

the user’s spoken words and passed to the parser. These words, along with their lexical ambiguities

and missing punctuation, form a program fragment. Our new XGLR parser (described in Chap-

ter 5), can take this fragment and construct a collection of possible parses that contains all of its

possible interpretations. Next, we exploit knowledge of the program being written to disambiguate

what the user spoke and deduce the correct interpretation. Using program analysis techniques that

we have adapted for speech, such as our implementation of the Inheritance Graph (described in

Chapter 6), we use the program context to help choose from among many possible interpretations

of a sequence of words uttered by the user. When this semantic disambiguation analysis results in

multiple legitimate options, our editor defers to the user to choose the appropriate interpretation.

We conducted a user study to understand the cognitive effects of spoken programming,

as well as to inform the design of the language and editor. We asked several professional Java

programmers with many years of experience in software engineering to use SPEED to create and

edit small a Java program. We ran two versions of the same study, one with a commercial speech

recognizer, and one with a non-programmer human speech recognizer. We found the programmers

were very quickly able to learn to write and edit code using SPEED. We anticipated that program-

mers would dictate literal code as often as they would use other forms of code entry and editing, but

found that they preferred describing the code using code templates; the programmers were reluctant

to speak code out loud. We expected that programmers would find speaking code to be slower than
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typing; this hypothesis was confirmed. Finally, programmers all felt they could use SPEED to pro-

gram in their daily work if circumstances prevented them from using their hands (RSI, hands-free

situations).

1.4 Dissertation Outline

In Chapter 2, we describe in detail studies that we conducted to learn how software de-

velopers would program out loud. We explored first how program code might sound if spoken, and

found that there are many ambiguities reading code out loud as well as transcribing spoken code

onto paper. Next, we looked at voice-based document navigation techniques and discovered that

most of them are tedious to use and have a high cognitive load. We created an auto-scrolling nav-

igation technique that did improve cognitive load, but had usage problems of its own. The lessons

we learned in this study informed the design for our new program navigation techniques. We end

with an overview of the design requirements for program authoring, navigation and editing.

In Chapter 3, we present our Spoken Java language. We discuss how it differs from Java,

and how it is similar. We provide some examples of Spoken Java code, and how it compares with its

Java equivalent. Appendix B contains the complete lexical specification and grammar for Spoken

Java. Finally, we describe a Java to Spoken Java translator that can take a Java or Spoken Java

program and convert it to the other form. This is necessary to ensure that at the end of the day, a

programmer’s work really is Java.

Chapters 4, 5, and 6 discuss how we analyze ambiguity. These chapters form the major

technology components of the dissertation. We begin with a walk-through overview of the entire

analysis process. Then, we describe the XGLR parsing algorithm and framework. XGLR is an ex-

tension of Generalized LR parsing that can handle lexical ambiguities that arise from programming-

by-voice, embedded languages, and legacy languages. XGLR produces a forest of parse trees that

must be disambiguated in order to discover which was the one the user intended. In the last of the

three chapters, we show how ambiguities arising from these lexical ambiguities are resolved in a se-

mantic analysis engine that extends the Visibility Graph [33], a graph-based data structure designed

to resolve names, bindings and scopes. Our extensions to the Visibility Graph support incremental

update (for use in an interactive programming environment) and ambiguity resolution.

In Chapter 7, we introduce our SPEED Speech Editor. SPEED is an Eclipse IDE plugin

that connects speech recognition to Java editing, supporting code entry in Spoken Java, and com-

mands in our Spoken Java command language. We first introduce a sample workflow of a developer
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creating and editing some code. Then we describe each of SPEED’s component parts, including

the Shorthand structure-sensitive editing model, and a novel user interface technique for program

navigation called context-sensitive mouse grid, which was developed for this dissertation.

In Chapter 8, we present the results of two studies we conducted to learn how developers

can use SPEED to program by voice. Expert Java programmers were recorded while using SPEED

to build a linked list Java class. Both studies were identical, except that one study used the Nuance

Dragon NaturallySpeaking voice recognition engine, and the other used a non-programmer human

to transcribe the programmer’s words. The study of the machine-transcribed version of SPEED

showed what we can expect from the current state-of-the-art in speech recognition technology, while

the study of the human-transcribed SPEED showed how good our analysis technology can be when

unhampered by poor speech recognition.

In Chapter 9, we speculate on the use of speech for commenting code. By employing voice

for commenting with keyboard for programming, it may be possible to overcome a likely deterrent

of well-commented code: the physical interference between coding and commenting when both

tasks must be performed by keyboard (or by voice recognition).

Chapter 10 concludes the dissertation. We talk about the lessons we learned while de-

signing and building these algorithms and tools, and inform the reader of our own evaluation of the

work. We end with future work, and our outlook on the future of the field.
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Chapter 2

Programming by Voice

In this chapter, we address the verbalization of a programming language and explore

the design space of spoken programming support in an IDE. Programming typically encompasses

three main tasks, code authoring, navigation, and editing. Authoring is the creation of new code.

Navigation is the browsing and reading of a program. Editing is the modification of existing code.

In order to design a complete solution for programming by voice, all three of these tasks must be

supported.

All three tasks share a common artifact: the program. Programs are written in program-

ming languages, languages that are very different from the natural languages that the programmer

is accustomed to speaking. This chapter describes our exploration into the following two questions:

1. Do software developers know how to speak programs out loud?

2. If they were to program out loud, what would they say?

We conducted two experiments to find out the answers to these questions. The first one

asked programmers to speak pre-written code out loud as if they were directing a second-year com-

puter science student to type in the code they were speaking. The second asked non-programmers

to use commercial voice recognition document navigation tools to find slightly vague locations in a

multi-page prose document. Both studies offer lessons for the design and engineering of a spoken

programming environment.

In the first section of this chapter, we describe the first study and its results. We provide

examples of what programmers said for different kinds of language constructs, and discuss what

these results mean and what they imply about language design for a spoken programming environ-

ment. The writeup for this experiment appeared in published form [10].
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The second section of this chapter discusses deficiencies in the navigation mechanisms

provided by commercial speech recognition vendors. We first analyzed various navigation tech-

niques using a GOMS model [14, 44]. We then proposed an alternate technique, which we tested

with experienced voice recognition users in our second experiment. We learned several lessons

about the design of voice-based interfaces, especially that speed of execution and the cognitive load

are the most critical features in the design of any navigation technique.

Finally, we revisit the three kinds of programming tasks and present a range of possible

designs for their spoken interfaces.

2.1 Verbalization of Code

Many possible verbalizations of written text are amenable to speech recognition analysis:

simply spelling out every letter or symbol in the input, or speaking each natural language word, or

describing what the text looks like, or paraphrasing the text’s meaning. Spelling every word and

symbol or describing the text is tedious and requires prescriptive input methods to which humans

would find it difficult to conform [87]. On the other hand, excessively paraphrasing or abstracting

the meaning of written content may leave too many details unspecified and even be incomprehensi-

ble to an expert.

Programming languages exist in a very similar space to natural languages, save for two

significant differences. Unlike natural languages, which have been spoken since the beginning of

time and written for several thousand years, programming languages have only a written form.

Consequently, there is no naturally evolved spoken form. Programming languages are also struc-

tured differently from natural languages to be much more precise and mathematical. Punctuation,

spelling, capitalization, word placement, sometimes even whitespace characters are critical to the

proper interpretation of a program by a compiler. Those details of the written form must be inferred

from the spoken form.

To design a spoken form of a textual programming language, we need to shed light on

the following questions: What would a programming language sound like if it were spoken? How

different would it be than the language’s written form? If a particular programming language could

be spoken, would all programmers speak it the same way? Would programmers who speak different

native languages speak the same program in different ways? Programmers who verbalize only a

program’s natural language words might cause the spoken program to become ambiguous. What

would be a natural way to speak a programming language that also has a tractable, comprehensible,
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and predictable mapping to the original language?

Our goal is to enable input that is natural to speak, but at the same time formal enough to

leverage existing programming language analyses to discern its meaning. This point in the design

space retains some ambiguity, but limits it so that analysis of the language is still feasible. Note that

our work is not about programming in a natural language using natural language semantics [60, 61],

but is about using features of natural language to simplify the verbal input form of a conventionally

designed programming language.

2.1.1 How Programmers Speak Code

We designed a study to begin answering the questions raised here. We asked ten expert

programmers who are graduate students in computer science at Berkeley to read a page of Java

code aloud. Five of them knew how to program in Java, five did not. (The latter students knew

other syntactically similar programming languages). Five were native English speakers, five were

not. Five were educated in programming in the U.S.A., five were educated elsewhere.

The Java code (which appears in Appendix A) was chosen to contain a mix of language

features: a variety of classes, methods, fields, syntactic constructs such as while loops, for loops,

if statements, field accesses, multi-dimensional arrays, array accesses, exceptions and exception

handling code, import and package statements, and single-line and multi-line comments.

Each study participant was asked to read the code into a tape recorder as if he or she were

telling a second-year undergraduate Java programming student what to type into a computer. We

chose this instruction over others to try to anticipate the capabilities of the analysis system. We

did not want to have the participant assume that the undergraduate knew the content of the code

in advance, nor did we want the participant to assume that the listener was completely Java- or

computer-illiterate.

The recordings were transcribed with all spoken words, stop words, and fragmented and

repeated words. Words with multiple spellings were written with the correct spelling according to

the semantics of the original written program. Transcription took about five hours for each hour of

audio tape.

For the most part, despite different education backgrounds or the degree of knowledge of

Java programming, all ten of the programmers verbalized the Java program in essentially the same

way. However, each programmer varied his or her speech in particular ways – each had his or her

own style. The variations and implications for subsequent analysis are summarized as follows.
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Spoken Words Can Be Hard to Write Down

On a lexical level, most programmers spoke all of the English words in the program.

Mathematical symbols were verbalized in English (e.g. > became “is greater than”). There was

some variation among the individuals on the words used to say a particular construct. For example,

an array dereference array[i] could be “array sub i,” “array of i,” or “i from array.” Here “sub”,

“of” and “from” are all synonyms for “open bracket.” A given punctuation could be either “dot” or

“period,” either “close brace” or “end the for loop.”

Several classes of lexical ambiguity were discovered during the transcription process.

• Many of the words spoken by participants are homophones, words that sound alike but have

different spellings. In the case of homophones, the same word is recognized by a speech

recognizer in several different ways. For instance, “for” could also be “4”, “fore” or “four”.

The language token can be interpreted depending on context (for example, the keyword “for”,

the number “4” or the identifiers “fore” and “four”). Likewise, “<” spelled “less than” is a

keyword, but as “less then” is a keyword followed by an identifier.

• Capitalization was not verbalized except sometimes as a comment about an identifier, such as

“that’s class with a capital c”. (The analysis must then determine whether the speaker said the

letter ’c’ or the word ’see’). Many programming languages are case-sensitive – the inability

to easily verbalize capitalization causes an ambiguity in which there are two visible identifiers

with the same spelling having different capitalizations.

• Spaces between words are implied when the participant is speaking, but when an identifier

is made up of several concatenated words, it was unclear whether spaces were intended.

For example, “drop stack process” was spoken for dropStackProcess. The inability to

easily specify where the spaces ought to go between words and the abundance of multi-word

identifiers means that any contiguous sequence of words or numbers may constitute a valid

identifier.

These ambiguities combine to cause an explosion of possible interpretations of the input

stream. Those ambiguities must be resolved prior to compilation. Unlike a human listener who

can understand the intent of speech that contains mistakes, a program compiler cannot compile

code containing any mistakes – the slightest error, for example, a misplaced character or misspelled

name, can render the entire program invalid.
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Written Code Can Be Hard To Say

There were many stop words, false starts, restated expressions and statements, and stream

of consciousness utterances sprinkled throughout the spoken code. These speech patterns were

particularly common from participants less familiar with Java.

We found that native English speakers had no trouble verbalizing partial words (which

were made up of pronounceable syllables) (e.g. tur and pat) or verbalizing abbreviated words

(e.g. println). Non-native English speakers often spelled out these partial or abbreviated words.

One Utterance Represents Many Structures

Much written punctuation was omitted when spoken, for example the dot in a qualified

name object.stack, the parentheses indicating a method call e.printStackTrace(), the

comma separating arguments to a method call, or the semicolon at the end of a statement.

Sometimes punctuation was verbalized in context-specific ways. For example, to declare

the constructor Pool(Class kind), one person said “constructor pool takes arguments of class

kind” (other participants used similar phrasings). “No arguments” was used as a synonym for

two matching parentheses with nothing in between, as part of a method declaration or call. “End

function,” “that finishes the method,” “close class,” and “end for,” were context-specific synonyms

for a right curly brace.

Some punctuation was inconsistently verbalized across programmers, and even from the

same programmer for different lines of code. For example System.out.println() was ver-

balized on one line as “System dot out dot print line,” and on the next line as “System out print line”

(omitting the dots).

Usually, only one element of a pair of matching punctuation symbols was verbalized. For

example array[i] was expressed as “array sub i.” This matches well with the mathematical

rendition arrayi. But, Java requires brackets on either side of the subscripted index. Hence, “sub”

can indicate the left bracket, but there is no verbalization of the right bracket. Ending a while loop

was verbalized as “close while,” but no words indicated the open brace at the beginning of the

while loop body. Single-line comments were demarcated at the beginning by “begin comment,” but

not demarcated at the end (where a carriage return would indicate the end). Multi-line comments,

however, were always demarcated at both ends. In many instances, the close brace ending a block

would be conflated with the beginning of the next construct; the speaker might say “and then we

have a new method,” or “next method.”
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Punctuation is used by written programming languages to precisely demarcate program

structures. Removing or mangling the punctuation makes the structure of the code ambiguous (e.g.

“foo bar” could be foo.bar, foo(bar), or foo().bar() to name a few possibilities). These

ambiguities can combine to make a spoken program difficult to understand.

Abstraction is Natural

When programmers discuss code with one another, they talk in terms of constructs such

as methods, if-statements, or classes and semantic properties such as scope or type, rather than in

terms of textual entities. Sometimes they speak program code as it is written, and sometimes they

talk about code (called meta-coding). The instructions in our study were explicitly chosen to instruct

the programmers to speak the program code itself, rather than to describe what it should look like.

However, some programmers spoke more than just the literal code; they paraphrased patterns they

saw. For instance, they said “All these are just assignment initializations of null. array dot p a t,

array dot t u r, array dot o b s...,” or alternatively, “set all the fields of array to null.” Some speech

was meta-code: “The first member of the class is...” “And then there’s a forward declaration of the

class kind.” After describing a few fields, one programmer stated “these are all members.” When

describing the beginning of a pattern of code, a programmer said, “Let’s initialize a bunch of array’s

members.”

We see that abstraction is natural: Speakers identify and describe patterns rather than their

instantiations. When humans communicate with one another, they explain concepts at high-level

first, and only drop down to a more detailed level if the first explanation is not understood. When

programmers paraphrased the code, they abstracted low-level details into a shorter description of

how they wanted the code to appear. By supporting this more concise form of input, we would be

able to achieve immediate improvements in productivity – for each phrase spoken by a programmer,

many lines of code could be written. In addition, before and after a perceived pattern, programmers

described what they were about to do, or what they had just done. This kind of speech act indicates

the programmer’s immediate intention. It can be exploited by humans to contextualize the utterance

and predict its content. A programming system could use these as predictors for code utterances

and instantiate code templates for the programmer. Our work does not yet take full advantage of

this possibility.
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Prosody Disambiguates

Vocal expression is as important as it is in natural language: Speakers use prosody (vol-

ume, timbre, pitch, and pauses) and vernacular to convey meaning. Prosody was used to distinguish

between similar-sounding program constructs, for example, “array sub i plus plus” could mean

array[i]++ or array[i++].

Native English speakers had different speech patterns than some non-native English speak-

ers. Native English speakers used prosody to indicate a left or right punctuation symbol when it was

not otherwise verbalized. They verbalized the first construct in the previous paragraph as “array

sub i <pause> plus plus” and the second as “array sub <pause> i plus plus”. The pause indi-

cates that the terms before the pause are not to be grouped with the terms after the pause. Some

non-native English speakers do not have the same familiarity with English prosody. When such a

speaker encountered the array dereference ambiguity, he or she completely rephrased the first form

as “increment the ith value of the array.” Prosody has limited power in this case – it takes the place

of either the left or right punctuation mark in a pair (brackets, parentheses, or braces), but cannot

represent two or more punctuation marks (which would be required were there three or more groups

of words to be distinguished).

The semantic use of prosody is limited mostly to native English speakers; many non-

native English speakers who speak English typically use the prosody of their native language, in

which pauses, in particular, do not hold the same meaning. In our experiment, we interviewed Indian

and Chinese graduate students who were non-native speakers, and none of them used the same

prosody as the native English speakers. It would be interesting to see whether there are speakers of

other languages who are able to employ pausing in a way that could be used for programming.

Many coding situations do not involve simple code dictation by sight, but code composi-

tion on the fly. We have designed a new study to look at how programmers speak code spontaneously

when asked to write a solution to a coding exercise. This is described further in Section 8.

2.2 Document Navigation

Existing commercial tools’ support for voice-based navigation provides a substandard re-

placement for those whose disabilities prevent them from using the keyboard and mouse. With

few exceptions ([48]), all of the research exploring deficiencies in speech recognition has concen-

trated on dictation, which has prompted commercial speech recognition manufacturers to improve
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it. However, the process of navigation in documents (or computer programs) has not been sub-

ject to similar consumer pressure, and as as a result, has stagnated. Current methods of document

navigation are cumbersome and difficult to use.

Through our analysis of documentation navigation in Section 2.2.2, we show that naviga-

tion by speech is limited by two main components:

1. Speech recognition performance which slows down interactive use.

2. Cognitive load of the task as presented to the user.

We hypothesize that reducing the number of spoken commands (which reduces the total

time spent in speech recognition), and reducing the number of actions that require willful thought

(which reduces the cognitive load of the task) will make it possible to create a faster and easier-to-

use navigation by voice mechanism.

We have designed, implemented, and tested several ways to increase the speed and utility

of speech-based document navigation methods, while reducing the cognitive load at the same time.

Our tool, SpeedNav, is designed to address the current situation by enabling users to navigate via

an auto-scroll mechanism, reducing both the number of commands spoken (incurring less delay)

and the cognitive load (enabling the user to focus more on scanning the text for the desired target

than on issuing navigation commands). We present the results of our user study looking at these

techniques.

2.2.1 Navigation with Commercial Speech Recognition Tools

The primary use of commercial speech recognition tools is for the creation and main-

tenance of text documents. A user begins by dictating into a microphone, whereupon the speech

recognizer translates the speech into text for later insertion into a word processor. Speech recogniz-

ers often support some automatic formatting (such as capitalizing proper nouns and the beginning of

sentences), but usually require the user to explicitly verbalize punctuation and document formatting

commands (such as boldface, italics, etc).

Once the user has finished dictation, he must use the voice recognizer to navigate and

edit his document. All commercial speech recognition packages support similar interfaces for these

tasks. A user can say a short phrase to cause the cursor to move or to perform an editing action (cut,

copy, paste, boldface, italics, etc).
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Navigation commands usually involve no document content at all (e.g. move down 2

lines, go to the previous page). We call this kind of cursor movement relative navigation. Nuance’s

Dragon NaturallySpeaking supports Select-n-Say, where a user is able to augment a navigation

command with an explicit phrase from the document (e.g. Select the sentence that starts with ‘The

quick brown.’) in order to speed the process. In addition, all packages support mouse grid, a means

of addressing a pixel location on the screen using a hierarchical 3x3 grid that is overlaid on the

screen. Mouse grid usually requires five to six commands (one to bring it up, three or four to

navigate to the target, and a final one to select it). We call these kinds of cursor movement direct

navigation.

These designs are naive and have several flaws. In relative navigation there are too many

words to speak; using the keyboard is much faster. Average typists can type around 5 keys per

second [14]. In addition, the words require the user to estimate cursor distances to the desired

screen location. If this location is more than some threshold lines/characters away, the user has to

guess the distance, or spend time to explicitly count the distance. If the location is off the screen,

the user must jump long distances and then correct for any over or undershoot. In addition, there

is no auto-repeat support in commercially available speech recognizers, as there is on a keyboard.

The user must repeat the navigation phrases over and over again until the desired location is found.

Select-N-Say requires the users to read and understand the text on the screen before utter-

ing their navigation commands. This incurs more cognitive load than using the keyboard or mouse

to move the cursor. Assume the user reads at a rate of 260 words per minute [14], and the average

search phrase is 5 words long. If the user has already spotted the phrase on the screen, it will take

him a little over one second to read the phrase. At a dictation speed of 80 words per minute, it will

take another three seconds to speak it, for a total of four seconds of activity for the task. The time

it takes to verbalize a location uniquely and accurately is thus far greater than the time needed to

point to it with a mouse.

In addition, Select-N-Say only works when the location is on the screen and visible. If

the words at the desired location are not unique, the user must include nearby but unrelated words

to form a unique search phrase. If the user finds that the words he wants to speak are difficult for

the speech recognizer to recognize reliably (such as the homophones: to, two, too and 2), he must

either avoid speaking them in his search, or suffer the slowdown due to arduous dictation correction

facilities.

This analysis of document navigation techniques is high-level. In the next section, we

undertake a more formal analysis.
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2.2.2 Analyzing Navigation Techniques

In this section we adapt standard formal analysis methods used by HCI researchers to

study various navigation techniques used to move through a document. These techniques are acti-

vated by keyboard, mouse or voice, making them difficult to compare directly against one another.

By employing formal analysis, we can use the same model to describe each technique and gain an

understanding of the length of time each takes and the number of commands each takes to execute

(which gives an indirect measure of cognitive load).

A look at cursor navigation techniques brings to mind Fitt’s law [31], which states that

the time it takes for a person to point at a location in space is

time ∝ log(2×distance
target size )

This work has been extended by MacKenzie and Buxton [62] to the action of pointing at

a target on a computer screen with a mouse. In addition, later work has explored moving a mouse

manually along an on-screen path to develop the Steering Law [1].

time ∝ distance
width of path

Karimullah and Sears [48] studied cursor navigation using voice commands to move the

cursor to an on-screen graphical target. Unique to their study, Karimullah and Sears enabled the

users to control the cursor’s velocity rather than its position.

While each of these techniques appears to approximate the document navigation task,

there are important differences. Our task is multi-page; the target of navigation is usually not

initially visible, and must be scrolled into view. Second, our task involves scanning for a target

phrase in the midst of a page of text, not merely spotting a sole graphical target. Thus, Fitt’s law and

its extensions are not applicable for our task. Therefore, we see the need to develop a new model of

text document navigation using speech recognition.

GOMS Analysis for Navigation

GOMS is a usability modeling technique [14] for describing human performance on a

task. We use GOMS, which stands for Goals, Operators, Methods, and Selection Rules, to model

how much time various common document navigation techniques will take. In particular, we use

the Keystroke-Level Model (KLM) variant of GOMS [45], to illustrate how the keyboard, mouse,
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dlines =
∑

−n≤i≤n

icli (2.1)

tscann = αn + β
∑

−n≤i≤n

cli + γ
∑

−m≤j≤m

csj (2.2)

tnav = (1 + ρerror)
∑

−n≤i≤n

cli(∆rc + tscani) (2.3)

dlines = distance in lines to the target
∆rc = computer’s recognition delay per command
cln = number of commands to scroll n lines
csj = number of commands to speed up or slow down to speed m
α, β, γ = multipliers of components of tscann

tscann = time to scan n lines to look for the target
ρerror = the sum of voice recognition and user error rates
tnav = total time to navigation from start to target

Figure 2.1: Supporting equations for the GOMS model for document navigation.

and voice-activated operators involved in these techniques combine to form a complete timing mea-

surement. The following numbers apply only to experts in both keyboard-based and voice-based

navigation techniques. We are directly comparing the two in order to gain an understanding of the

disadvantages afforded by the current voice-based techniques on those who cannot use keyboard

and mouse.

The most important factor in the task of searching through a text document is not distance

to the target (especially since the target is not often on the screen), but instead how recognizable

the target phrase is. This is related to what the user is looking for, what the actual words are, how

unique they are, how fast the user can read and comprehend the text, and especially whether or not

the user knows the exact wording of what he is looking for or has only a vague knowledge of its

contents.

In Figure 2.1, we describe the equations that govern the time it takes to navigate n lines

in a text document to a desired target.

Equation 2.1 shows that the number of lines a given command scrolls (e.g. down arrow

scrolls one line, page down scrolls 24 lines) multiplied by the number of times that command was

given equals the number of lines traveled.

Equation 2.2 shows that the user’s scanning time is proportional to the number of lines

read and the number of scrolling and speed changing commands given (each command may take
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the user’s mind off the scanning process)1.

Equation 2.3 shows that the total navigation time is equal to the summation for all com-

mands that move n lines, times the delay in recognition, plus the time the person needs to scan the

text after scrolling. This summation is then multiplied by one plus the expected error rate (recog-

nizer error and user error).

Let us look at each type of navigation and run it through the equation. Given a navigation

that is dlines away, and a set of commands that enables you to navigate by any number of lines

or any number of screens (equivalent to some number of lines), and given a target phrase-human

combination that imposes a definite effect on tscann , we can vary some variables in the following

navigation methods:

• Keyboard navigation: ∆rc (the recognition delay for a command) is very small, around 70

ms [14]. The error rate is close to zero. cl1 = 1, cl24 = 1 (assuming 24 lines per page), and

for 2 ≤ n ≤ 23, cln = n. Auto-repeat on the keyboard lowers successive ∆rc’s to 33 ms

(assuming a 30 cps repeat rate).

• Speech-based navigation by discrete jumps: ∆rc for speech recognition using IBM Via-

Voice on a Thinkpad T20 P3-700/512 is 750 ms. The error rate is around 5%. cln for any n =

1 (using the command “go down n lines”).

• Find Dialog by keyboard: People use the find dialog only when they know the exact word(s)

that they are looking for. Equation #3 is not representative of the find dialog. The following

equation more closely approximates the task time.

tfind = cfind∆rc + ttyping + cOK∆rc+ (E(Pfind)− 1)(cnext∆rc + tscan) (2.4)

Users operate the find command by first issuing a command to open the find dialog, then

typing in the words they are looking for, and hitting the OK button. For each successive

search result highlighted by the system, the user must scan the line to see if the desired words

were found; if not, the user issues a find-next command and repeats. The expected number

of times to repeat is half of the number of times the words appear in the target document,

assuming that the user’s target is uniformly distributed amongst the search results.
1See discussion in Section 2.2.3
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In this mode, ∆rc = 70 ms, cfind = 1, cOK = 1 and cnext = 1.

• Find Dialog by Voice: This is the same as Find Dialog by Keyboard, except that ∆rc = 750

ms, and ttyping is replaced by tdictation, the time it takes to dictate (with errors and error

correction) the target phrase into the find dialog. cfind is usually 2 (Edit menu – Find menu

item), but can be 1 with a speech macro. cOK = 1, and cnext is usually 2 (Edit menu – Find

Next menu item), but can be 1 with another speech macro.

• Select and Say: This is similar to the find dialog, but the target phrase must be visible on-

screen, thus we must add in the scrolling time to make the line visible on-screen to the equa-

tion. The equation is as follows:

tselectandsay = tscroll + tscan + tdictate (2.5)

tscroll is the time to scroll within one screen of the target using any of methods described

above. tscan is the time it takes for the person to find the desired target on the screen (related

to a user’s skimming capability) and is inversely related to the target’s uniqueness. Once the

person finds the target, they must speak it out loud (tdictate) and then the software highlights

the phrase.

As one can see, the two dominant controllable factors here are tscan and cln , the scanning

time and the number of commands issued by the user. Reducing either of these numbers should

result in faster navigation times.

2.2.3 Design

The design phase for SpeedNav started with a survey of expert voice recognition users for

their impression of existing voice recognition packages, with emphasis on their use of the editing

facilities.

Expert Interviews

We interviewed three experienced users of speech recognition – those who use speech

recognition for most of their work during the day. They were professionals (non-programmers) who

use computers in their daily work, but due to motor disabilities, employ non-keyboard and non-
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mouse-based means of using the computer. Each had used voice recognition extensively. One was

still using voice recognition as his primary mode of manipulating the computer.

We asked the experts about their experiences using voice recognition software, including

what they used it for, the kinds of training they needed to make the input method usable, and the

problems they encountered while doing so. Several issues stood out amongst all the interviews:

1. The speed and quality of voice recognition was always described as too slow, too cumbersome

to use, too unreliable, bad at recognizing accents, and error-prone. These were the biggest

issues by far. When described in terms of frustration, one particularly good user said he

experienced 2-3 frustrating moments per hour. Usually if a user had the use of his hands, he

would “cheat” and revert to using a keyboard whenever voice recognition began to fail him.

2. Experts use voice recognition in different ways. Some use it only for dictation, and perform

editing by hand. If any editing by voice was performed, it would be a short period of time

after dictation (such as completing a paragraph). Many find that it does not work in all needed

applications, and does not work in technical applications (e.g. for computer programming).

3. People had problems editing by voice. In particular, they could not easily verbalize where

they wanted the cursor to go, nor could they easily figure out how to command the cursor to

go there. For some, using the mouse grid feature was the only reliable way they could move

the cursor to a location they could see on the screen. All those we interviewed recognized

that speech macros could be useful to speed up this task, but most did not use them.

Prototype Ideas

We developed many ideas towards achieving our goals. We prototyped six of them in

Microsoft Word using Visual Basic. These prototypes were useful in furthering our understanding

of the difficulties in designing a good navigation tool, and we present our findings here.

Our major idea was auto-scrolling with a voice-enabled speed control. To reduce the num-

ber of commands the user must say, the user starts to scroll the document in a particular direction,

scanning the document as it scrolls by for the desired phrase. He stops the scroll when he sees his

target on the screen. We assert that this mechanism also reduces the cognitive load to scan the text

as it scrolls by – the user does not have to re-utter the text in order to select it. We also add a speed

control, enabling the user to match the scrolling rate to his natural scanning capability.
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To support our idea, we extend the GOMS analysis (from Section 2.2.2) for the following

two methods: auto-scroll and auto-scroll with speed control.

Speech-based navigation by auto-scroll: In this mechanism, there are only two com-

mands necessary, “start” and “stop”, so cldlines
= 2, and for all other n, cln = 0. The time between

successive scroll actions is tpause. This is set to a particular value (the next mechanism enables

speed control) but must be greater than the tscan or the person will not have enough time to com-

prehend the text before it scrolls away. ∆rc = 750 ms, so the drop in the number of commands to

a constant two commands should have a significant effect to lower the overall navigation time. The

velocity of the scrolling motion directly affects the precision of the user to avoid overshooting and

indirectly affects accuracy of cursor placement.

Speed-based navigation by speed-controllable auto-scroll: Finally, we take the above

mechanism and add two commands to control the pause time: “faster” and “slower”. We hypothe-

size that the desired navigation speed of the user will follow the equations below:

tstart = ∆rc (2.6)

tstop = tscann + ∆rc (2.7)

tpause ≥ tstop (2.8)

tstart = time it takes for the system to react to a start command

tstop = time it takes for the system to react to a stop command

tpause = time between successive actions by the editor
Once the user begins scrolling, the system sets the pause time to the user’s personal initial

value. The user may issue the speed control commands to increase and decrease this pause time,

but may not lower the time below the time he needs to scan n lines of text for the target. The

pace of scrolling will drop (pause time will increase) as the user nears the target. While the ∆rc is

750 ms for the “start” and “stop” commands, we feel it is possible that the “faster” and “slower”

commands overlap the pause time, therefore its contribution to tscan is zero (This finding requires

further study). Most users do not realize that ∆rc is so long, and therefore they do not slow down

in time, and overshoot the target. This overshoot problem will diminish (but never go away) with

practice.
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Prototype Results

We implemented several variants of the above idea. The first was to scroll the screen using

the cursor, but that caused the eye to follow the cursor instead of the text. We then tried a smooth

scroll without the cursor, but found that smoothness caused blurring of the text, making it hard to

read at all scroll speeds. The third was a line-by-line scroll, but still found that the text was too

jerky to read. Thus, we rediscovered a principle of perception, the human eye cannot read text that

is constantly moving. The eye must fixate on a word in order to read it [14].

The fourth prototype switched to auto-scrolling by page instead of by line; the user then

controlled the length of the pause between the scrolling operations. It was important to scroll less

than a page at a time so that the user could recognize continuity in the scroll by seeing words that

had been at the bottom of the page, now at the top. We also learned that after the scroll is complete,

it is important to leave the cursor in the middle of the screen, rather than at the bottom, to minimize

the amount of further cursor motion needed to reach the desired character position.

Final Design

The final design for SpeedNav incorporates all of the lessons learned above. The main

feature is an auto-scroll and pause, scrolling the text of the document rather than the cursor. The

scanning speed is controlled by the pause time, initially set at 2 seconds. Each page-down/page-up

action is invoked over a period of 100 ms, and scrolls 3/4 of the page, creating a 1/4 page overlap

between screens of text. We added line scanning (line up and line down) which operated solely by

scrolling and had a variably controlled speed between 2 lines per second and 20 lines per second. In

addition, we added character scanning (left and right) with variably controlled speed initially set at 8

characters per second. When the user switched from page scrolling to line or character scrolling, the

cursor position was placed in the middle of the screen horizontally and 1/3 down the page vertically.

We supported nine commands in two categories:

1. Navigation: Page Down, Page Up, Go Down, Go Up, Go Left, Go Right

2. Speed: Faster, Slower, Stop

Most of the commands are two words/syllables to aid in speech recognition accuracy.

We experimented with a compensation for cursor overshoot. When the user stopped the

cursor, we knew its velocity, and could estimate the amount of ∆rc. We used this information
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to calculate how many units (characters, lines, or screens) we would automatically backtrack the

cursor. Unfortunately, in our preliminary experiments, users would “game” the system, trying to

estimate the amount of cursor overshoot and anticipating when to stop it, which directly interfered

with our naive implementation of this option. It was removed from SpeedNav in the final study.

2.2.4 Implementation

We developed two implementations of SpeedNav. Our hardware platform for both was an

IBM Thinkpad T20 with a Pentium III running at 700 MHz and 512 MB of RAM running Windows

XP Pro. Both implementations used IBM ViaVoice 9 as the speech recognition software. IBM

ViaVoice provides an API to the programmer called SMAPI (Speech Manager API) which enables

an application to access voice recognition services, including access to dictation and command and

control grammars.

Our first implementation was written in Visual Basic, which we used to script the Mi-

crosoft Word 2000 word processor. The speech recognition interface was implemented through

IBM’s ActiveX controls (provided in ViaVoice 8). The second implementation was written in Java

using a modified Swing Stylepad word processor. We interfaced to the speech recognizer via an

IBM-provided JSAPI (Java Speech API) plugin.

Technology Problems

We encountered several problems with the Visual Basic implementation of SpeedNav.

First, we found the Visual Basic language (which we learned for this project) to be quite a bit harder

to understand and use than a more traditional programming language like Java. In addition, the

COM OLE Automation documentation for Microsoft Word is poorly organized (alphabetically by

function name, even though it is an object-oriented API) and at crucial times, the online web-based

documentation was unavailable. We found that our control of MS Word was superficial and we

could not implement sophisticated shading behaviors that we had intended for a seventh prototype.

In addition, all of Microsoft Word’s scrolling techniques left the cursor at the bottom of the screen as

it scrolled. We did not have enough control over this to move the cursor to a stable screen position.

By contrast, Java’s open source implementation and documentation made it possible to

work around any difficulties we had in massaging its software to behave the way we intended.

However, Java’s less than speedy performance prevented us from implementing smooth scrolling

behaviors (some of MS Word’s scrolling functions were also quite jerky, but it was possible for the
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# Lines Total Time Multi-page Reading # Cmds # Recog # User # Mouse
(sec) Time (sec) Time (sec) Errors Errors Grid

User 1
Doc 1 Task 1 87 235 226 74 42 5 3 0

Task 2 55 75 68 42 5 1 0 0
Task 3 59 162 150 60 17 3 0 0
Task 4 92 86 84 48 11 1 0 0

Doc 2 Task 1 88 65 48 22 9 2 1 0
Task 2 62 129 118 81 9 0 0 0
Task 3 133 235 208 190 12 1 2 0
Task 4 154 290 271 173 22 2 4 0

User 2
Doc 1 Task 1 87 61 58 41 13 1 0 1

Task 2 55 18 11 10 5 1 0 1
Task 3 VOID VOID VOID VOID VOID VOID VOID VOID
Task 4 92 131 129 85 19 0 1 2

Doc 2 Task 1 88 59 26 N/A 8 0 0 0
Task 2 62 61 47 N/A 11 0 0 0
Task 3 133 205 188 N/A 27 0 1 0
Task 4 154 250 250 N/A 27 0 1 0

User 3
Doc 1 Task 1 87 69 61 26 16 0 3 0

Task 2 55 63 51 47 8 0 1 0
Task 3 59 83 74 58 11 0 1 0
Task 4 92 100 99 57 23 0 1 0

Doc 2 Task 1 88 33 24 N/A 5 0 1 0
Task 2 62 153 127 N/A 27 0 4 0
Task 3 133 98 98 N/A 12 0 4 0
Task 4 154 145 135 N/A 17 0 1 0

Table 2.1: This table shows the data collected from the users in our study on document navigation.
(User 2, Task 3 is voided because he got confused about which target he was looking for. Reading times for Tasks 5-8

(using SpeedNav) for Users 2 and 3 are marked N/A because we could not reliably differentiate between the time spent
reading and the time spent issuing commands.)

most part to avoid them), but due to time constraints, we were forced to accept it.

We eventually abandoned the Microsoft implementation in favor of the Java version, and

used it in our user study, described in the next section.

2.2.5 User Study

In this section, we describe a study of three expert users of voice recognition. We asked

each user to perform several editing-by-voice tasks using their own voice recognition tools and our

implementation described above.
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Hypothesis

We predict that the speed of the tasks will improve from the user’s own voice recognition

tools to our auto-scrolling cursor. In addition, the number of commands spoken should drop, reduc-

ing the delay caused by the speech recognizer response time. However, due to the need to control

the speed of the cursor, there may be more commands than we predict using our GOMS analysis.

We also anticipate the cognitive load of the navigation tasks will go down, as measured the amount

of time it takes for the user to scroll the document to the page containing the target.

Methods

We asked expert users of voice recognition software to perform 8 tasks divided into two

similar groups of 4. Each group involved short, medium, long distance, and backwards medium

distance navigation through a 10-15 page scene from a Shakespeare play (Romeo and Juliet, Act

III, scene 1, and Taming of the Shrew, Act II, Scene 1). One user was familiar with the plays, while

the others were not.

Each task was phrased as a search for a specific line in the play. However, learning from

our pilot study, we did not give the user the specific words but only a vague description of the line.

This approach seems to better approximate the kind of navigation task a user is likely to perform on

documents that are unknown to him, or those that are not fresh in his mind. This also simulates the

kind of search we envision that programmers would employ, since they often know what they are

looking for without knowing the exact wording of the code.

The first group of tasks was performed using the expert users’ own voice recognition

setup, with their own equipment and software (User #1 used Dragon NaturallySpeaking 5.0 on a

P2/450 128MB. User #2 used Dragon NaturallySpeaking 5.0 on a P3/550 320MB. User #3 used

Dragon Dictate 3.01 on a P3/500 128MB). The second group of tasks was performed using our

SpeedNav software and a laptop that was brought to each session. Users were trained for 10 minutes

on IBM ViaVoice using the ViaVoice User Setup Guru. Users then trained for about 5 minutes with

SpeedNav on another sample document to gain a feel for our software. We provided a cheat sheet

with a list of the nine SpeedNav commands to each user during their tasks.

We video-recorded each session for later analysis.

At the end of the study, we interviewed the participants to gauge their opinions and feel-

ings comparing the two navigation methods.
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Metrics

# Commands
# Lines

Multi-page Nav Time
# Lines

User 1
Doc 1 Task 1 0.48 2.60

Task 2 0.09 1.24
Task 3 0.29 2.54
Task 4 0.12 0.91

Average 0.25 1.82
Doc 2 Task 1 0.10 0.55

Task 2 0.15 1.90
Task 3 0.09 1.56
Task 4 0.14 1.76

Average 0.12 1.44
User 2
Doc 1 Task 1 0.15 1.67

Task 2 0.09 0.20
Task 3 VOID VOID
Task 4 0.21 1.40

Average 0.15 1.09
Doc 2 Task 1 0.09 0.30

Task 2 0.18 0.76
Task 3 0.20 1.41
Task 4 0.18 1.62

Average 0.16 1.02
User 3
Doc 1 Task 1 0.18 0.70

Task 2 0.15 0.93
Task 3 0.19 1.25
Task 4 0.25 1.08

Average 0.19 0.99
Doc 2 Task 1 0.06 0.27

Task 2 0.44 2.05
Task 3 0.09 0.74
Task 4 0.11 0.88

Average 0.18 0.99

Table 2.2: This table shows two aggregate measures derived from our data on document navigation:
Number of commands divided by number of lines read, and the multi-page navigation time (in
seconds) divided by the number of lines read.

(User 2, Task 3 is voided because he got confused about which target he was looking for.)

We measured several quantities (shown in Table 2.1) to understand the impact of using

traditional speech-recognition-based navigation vs. auto-scroll to navigate through a document. We

measured the total time per task, time to scroll the document to the page that contained the target

(called multi-page navigation), the total number of commands spoken, the number of recognition

errors, the number of errors caused by misuse of the tool, and number of times the user invoked the
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mouse grid. In addition, for the users’ own speech recognition-based tool, we measured the time

spent reading and scanning text (assuming that the rest of the time was spent issuing commands and

waiting for the response of the speech recognizer).

Discussion of Results

We compared the two tools using two aggregate measures derived from our data (see Table

2.2). The first is the number of commands divided by the number of lines traveled. The second is

the multi-page navigation time (in seconds) divided by the number of lines traveled.2

We ran an unpaired t test that showed no significant difference between the users’ own

tools and SpeedNav (P = 0.79 for the multi-page numbers, and P = 0.31 for the commands per line

numbers), however, the means for SpeedNav were better. We feel that if we re-did our experiment

with enough users, we would be able to better discern a difference between the tools.

Another difference between the tools is that users had years of experience with their own

tools, but only 10 minutes of practice with SpeedNav. Perhaps, users more practiced with SpeedNav

would perform better. From our experience, users dramatically improve their performance with

voice recognition software over time.

Post-Study Interview

We conducted an interview with each study participant after completing the tasks. In

general, participants said that SpeedNav was easier to use than their existing speech recognition

system. There were fewer commands required to move to the desired location, and the commands

themselves were easy to remember. Participants also appreciated the speed control. One participant

also liked the cursor moving by character because he could control the cursor speed to match his

reading speed and use the cursor as his pointer.

On the other hand, participants universally had trouble with cursor overshoot, especially

when navigating to a location within the current screen. While in general, the cursor overshoot

problem is an inherent component of motion-based navigation, SpeedNav exacerbated the problem

by not supporting precise positioning within a page. One user wanted to be able to place the cursor at

natural landmarks in the document (top of page, top of document, etc). Users observed that relative

positioning of the cursor (by motion along the vertical or horizontal axis) is not always the most
2We use the multi-page navigation time rather than the total time because users universally found that within-screen

navigation was much more cumbersome and inaccurate using SpeedNav.
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efficient path to a point on the screen. One user preferred to use mouse grid exclusively to navigate

within the screen, and was very proficient at it. Another user felt that if he was more familiar with

the document, he would have been able to more effectively use the speed controls, and slow down

before reaching the target (minimizing cursor overshoot).

2.2.6 Related Work

Our solutions are inspired by Manaris, McCauley and MacGyvers’ SUITEKeys voice-

activated keyboard and mouse [63], and Igarashi and Hughes’s non-verbal voice input [41].

Manaris specifically addresses individuals with permanent motor disabilities (such as

those who use a keyboard via mouthstick) and enables them to “press” keys on a keyboard and

“move” the mouse by speaking low-level actions. It is not clear whether the voice keyboard has

auto-repeat, but the voice can start the mouse cursor moving and then cause it to stop with another

utterance. Inspired by this work, we created an ability to start the text cursor in motion and stop it

at a later time.

Igarashi enables people to use pitch and volume (instead of speech) to control a button or

joystick. We applied this idea to our solution by enabling a user to control the speed of the cursor

movement (though we use words to command it rather than non-verbal communications).

Igarashi’s earlier work on speed-dependent automatic zooming [40] is also relevant to our

work in that he mentions that when a user scrolls too fast, it is hard to read the text, even to just get

a sense of where he is. He proposes an automatic zoom-out feature as scrolling gets faster to enable

people to gain a better sense of where they are. We believe that our pause concept is superior since

stationary text is much easier to read than text moving at any velocity.

Karimullah and Sears [48] studied speed-based cursor control. They recruited non-expert

users of speech recognition (none had any visual, heading, speech or cognitive impairments), where

we are targeting our work at expert users who are using speech recognition as a primary form of

input. Their users, however, did experience the ubiquitous cursor overshoot problem, even though

they restricted themselves to a single cursor speed. In addition, our task is more realistic in a

work setting, making the user search through a text document rather than a simple graphical target.

Finally, we are working with multi-page documents, which implies that a simple Fitt’s law of motion

is inapplicable to navigate to the desired target.
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2.2.7 Future Work

In our post-study interview, one user expressed a desire for SpeedNav to adjust its speed

automatically according to the density of the document text visible on the screen (measured in

visible characters). This would be even more interesting if SpeedNav controlled the initial speed

of motion when beginning a navigation task as well. This would provide an alternate means of

adapting to the user’s inherent reading speed than provided by Igarashi’s zoomable user interface.

Both controls attempt to preserve a constant density of text per unit time.

Another method to speed up the user’s navigation performance is to improve the user’s

own technique in scanning text. A course in speed reading might nicely complement our SpeedNav

work.

In addition, we think that if we add a shaded region of lines to the document it could make

these lines easier to read because human eyes are drawn to regions of colors that are different than

their surroundings. The idea is to shade three lines of text with a pastel background, and when the

auto-scroll is active, we move this shaded region down the page, one line at a time, until it reaches

3/4 of the way down the screen (it will make this journey within the pause time for reading this

page). When the shaded region hits this point, the entire screen will scroll 1/2 a page (leaving the

shaded region 1/4 from the top of the screen). This shaded region will help draw the eye (from the

cursor) and focus the reader to scan the text from top to bottom as the shaded region moves.

We feel we can improve the sophistication of the cursor overshoot correction algorithm in

a novel way. Since ∆rc > 0 requires that the cursor will go further than where the user intended, we

propose to place two shaded regions (of different colors) on the screen. The first shaded region goes

at the top of the page (when the user is scrolling down, and at the bottom when scrolling up. (For

the rest of this example, we will assume a downward scroll.). The second, ∆rc × speedscroll lines

below it, is centered in the middle of the screen. When the user scrolls, he will read the text in the

center shaded portion, but in reality the system assumes the “cursor” is in the upper shaded portion.

When the user says “stop”, the “cursor” in the upper shaded portion scrolls down to the center

shaded region and stops, eliminating the users’ perception of the overshoot. This kind of trickery

was studied by Karimullah and Sears [48] for cursor motion within a screen towards a graphical

target. Users experienced higher error rates with such an automatically correcting cursor, but the

experiment used no speed control, which we feel might enable users to slow down to a comfortable

reading speed.
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2.2.8 Summary

Document navigation, the less glamorous aspect of speech recognition, deserves more

attention from the research (and commercial) community. An improvement in this functionality will

enable those with motor impairments to enjoy the same ease of editing that non-impaired people

take for granted. In addition, program navigation is an important part of software development.

Improvements to document navigation would be beneficial for programmers.

This work contributes to our understanding of the performance of the current state-of-

the-art when used by people with motor impairments. We have shown through a GOMS analysis

that the only ways to improve this performance are to reduce the number of commands and the

cognitive load on the user. Reducing the latency in speech recognition will help, but the problems

will not go away until speech recognition response is as fast as a keyboard or mouse. Our SpeedNav

tool showed the potential to reduce the number of commands and the cognitive load through an

auto-scrolling mechanism. Even though our results were inconclusive (comparing SpeedNav to

commercially-available solutions), further development along these lines (as well as a larger user

study) should show a more significant result.

2.3 Programming Tasks by Voice

In this section, we summarize what we learned from the two experiments described above

and relate them directly to voice-based software development.

2.3.1 Code Authoring

Our spoken programs study showed that code authoring support requires a speech analysis

system that can understand the natural language words of a program spoken out loud. Punctuation

is generally omitted from speech, causing many ambiguous interpretations of the input, even for a

human listener. Some of the ambiguities are lexical (words that are spelled, capitalized and sepa-

rated from one another in various ways). Others are syntactic – missing punctuation creates many

possible structures for short utterances. Despite the ambiguities here, however, it should be possible

for a human listener who is cognizant of the entire program being written to figure out the right

interpretation. What remains to be proven is that a computer can be programmed to disambiguate

as well or better than a human could.

In the study, some programmers described the code they wanted to create rather than
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speaking the program’s literal words. For example, a programmer might say “There is a class here.”

Recognizing command forms of these phrases, in a form of phrase-based code template expansion,

would best support this style of voice-based programming. The acceptance of this style would also

confirm Snell’s assertion that keyword-based code template expansion contributes to efficient input

of code by voice.

Note that our spoken programs study looked at programmers speaking pre-written code

that they read off a piece of paper. There was no visual or auditory feedback of their progress through

the program, nor any way to verify the correctness of the program they spoke. In addition, the

program was spoken linearly from top to bottom, which is different from the way most programmers

create new code. Some software developers plan the interface to their code before they write the

implementation; some write one function and test it before writing the next. Each of these styles

would require a speech system to accept partial code or code out of context; supporting the analysis

of spoken incomplete or incorrect programs is vital to a usable solution.

While we feel that we have identified the spoken language used by the study participants

for code authoring, our understanding of what kinds of errors they make will require further study.

2.3.2 Code Editing

Editing code requires a mix of code authoring and commands for manipulating the pro-

gramming environment. We have identified four kinds of essential commands necessary for editing

a program.

1. Edit and Replace: A developer will select a piece of code and then edit the structure. Replace

is similar to edit, but erases the structure and then inserts code.

2. Insert Before and Insert After: Many program structures are found in sequences (e.g. se-

quences of statements, sequences of class members). When editing a large structure with

many component members, a programmer will select one structure in a sequence (or “ep-

silon”, the empty sequence) and add another element in the sequence before or after the

selection.

3. Delete: This one is self-explanatory.

4. Copy, Cut, Paste, Undo, Redo: These are the standard clipboard and history commands with

which programmers and other document writers have long grown comfortable.
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5. Text-Based Editing Commands: When a programmer needs to edit an identifier name, com-

mands that move the cursor around (Go Left, Go Right, Go Left Word, Go Right Word, Go

Home, Go End), select text (Select All, Select Left Word, Select Right Word), delete text

(Delete Left, Delete Right, Delete Left Word, Delete Right Word), insert new text (any letter,

Space, Insert Line), and change capitalization (Cap That, Lowercase That) are essential.

The realization of these editing commands in our programming environment will be de-

scribed in Chapter 7.

GOMS Analysis for Program Editing

We can use GOMS to analyze the editing commands we have chosen for our new voice-

based programming environment and see how they compare with typing. We will employ the same

KLM model as we used for the document navigation analysis.

In Figure 2.2, we show the equations that govern basic entry of code by keyboard and by

voice. The equations show that voice-based code entry is almost always slower than typing. The

main numbers we care about are the time to enter a word on the page tword and the time to enter

a whole program statement tstmt. For typed programs, the time to enter a statement is the number

of words in the statement times the number of keystrokes to type each word. As we stated above,

∆rc, the recognition delay, is around 70 ms to press a key. For spoken programs, the time to enter

a statement is the number of words times the speech recognition delay modified by the recognition

error rate. Using good speech recognizers, the recognition delay is around 750 ms. Even assuming

that there are no speech recognition errors, each word would have to have 10 characters in it to

slow typists down as much as speech recognition users. Adding a standard error rate for a trained

recognizer of around 0.1%, and probably a much higher error rate for cascaded errors, the words in

a program would have to be considerably long for speech to be competitive with typing.

Most of the editing commands activated by speech have equivalent single keystroke forms

activated by the keyboard. Thus, we only have to multiply by the ∆rc for each modality to under-

stand the speed of the interface for code entry.

When editing pre-existing code, keyboard users merely point their cursor at the start of

the text they want to edit, and start typing. Voice-based programmers must select the insertion

point carefully using one of the document navigation techniques described above. Mouse grid is

the fastest for pointing to a position visible on the screen, only requiring around four or five spoken

commands. Since mouse grid is geometrically identical every time it is invoked, voice recognition
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tword = lword∆rc Typing (2.9)

tword = (1 + ρerror)∆rc Speech (2.10)

tstmt = tword lstmt Typing or Speech (2.11)

tword = time to enter a word on the page
lword = length of word in keystrokes
tstmt = time to enter a statement on the page
lstmt = length of statement in words
ρerror = the sum of voice recognition and user error rates
∆rc = computer’s recognition delay per command or keystroke

Figure 2.2: Supporting equations for the GOMS model for program entry.

users who are trained do not have to wait for the recognizer to respond to their spoken numbers

before uttering the next. Thus the total delay for pointing with mouse grid is very close to the delay

for recognizing a single command, around 750 ms. Once the selection point is determined, voice

users speak one command (Edit This) and then start dictating their changes to the code.

Note, that keyboarding editing commands like Delete Left, Delete Right, Go Left, Go

Right, and the like, each only take one keystroke to activate (70 ms). Repeated keystrokes are even

faster (33 ms). Voice commands for manipulating the cursor are each as slow as dictating a word,

except that usually the speaker must wait for each command to activate before moving onto the next.

So each command takes at least 750 ms, even, and especially, repeated commands. Thus it is likely

that a voice recognition user edits code much more slowly than a keyboard user.

One technique for avoiding such delay in editing is to respeak the entire statement when

editing it, or when a mistake in recognition is made. In this case, there is one command to restart

(Select All); further speech will overwrite the existing statement and insert the new text. If a mis-

recognition can be avoided, and potentially difficult to control capitalization or word spacing is not

required, then this technique can speed up code editing and dictation significantly.

2.3.3 Code Navigation

Much of a programmer’s time is spent browsing and navigating through his code. Nav-

igating code requires having a mental model of what the program does and how it is structured.

Consequently, much work has gone into program visualization tools to illustrate high-level program

structure and facilitate browsing [23, 109, 68, 82, 77, 64, 57, 24, 7]. When it comes to actuating
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the navigation, however, IDEs rely on keyboard and mouse, especially on the ability to click on or

scroll to an item of interest in order to manipulate it. Voice recognition presents problems with both

of these forms of absolute and relative navigation techniques.

To study the issues in a simpler form, we looked at voice-based navigation in text (non-

program) documents in the second experiment described above. Though the nature of the content

is different, the need to navigate quickly to parts of the program where the semantics, but not the

actual written code, is known is the same. The techniques used for verbalizing the navigation to

these kinds of locations in a document are also very similar. Autoscrolling is one technique that can

be used to quickly browsing through code, but the overshoot problem will need to be fixed before

that becomes a good solution.

Inspired by our navigation exploration, we came up with two new navigation techniques

which we think are much better than previous approaches and quite suitable for programmers as

well. These are context-sensitive mouse grid and phonetic search. We have developed a mouse grid

that is sensitive to program structure, enabling programmers to hierarchically navigate to the desired

program element quickly and naturally. This is described in Section 7.3.4. Phonetic search is also

useful, when extended with the ability to discover phonetically similar abbreviated words, such as

identifiers often used in programming. This technique is described further in Section 7.3.8.
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Chapter 3

Spoken Java

3.1 Spoken Java

In the previous chapter, we described two studies we conducted that explored how people

using voice recognition might approach the tasks of code authoring and navigation. The goal of

these studies was to inform the design of a new naturally verbalizable alternative to Java that we

call Spoken Java. Spoken Java is a dialect of Java that has been modified to more closely match

what developers say when they speak code out loud. Spoken Java is the input form for our new

programming environment called SPEED (SPEech EDitor). SPEED is an editor for Java programs

that allows voice recognition users to compose and edit programs using Spoken Java. Spoken Java

code is ultimately translated into Java as it appears in the program editor. Spoken Java is designed

to be semantically equivalent to Java – despite the different input form, the result should be indis-

tinguishable from a conventionally coded Java program.

Java was chosen as the prototype language for a number of reasons. First, it is in widespread

use in both industry and academia. Many people are learning Java and programming real applica-

tions in it. While Java is a large language, it admits tractable static analyses to discover the meaning

of entire programs. Other popular languages are known to be more difficult to analyze (e.g. C and

C++). Finally, Java is representative of programming languages in general. The knowledge we gain

and methodologies developed by prototyping our speech system with Java can easily be applied to

other statically analyzable programming languages.

Several features of Spoken Java were added to address the concerns brought up during

our study of code verbalization. Most punctuation is optional, and all punctuation has verbaliz-

able equivalents. Each punctuation mark may have several different verbalizations, both context-
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for int i equals zero
for(int i = 0; i < 10; i++) { i less than ten

x = Math.cos(x); i plus plus
} x gets math dot cosine x

end for loop

(a) (b)

Figure 3.1: Part (a) shows Java code for a for loop. In (b) we show the same for loop using Spoken
Java.

insensitive (e.g. “open brace”) and context-sensitive (e.g. “end for loop”). We have reversed the

phrase structure for the cast operator to better fit with English (e.g. “cast foo to integer”) and pro-

vided alternate more natural language-like verbalizations for assignment (e.g. “set foo to 6”) and

incrementing or decrementing a value (e.g. “increment the ith element of a” in place of “a sub i plus

plus”).

Figure 3.1 shows an example of how a Java program might be entered in Spoken Java

(carriage returns in Spoken Java are written only for clarity). Note the lack of punctuation, the

verbalization of operators (less than and equals), an alternate phrasing for assignment, and

the verbalization of the cos abbreviation. (The example assumes the correct spelling for x and i).

Figure 3.2 illustrates more program structure. Note the lack of capitalization, separation

of words to and buy, (and print and line), the assumed correct spelling for every word (which

should not be assumed as the user speaks the code), the expansion of the abbreviation ln to line,

the optional punctuation character dot, and the overall lack of braces and parentheses. Also take

notice of the lack of a right parenthesis or suitable synonym after thing to buy in the method

declaration parameter list.

3.2 Spoken Java Specification

Spoken Java is defined by a lexical and syntactic specification in the XGLR parsing frame-

work described in Chapter 5. Motivated by the language used by the programmers in the study, the

lexical specification supports multiple verbalizations by allowing many regular expressions to map

to the same token. The grammar is similar to a GLR [95] grammar for Java, but contains fifteen

additional productions to support four main features: a) lack of braces around the class, interface,

and other scoped bodies, b) different verbalizations for empty argument lists as opposed to lists of at
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public class Shopper {
List inventory;
public void shop(Thing toBuy) {

inventory.add(toBuy);
System.out.println(toBuy.toString());

}
}

(a)

public class shopper
list inventory
public void shop takes argument thing to buy

inventory dot add to buy
system out print line to buy dot to string

end class

(b)

Figure 3.2: Part (a) shows Java code for a Shopper class with a shop method. In (b) we show the
same Shopper class and method using Spoken Java.

least one argument, c) an alternate phrasing for assignment and d) an alternative phrasing for array

references. Each of these additional productions naturally maps to a structure in the Java grammar.

The Spoken Java language is presented in its entirety in Appendix B.

Spoken Java is considerably more ambiguous than Java, mainly due to lexical ambiguity

and the lack of required punctuation in the language. Some lexical ambiguities arise due to English

words being used with multiple meanings. For example, “not” could mean both boolean inversion

and bitwise inversion. “Star” could mean both multiplication and Kleene star. “Equals” can stand

for assignment and equality. “And” can be boolean and, bitwise and, or a substitute for comma

in a sequence of parameters or arguments. Many words can be both Spoken Java keywords and

identifiers; a few that are specified are “array,” “set,” “element,” “to,” “new,” “empty,” “increment,”

and “decrement.” The full set of alternatives supported by Spoken Java can be found in the lexical

specification in Appendix B.1. These ambiguities are identified after the voice recognizer returns

them to the analysis engine.

The lexical specification also contains several ways to say each construct, to cover the

range of expression we found in the Spoken Programs study. For example, for the Java in-

stanceof, one can say “instance of” or “is an instance of.” Java’s >> operator can be spoken

“right shift” or “r s h.” Java’s == can be spoken as “equals,” “equal equal,” or “equals equals.”
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These alternate utterances often provide unambiguous ways to say a particular token when the orig-

inal word could be construed to have multiple meanings.

A few of the keywords and numbers in the Java lexical specification are homophones

with other words, usually identifiers. For instance, “to” is a homophone with “2,” “too” and “two.”

“One” is a homophone with “1,” and “won.” “char” can also be spelled “car.” “4” can be spelled

“four,” “for” or “fore.” We run each spoken word through a dictionary of homophones to generate

all possible spellings for a word before analyzing its meaning.

As reported by an XGLR parser generator, Spoken Java contains 13,772 shift-reduce,

reduce-reduce, and goto-reduce conflicts. In addition, each of the 59 lexical ambiguities causes a

form of shift-shift conflict in the parser, which brings the total number of conflicts to 13,831. By

contrast, Java contains only 431.1 Each conflict results in a runtime ambiguity and a slight loss of

performance away from linear time. In Java, each of these runtime ambiguities is resolved within

one or two tokens (due to the language design); by the time the entire program has been successfully

parsed, there are no ambiguities in the parse. In Spoken Java, however, many of those ambiguities

survive parsing, requiring further analysis to identify their meaning.

All of the analyses used to generate, propagate and resolve ambiguities will be presented

in Chapters 5 and 6.

3.3 Spoken Java to Java Translation

Spoken Java was designed to be only the input form of a spoken programming environ-

ment; in order to be accepted by colleagues and co-workers, a programmer’s end product must be

traditional Java code. Thus, it was designed to have a similar syntax to Java in order to make it

easy to translate back and forth. We have developed a grammar-based translator that can take an

unambiguous parse tree for Java or Spoken Java and convert it to a string in the other language.

As will be described in Chapter 7, the SPEED program editor employs the translator to convert the

programmer’s speech into Java, and to convert the Java program itself into Spoken Java for editing

or training purposes.

This translator is based on a grammar-oriented specification. For each production in

the Java and Spoken Java grammars, a list of operators is specified to define how to translate
1By comparison, C++, a language with considerably more syntactic ambiguities than Java, has 2,411 conflicts. It is

impossible to predict the increase in the number of conflicts in the spoken version of C++, since each language’s spoken
variant must be designed specifically according how it is spoken in the vernacular, and not with a standard calculation.
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each right-hand side (RHS) symbol. There are 19 operators, most (16) dealing with the termi-

nals in the grammar and only three dealing with nonterminals. Nonterminals are simply decom-

posed into their component RHS symbols (HANDLE KIDS). Sequences can be stripped of sep-

arators or have them added (COPY LIST DROP SEPARATOR, COPY LIST ADD SEPARATOR).

Terminals can be copied (COPY LEXEME), added (ADD LEXEME), dropped (DROP LEXEME), re-

placed (REPLACE LEXEME), or converted to their default representation in the other language

(DEFAULT LEXEME). Multi-word identifiers in Spoken Java are translated by concatenating the

words together in one of three styles: CamelCase (words with initial capital letters joined by con-

catenation), C++ (words joined by underscores), or simple concatenation (COPY IDENT). Spoken

Java speakers may use the word “quote” in place of the quote character, so there are two more

actions used to substitute the quote character for the word at the beginning and end of strings and

character literals (COPY CHAR LEXEME, COPY STRING LEXEME).

Translation is done through a top-down depth-first traversal through the parse tree. The

node type (grammar production) for each node in the parse tree is used to dispatch into the specifi-

cation table. Each child of the node is processed as the specification dictates for the right-hand side

of that production. If a sequence or optional node is found without special handling, the algorithm

simply continues. If ambiguities are found, one of the alternatives is chosen to be translated, ignor-

ing the others. To translate all ambiguous interpretations, the translation function must be called

again on the same parse tree after the caller changes the order of the alternatives in the ambiguous

node to allow another alternative to be chosen. The result of translation is a string in the target

language.

There are several special cases in the translator. When translating a type cast or array

reference operation from Spoken Java to Java, the production’s symbols must be reordered to con-

form to Java. Likewise, when converting from Java to Spoken Java, type cast operations must be

reordered. In addition, when method calls have no arguments, their argument lists are replaced by

the keyword NOARGS which is what the study found that programmers are likely to say.
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Chapter 4

Analyzing Ambiguities

Programming by voice, the novel form of user interface described in this dissertation,

enables the user to edit, navigate, and dictate code using voice recognition software. It uses a com-

bination of commands and program fragments, rather than full-blown natural language. Spoken

input, however, contains many lexical ambiguities, such as homophones,1 misrecognized, unpro-

nounceable, and concatenated words. When the input is natural language, it can be disambiguated

by a hidden Markov model provided by the speech recognition vendor. However, when the input

is a computer program, these natural language disambiguation rules do not apply. It is as if one

were to use German language rules to understand English text. Some words and sentence structures

are similar, but most are completely different. Not only do the ambiguities affect the voice-based

programmer’s ability to introduce code, they also affect the ability of the voice-based programmer

to use similar sounding words in different contexts.

Traditional programming language analyses do not handle ambiguity, because languages

were designed specifically to be unambiguous, with very precise syntax and semantics. This math-

ematical precision of programming languages is both a curse and a blessing. It is a curse for verbal

entry of programs because humans do not speak punctuation or capitalization, they drop and reorder

words, and speak in homophones – all features of a program that must be precisely written down.

Fortunately, however, the same precision that appears to hinder system understanding of spoken

programs is also the solution. We can analyze the program being written to disambiguate what the

user spoke and deduce the correct interpretation. This cannot be done with natural language because

natural language syntactic and semantic analysis is still infeasible, and natural language semantics

are far more ambiguous than those of any programming language.
1Homophones are words that sound alike but have different spellings.
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Using program analysis techniques we have adapted for speech, we use the program con-

text to help choose from among many possible interpretations for a sequence of words uttered by the

user. We present an example here. A programmer wants to insert text at the ellipses in the following

block of code:

String filetoload = null;
InputStream stream = getStream();
try {

...
} catch (IOException e) {

e.printStackTrace();
}

She says “file to load equals stream dot read string.”

Let us look at the interpretation of just the first three words “file to load,” considering

variable spelling and word concatenization. It is possible to spell “to” as “too,” “two” or “2”. “Load”

can also be spelled “lode” or “lowed.” And either the first two words or the second two words can be

concatenated together to form “fileto,” and “toload”, or all three words can be concatenated together

to spell “filetoload.” This makes 48 possible interpretations of the words (12 spelling combinations

times 4 word concatenizations) that must be considered by the lexical and syntactic analyses in our

system.

This and many other lexical and syntactic ambiguities form what we call input stream

ambiguities. These kinds of ambiguities also appear in embedded languages and legacy languages.

Unfortunately, many widely-used programming language analysis generators, among them the pop-

ular and successful Flex lexer generator and Bison parser generator, fail to handle input stream

ambiguities. We have developed Blender, a combined lexer and parser generator that enables de-

signers to handle ambiguities in spoken input. Blender produces parsers for a new parsing algorithm

that we have created called XGLR (or eXtended Generalized LR). XGLR is an extension to GLR

(Generalized LR) and is one algorithm in a family of parsing algorithms designed for analyzing

ambiguities.

The result of a traditional LR parse is a parse tree. The GLR family of parsers (of which

XGLR is a member) produces a forest of parse trees, each tree representing one valid parse of the

input. In the example given above, there are many many valid parses. Sixteen possible structures

for the three words “file to load” are shown in Table 4.1.

The user’s utterance is entered at a specific location in a Java program, and must make

sense in that context. Our system uses knowledge of the Java programming language as well as
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file to load file 2 load file toload filetoload
1. file to load 9. file 2load 12. file toload 15. filetoload()
2. file(to, load) 10. file(2, load) 13. file(toload) 16. filetoload
3. file(to.load) 11. (file, 2, load) 14. file.toload
4. file(to(load))
5. file.to(load)
6. file.to.load
7. file to.load
8. file.to load

Table 4.1: Sixteen possible parses for three spoken words, “file to load.”

contextual semantic information valid where the utterance was spoken to disambiguate the parse

forest and filter out the invalid structures.

To continue with the example above, using the system’s knowledge of the programming

language, we can immediately rule out interpretations 1, 6, 7, 9, and 12 because in Java, two names

are not allowed to be separated by a space. Next, after having analyzed the context around the cursor

position, it can be determined what variable and method names are currently in scope, (i.e. visible

to the line of code that the programmer is entering). If a name is not visible, it must be illegal, and

therefore an incorrect interpretation. In our programmer’s situation, there are no variables named

“file,” so interpretations 5, 8, 11 and 14 can be ruled out. Likewise, there are no methods (i.e.

functions) named “file,” so interpretations 2, 3, 4, 10 and 13 are incorrect. Finally, program analysis

informs the system that there is no method named “filetoload,” thus ruling out interpretation 15.

The remaining interpretation is 16, which is the correct one. There is a variable “filetoload” where

all three uttered words are concatenated together, and where the middle homophone is spelled “to,”

and the final homophone is spelled “load.”

It is possible to develop a hand-coded semantic analysis for Java that will perform the

disambiguation. However, a better solution that can be applied to many programming languages is

to automate the process. While lexer and parser generators are well-known and commonly used in

production compilers and program analysis, name resolution and type checking are not often auto-

mated. In this dissertation, we have extended and implemented a formalism called the Inheritance

Graph (IG), which was originally described in the Ph.D. dissertation of Phillip Garrison [33]. The

IG is a graph-based data structure which represents the names, scopes and bindings found in a pro-

gram. Name-kind-type bindings flow along edges in the graph into nodes that represent program

scopes, such as the one inside the try block above. When this flow process, known as propagation,

finishes, each node in the graph will have a list of all bindings visible from that scope in the pro-
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gram. These lists are suitable for answering the questions, “what does this name mean?” and “what

names are visible from this point in the program?”. By looking up the interpretations of the user’s

words produced by XGLR, we can figure out which words are legitimate and which words are not,

and easily rule out semantically-invalid interpretations. Usually there will be just one interpretation

left, but in case several cannot be ruled out, the programmer must eventually choose the correct one.

In the next two chapters, we describe two significant contributions in program analysis

technology designed for ambiguities, XGLR (and its associated lexer and parser generator Blender),

and the Inheritance Graph. The XGLR section appeared in published form in LDTA 2004 [8]. The

Inheritance Graph is joint work with Johnathon Jamison, another graduate student in our research

group.
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Chapter 5

XGLR – An Algorithm for Ambiguity in

Programming Languages

In the previous chapter, we motivated the creation of a new program analysis that can

handle input stream ambiguities. In this chapter, we introduce our new XGLR analysis and discuss

it in detail.

Many input stream ambiguities arise from speaking programming languages. Other forms

of input stream ambiguities also exist. Legacy languages like PL/I and Fortran present difficulties

to both a Flex-based lexer and an LALR(1) based parser. PL/I, in particular, does not have reserved

keywords, meaning that IF and THEN may be both keywords and variables. A lexer cannot dis-

tinguish between those interpretations; only the parser and static semantics have enough context to

choose among them. Fortran’s optional whitespace rule leads to insidious lexical ambiguities. For

example, DO57I can designate either a single identifier or DO 57 I, the initial portion of a Do

loop. Without syntactic support, a particular character sequence could be interpreted using several

sets of token boundaries. Feldman [30] summarizes other difficulties that arise in analyzing Fortran

programs.

Embedded languages, in which fragments of one language can be embedded within an-

other language, are in widespread use in common application domains such as Web servers (e.g.

PHP embedded in XHTML), data retrieval engines (e.g. SQL embedded in C), and structured docu-

mentation (e.g. Javadoc embedded in Java). The boundaries between languages within a document

can be either fuzzy or strict; detecting them might require lexical, syntactic, semantic or customized

analysis.
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The lack of composition mechanisms in Flex and Bison for describing embedded lan-

guages makes independent maintenance of each component language unwieldy and combined anal-

ysis awkward. Other language analyzer generators, such as ANTLR [74], ASF+SDF [50], or

SPARK [5] provide better structuring mechanisms for language descriptions, but differing language

conventions for comments, whitespace, and token boundaries complicate both the descriptions of

embedded languages, and the analyses of their programs, particularly in the presence of errors. In

developing analysis methods to handle spoken language, we also found new solutions for embedded

languages.

Section 5.1 of this chapter summarizes the Harmonia framework within which our en-

hanced methods are implemented. The methods described in Section 5.2 handle four kinds of input

streams: (1) single spelling; single lexical type, (2) multiple spellings; single lexical type, (3) single

spelling; multiple lexical types, and (4) multiple spellings; multiple lexical types. The last three are

ambiguous. Combinations of these ambiguities arise in different forms of embedded languages as

well as in spoken languages. The handling of input streams containing such combinations is pre-

sented in Section 5.4. Some of these ambiguities have also been addressed in related work, which

is summarized in Section 5.6.

1. Single spelling; single lexical type. This is normal, unambiguous lexing (i.e. a sequence of

characters produces a unique sequence of tokens). We illustrate this case to show how lexing

and parsing work in the Harmonia analysis framework.

2. Multiple spellings; single lexical type. Programming by voice introduces potential ambigu-

ities into programming that do not occur when legal programs are typed. If the user speaks

a homophone which corresponds to multiple lexemes (for example, i and eye), and all the

lexemes are of the same lexical type (the token IDENTIFIER), using one or the other ho-

mophone may change the meaning of the program. Multiple spellings of a single lexical type

might also be used to model voice recognition errors or lexical misspellings of typed lexemes

(e.g. the identifier counter occurring instead as conter).

3. Single spelling; multiple lexical types. Most languages are easily described by separat-

ing lexemes into separate categories, such as keywords and identifiers. However, in some

languages, the distinction is not enforced by the language definition. For instance, in PL/I,

keywords are not reserved, leading a simple lexeme like IF or THEN to be interpreted as both

a keyword and an identifier. In such cases, a single character stream is interpreted by a lexer
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as a unique sequence of lexemes, but some lexemes may denote multiple alternate tokens,

which each have a unique lexical type.

4. Multiple spellings; multiple lexical types. Sometimes a user might speak a homophone

(e.g., “for”, “4” and “fore”) that not only has more than one spelling, but whose spellings

have distinct lexical types (e.g. keyword, number and identifier).

5. Embedded languages. Two issues arise in the analysis of embedded languages – identifying

the boundaries between languages, and analyzing the outer and inner languages according

to their differing lexical, structural, and semantic rules. Once the boundaries are identified,

any ambiguities in the inner and outer languages can be handled as if embedding were ab-

sent. However, ambiguity in identifying a boundary leads to ambiguity in which language’s

rules to apply when analyzing subsequent input. Virtually all programming languages admit

simple embeddings, notably strings and comments. The embedding in an example such as

Javadoc within Java is more complex. These embeddings are typically processed by ad hoc

techniques. When properly described, they can be identified in a more principled fashion.

For example, Synytskyy, Cordy, and Dean [94] use island grammars to analyze multilingual

documents from web applications. Their approach is summarized in Section 5.6.

The results described in this chapter require modifications to conventional lexers and

parsers, whether batch or the incremental versions used in interactive environments. Our approach

is based on GLR parsing [95], a form of general context free parsing based on LR parsing, in which

multiple parses are constructed simultaneously. Even without input ambiguities, the use of GLR

instead of LR parsing enables support for ambiguities during the analysis of an input stream. GLR

tolerates local ambiguities by forking multiple parses, yet is efficient because the common parts of

the parses are shared. In addition, for the syntax specifications of most programming languages, the

amount of ambiguity that arises is bounded and fairly small. Our contribution is to generalize this

notion of ambiguity, and the GLR parsing method, to parse inputs that are locally different (whether

due to the embedding of languages, the presence of homophones or other lexically-identified ambi-

guities). We call this enhanced parser XGLR.

We have strengthened the language analysis capabilities of our Harmonia analysis frame-

work [11, 36] to handle these kinds of ambiguities. Our research in programming by voice requires

interactive analysis of input stream ambiguities. Harmonia can now identify ambiguous lexemes

in spoken input. In addition, Harmonia’s new ability to embed multiple formal language descrip-



52

tions enables us to create a voice-based command language for editing and navigating source code.

This new input language combines a command language written in a structured, natural-language

style (with a formally specified syntax and semantics) with code excerpts from the programming

language in which the programmer is coding.

To realize these additional capabilities, the parser requires additional data structures to

maintain extra lexical information (such as a lookahead token and a lexer state for each parse),

as well as an enhanced interface to the lexer. These changes enable the XGLR parser to resolve

shift–shift conflicts that arise from the ambiguous nature of the parser’s input stream. The lexer

must be augmented with a bit of extra control logic. A completely new lexer and parser generator

called Blender was developed. Blender produces a lexical analyzer, parse tables and syntax tree

node C++ classes for representing syntax tree nodes in the parse tree. It enables language designers

to easily describe many classes of embedded languages (including recursively nested languages),

and supports many kinds of lexical, structural and semantic ambiguities at each stage of analysis.

In the next section, we summarize the structure of incremental lexing and GLR parsing, as realized

in Harmonia. The changes to support input ambiguity and the design of Blender follow.

5.1 Lexing and Parsing in Harmonia

Harmonia is an open, extensible framework for constructing interactive language-aware

programming tools. Programs can be edited and transformed according to their structural and se-

mantic properties. High-level transformation operations can be created and maintained in the pro-

gram representation. Harmonia furnishes the XEmacs [109] and Eclipse [23] programming editors

with interactive, on-line services to be used by the end user during program composition, editing

and navigation.

Support for each user language is provided by a plug-in module consisting of a lexical

description, syntax description and semantic analysis definition. The framework maintains a ver-

sioned, annotated parse tree that retains all edits made by the user (or other tools) and all analyses

that have ever been executed [105]. When the user makes a keyboard-based edit, the editor finds

the lexemes (i.e., the terminal nodes of the tree) that have been modified and updates their text,

temporarily invalidating the tree because the changes are unanalyzed. If the input was spoken, the

words from the voice recognizer are turned into a new unanalyzed terminal node and added to the

appropriate location in the parse tree. These changes make up the most recently edited version (also

called the last edited version). This version of the tree and the pre-edited version are used by an
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incremental lexer and parser to analyze and reconcile the changes in the tree.

Harmonia employs incremental versions of lexing and sentential-form GLR parsing [104,

106, 107, 108] in order to maintain good interactive performance. For those unfamiliar with GLR,

one can think of GLR parsing as a variant of LR parsing. In LR parsing, a parser generator produces

a parse table that maps a parse state/lookahead token pair to an action of the parser automaton:

shift, reduce using a particular grammar rule, or declare error. The table contains only one action

for each parse state/lookahead pair. Multiple potential actions (conflicts) must be resolved at table

construction time. In addition to the parse table and the driver, an LR parser consists of an input

stream of tokens and a stack upon which to shift grammar terminals and nonterminals. At each step,

the current lookahead token is paired with the current parse state and looked up in the parse table.

The table tells the parser which action to perform and, in the absence of an error, the parse state to

which it should transition.

The GLR algorithm used in Harmonia is similar to that described by Rekers [84] and by

Visser [100]. In GLR parsing, conflict resolution is deferred to runtime, and all actions are placed in

the table. When more than one action per lookup is encountered, the GLR parser forks into multiple

parsers sharing the same automaton, the same initial portion of the stack, and the same current

state. Each forked parser performs one of the actions. The parsers execute in pseudo parallel, each

executing all possible parsing steps for the next input token before the input is advanced (and forking

additional parsers if necessary), and each maintaining its own additional stack. When a parser fails

to find any actions in its table lookup, it is terminated; when all parsers fail to make progress, the

parse has failed, and error recovery ensues. Parsers are merged when they reach identical states after

a reduce or shift action. Thus conceptually, the forked parsers either construct multiple subtrees

below a common subtree root, representing alternative analyses of a portion of the common input,

or they eventually eliminate all but one of the alternatives.

The basic non-incremental form of the GLR algorithm (before any of our changes) is

shown in Figure 5.1.1 In GLR parsing, each parser stack is represented as a linked structure so

that common portions can be shared. Each parser state in a list of parsers contains not only the

current state recorded in the top entry, but also pointers to the rest of all stacks for which it is the

topmost element. In Figures 5.1, 5.2, and 5.3, the algorithm is abstracted to show only those aspects

changed by our methods. In particular, parse stack sharing is implicit. Thus push q on stack p means

to advance all the specified parsers with current state p to current state q. The current lookahead
1The addition of incrementality is not essential to understanding the changes made here and is not shown.
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GLR-PARSE()
init active-parsers list to parse state 0
init parsers-ready-to-act list to empty
while not done

PARSE-NEXT-SYMBOL()
if accept before end of input

invoke error recovery
accept

PARSE-NEXT-SYMBOL()
lex one lookahead token
init shiftable-parse-states list to empty
copy active-parsers list to parsers-ready-to-act list
while parsers-ready-to-act list 6= ∅

remove parse state p from list
DO-ACTIONS(p)

SHIFT-A-SYMBOL()

Figure 5.1: A non-incremental version of the unmodified GLR parsing algorithm. Continued in
Figures 5.2 and 5.3.

token is held in a global variable lookahead .

In a batch LR or GLR parse, the sentential form associated with a parser at any stage is

the sequence of symbols on its stack (read bottom-to-top) followed by the sequence of remaining

input tokens. Conceptually, they represent a parse forest that is being built into a single parse tree.

In an incremental parser, both the symbols on the stack and the symbols in the input may be parse

(sub)trees (see Figure 5.4) – one can think of them as potentially a non-canonical sentential form.

The goal of an incremental or change-based analysis is to preserve as much as possible of the parse

prior to a change, updating it only as much as is needed to incorporate the change.

The result of lexing and parsing is sometimes a parse forest made up of all possible parse

trees. Semantic analysis must be used to disambiguate any valid parses that are incorrect with

respect to the language semantics. For example, to disambiguate identifiers that ought to be con-

catenated (but were entered as separate words because they came from a voice recognizer) the

semantic phase can use symbol table information to identify all in-scope names of the appropri-

ate kind (method name, field name, local variable name, etc.) that match a concatenated sequence

of identifiers that is semantically correct as shown in the example at the beginning of Chapter 4.
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DO-ACTIONS(parse state p)
look up actions[p×lookahead]
for each action

if action is SHIFT to state x
add <p, x> to shiftable-parse-states

if action is REDUCE by rule y
if rule y is accepting reduction

if at end of input return
if parsers-ready-to-act list = ∅

invoke error recovery
return

DO-REDUCTIONS(p, rule y)
if no parsers ready to act or shift

invoke error recovery and return
if action is ERROR and no parsers ready to act or shift

invoke error recovery and return

SHIFT-A-SYMBOL()
clear active-parsers list
for each <p, x> ∈ shiftable-parse-states

if parse state x ∈ active-parsers list
push x on stack p

else
create new parse state x
push x on stack p
add x to active-parsers list

Figure 5.2: A non-incremental version of the unmodified GLR parsing algorithm. Continued in
Figure 5.3.

Care with analysis must be taken if an inner language can access the semantics of the outer (e.g.

Javascript can reference objects from the HTML code in which it is embedded). Semantic analyses

techniques are discussed in Chapter 6.

5.2 Ambiguous Lexemes and Tokens

In the introduction to this chapter we classified token ambiguities into four types (includ-

ing unambiguous tokens). We next explain how these situations are handled.
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DO-REDUCTIONS(parse state p, rule y)
for each parse state p− below RHS(rule y ) on a stack for parse state p

let q = GOTO state for actions[p−×LHS(rule y)]
if parse state q ∈ active-parsers list

if p− is not immediately below stack for parse state q
push q on stack p−

for each parse state r such that
r ∈ active-parsers list and r /∈parsers-ready-to-act list

DO-LIMITED-REDUCTIONS(r)
else

create new parse state q
push q on stack p−

add q to active-parsers list
add q to parsers-ready-to-act list

DO-LIMITED-REDUCTIONS(parse state r)
look up actions[r×lookahead]
for each REDUCE by rule y action

if rule y is not accepting reduction
DO-REDUCTIONS(r, rule y)

Figure 5.3: The third portion of a non-incremental version of the unmodified GLR parsing
algorithm.

5.2.1 Single Spelling – One Lexical Type

Unambiguous lexing and parsing is the normal state of our analysis framework. Program-

ming languages have mostly straightforward language descriptions, only incorporating bounded

ambiguities when described using GLR. Thus, the typical process of the lexer and parser is as fol-

lows. The incremental parser identifies the location of the edited node in the last edited parse tree

and invokes the incremental lexer. The incremental lexer looks at a previously computed lookback

value (stored in each token) to identify how many tokens back in the input stream to start lexing due

to the change in this token.2 The characters of the starting token are fed to the Flex-based lexical

analyzer one at a time until a regular expression is matched. The action associated with the regular

expression creates a single, unambiguous token, which is returned to the parser to use as its look-

ahead symbol. In response to the parser asking for tokens, lexing continues until the next token is
2Lookback is computed as a function of the number of lookahead characters used by the batch lexer when the token

is lexed. [104]
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Right (subtree reuse) Stack
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nested changes
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Left (parse) Stack
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R
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lookahead

local changes

Figure 5.4: A change in the spelling of an identifier has resulted in a split of the parse tree from the
root to the token containing the modified text. In an incremental parse, the shaded portion on the
left becomes the initial contents of the parse stack. The shaded portion on the right represents the
potentially reusable portion of the input stream. Parsing proceeds from the TOS (top of stack) until
the rest of the tree in the input stream has been reincorporated into the parse. This figure originally
appeared in Wagner’s dissertation [104].

a token that is already in the edited version of the syntax tree. (The details of parser incrementality

are not essential to this discussion and are omitted for brevity. Notice that additional information

must be stored in each tree node to support incrementality.)

5.2.2 Single spelling – Multiple Lexical Types

If a single character sequence can designate multiple lexical types, as in PL/I, tokens are

created for each interpretation (containing the same text, but differing lexical types) and are all in-

serted into an AmbigNode container. When the lexer/parser interface sees an AmbigNode, namely,

multiple alternate tokens, that AmbigNode represents a shift–shift conflict for the parser. A new

lexer instance is created for each token, and a separate parser is created for each lexer instance.

Thus each parser has its own (possibly shared) lexer and its own lookahead token. The GLR parse

is carried out as usual, except that instead of a global lookahead token, the parsers have local looka-

heads with a shared representation. Due to this change, the criteria for merging parsers includes not

only that the parse states are equal, but that the lookahead token and the state of each parser’s lexer



58

PARSE-NEXT-SYMBOL()
for each parse state p ∈ active-parsers list

set lookaheadp to first token lexed by lexp

if lookaheadp is ambiguous
let each of q1 .. qn = copy parse state p
for each parse state q ∈ q1 .. qn

for each alternative a from lookaheadp

set lookaheadq to a
add q to active-parsers list

init shiftable-parse-states list to empty
copy active-parsers list to parsers-ready-to-act list
while parsers-ready-to-act list 6= ∅

remove parse state p from list
DO-ACTIONS(p)

SHIFT-A-SYMBOL()

Figure 5.5: Part of the XGLR parsing algorithm modified to support ambiguous lexemes.

instance are the same as well.

In Figure 5.5 is our modification of the PARSE-NEXT-SYMBOL() function. Note that both

lex and lookahead are now associated with a parser p rather than being global. Not shown are the

changes to the parser merging criteria in DO-REDUCTIONS() and to the creation of new parse states

(which should be associated with the current lex and lookahead). In addition, each lookup must

reference the lookahead associated with its parser – for example, actions[p×lookaheadp]

5.2.3 Multiple Spellings – One Lexical Type

Harmonia’s voice-based editing system looks up words entered by voice recognition in a

homophone database to retrieve all possible spellings for that word. The lexer is invoked on each

word to discover its lexical type and create a token to contain it. If all alternatives have the same

lexical type (e.g. all are identifiers), they are returned to the parser in a container token called a

MultiText, which to the parser appears as a single, unambiguous token of a single lexical type. Once

incorporated into the parse tree, semantic analysis can be used to select among the homophones.

A similar mechanism could be used for automated semantic error recovery. Identifiers can

easily be misspelled by a user when typing on a keyboard. Compilers have long supported substi-

tuting similarly spelled (or phonetically similar) words for the incorrect identifier. In an incremental
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setting, where the program, parse, and symbol table information are persistent, error recovery could

replace the user’s erroneous identifier with an ambiguous variant that contains the original identifier

along with possible alternate spellings. Further analysis might be able to automatically choose the

proper alternative based on the active symbol table. We have not yet investigated this application.

5.2.4 Multiple Spellings – Multiple Lexical Types

If the alternate spellings for a spoken word (as described above) have differing lexical

types (such as 4/for/fore), they are returned to the parser as individual tokens grouped in the

same AmbigNode container described above. When the lexer/parser interface sees an AmbigNode,

it forks the parser and lexer instance, and assigns one token to each lexer instance.3 The state of

each lexer instance must be reset to the lexical state encountered after lexing its assigned alternative,

since each spelling variant may traverse a different path through the lexer automaton.4 Once each

token is re-lexed, it is returned to its associated parser to be used as its lookahead token and shifted

into the parse tree.

5.3 Lexing and Parsing with Input Stream Ambiguities

The input stream ambiguities described in the previous section require several changes to

the GLR algorithm. We illustrate the new algorithm in Figures 5.6, 5.7, 5.8, 5.9, and 5.10. Lines

that have been altered or added from the original GLR algorithm are indicated with boxes.

When there are lexical ambiguities (multiple lexical types) in the input stream, a new

parser must be forked for each interpretation of an ambiguous token. This forking occurs in SETUP-

LOOKAHEADS(). The ambiguous lookahead tokens that caused the parsers to fork are joined into

an equivalence class for later use during parser merging (explained below). After shifting symbols,

parser merging may cause multiple parsers incorrectly to share a lexer. The function of SETUP-

LEXER-STATES() is to ensure that each parser’s lexer instance is unique.

Next, if each parser has its own private lexer instance, and each lexer instance is in a

different lexical state when reading the input stream, then the input streams may diverge at their
3Note that the main characteristic distinguishing AmbigNodes from MultiTexts is that AmbigNodes have multiple

lexical types where MultiTexts have only one. Since all spellings of a MultiText have the same lexical type, the parser
need not (in fact, must not) fork when it sees one. The parser only forks when the aggregate token it receives contains
multiple lexical types that could cause the forked parsers to take different actions.

4Note that we do not reset the lexical state on a single spelling – multiple lexical type ambiguity because the text of
each alternative (and thus the lexer’s path through its automaton) is the same, ending up in the same lexical state.
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XGLR-PARSE()
init active-parsers list to parse state 0
init parsers-ready-to-act list to empty

init parsers-at-end list to empty
init lookahead-to-parse-state map to empty
init lookahead-to-shiftable-parse-states map to empty
while active-parsers list 6= ∅

PARSE-NEXT-SYMBOL(false)
copy parsers-at-end list to active-parsers list
clear parsers-at-end list
PARSE-NEXT-SYMBOL(true)

accept

SETUP-LEXER-STATES()
for each pair of parse states p, q ∈ active-parsers list

if lexer state of lexp = lexer state of lexq

set lexp to copy lexq

Figure 5.6: A non-incremental version of the fully modified XGLR parsing algorithm. The portions
of the algorithm contained within the boxes is changed from the original GLR algorithm. Continued
in Figure 5.7.

token boundaries, with some streams producing fewer tokens and some producing more. This may

cause a given parser to be at a different position in the input stream from the others, which is a

departure from the traditional GLR parsing algorithm in which all parsers are kept in sync shifting

the same lookahead token during each major iteration. Unless we are careful, this could have serious

repercussions on the ability of parsers to merge, as well as performance implications if one parser

were forced to repeat the work of another.

To solve this problem, we observe that any two parsers that have forked will only be able

to merge once their parse state, lexer state and lookahead tokens are equivalent.5 For out-of-sync

parsers, this can only happen when the input streams converge again after the language boundary

ambiguities have been resolved. However, in the XGLR algorithm given in Figure 5.1, only the

active-parsers list is searched for mergeable parsers. If a parser p is more than one input token

ahead of a parser q, q will no longer be in the active-parsers list when p will be ready to merge

with it. If the merge fails to occur, parser p may end up repeating the work of parser q.

We introduce a new data structure, a map from a lookahead token to the parsers with
5At the end of the input stream when there is no more input to lex, it is not important to check for lexer state equality.
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PARSE-NEXT-SYMBOL(bool finish-up?)
SETUP-LEXER-STATES()
SETUP-LOOKAHEADS()
if not finish-up?

FILTER-FINISHED-PARSERS()
if active-parsers list is empty? return

init shiftable-parse-states list to empty
copy active-parsers list to parsers-ready-to-act list

while parsers-ready-to-act list 6= ∅
remove parse state p from list
DO-ACTIONS(p)

SHIFT-A-SYMBOL()

SETUP-LOOKAHEADS()
for each parse state

p ∈ active-parsers list
set lookaheadp to first token lexed by lexp

add <(offset of lookaheadp)×lookaheadp> to offset-to-lookaheads map
if lookaheadp is ambiguous

let each of q1 .. qn = copy parse state p
for each parse state q ∈ q1 .. qn

for each alternative a from lookaheadp

set lookaheadq to a
add lookaheadq to equivalence class for a

add q to active-parsers list
for each parse state p ∈ active-parsers list

add <lookaheadp×p> to lookahead-to-parse-state map

Figure 5.7: The second portion of a non-incremental version of the fully modified XGLR parsing
algorithm. The portions of the algorithm contained within the boxes are changed from the original
GLR algorithm. Continued in Figure 5.8.

that lookahead. The map is initialized to empty in XGLR-PARSE(), and is filled with each parser

in the active-parsers list after each lookahead has been lexed in PARSE-NEXT-SYMBOL(). Any

new parsers created during DO-REDUCTIONS() are added to the map. In DO-REDUCTIONS(),

when a parser searches for another to merge with, instead of searching the active-parsers list, it

searches the list of parsers in the range of the map associated with the parser’s lookahead. In the

case where all parsers remained synchronized at the same lookahead terminal, this degenerates to

the old behavior. But when parsers get out of sync, it enables the late parser to merge with a parser

that has already moved past the terminal, thereby avoiding repeated work.
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DO-ACTIONS(parse state p)

look up actions[p×lookaheadp]

for each action
if action is SHIFT to state x

add <p, x> to shiftable-parse-states

add <lookaheadp×p> to lookahead-to-shiftable-parse-states map

if action is REDUCE by rule y
if rule y is accepting reduction

if lookaheadp is end of input

return
if no parsers ready to act or shift or at end of input

invoke error recovery
return

DO-REDUCTIONS(p, rule y)
if no parsers ready to act or shift

invoke error recovery and return
if action is ERROR and no parsers

ready to act or shift or at end of input
invoke error recovery and return

FILTER-FINISHED-PARSERS()
for each parse state p ∈ active-parsers list

if lookaheadp = end of input?
remove p from active-parsers list
add p to parsers-at-end list

Figure 5.8: The third portion of a non-incremental version of the fully modified XGLR parsing
algorithm. The portions of the algorithm contained within the boxes are changed from the original
GLR algorithm. Continued in Figure 5.9.

Parser merging in XGLR contains one more potential pitfall that must be addressed in the

implementation of the algorithm. The criteria for parser merging compares two lookahead tokens

for equivalence. Usually, equivalence is an equality test, but for tokens that caused the parsers

to fork, the algorithm tests each token for membership in the same equivalence class (assigned

in SETUP-LEXER-LOOKAHEADS()). We use this equivalence to properly merge the parse trees

formed by the reduction of each parser in DO-REDUCTIONS. Normally, both parsers involved in

successful merge would share a p− during the reduce action. Parsers that were created by forking at

an input stream ambiguity do not because the parser fork occurred before the shift of the equivalent

tokens, not after. Even though all the conditions for parser merging are met, the implementation of
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SHIFT-A-SYMBOL()
clear active-parsers list
for each <p, x> ∈ shiftable-parse-states

if p is not an accepting parser

if parse state x ∈ active-parsers list
push x on stack p

else
create new parse state x with lookaheadp and copy of lexp

push x on stack p
add x to active-parsers list

DO-REDUCTIONS(parse state p, rule y)

for each equivalent parse state p− below RHS(rule y ) on a stack for parse state p

let q = GOTO state for actions[p−×LHS(rule y)]

if parse state q ∈ lookahead-to-parse-state[lookaheadp] and lookaheadq
∼= lookaheadp

and (lookaheadp is end of input or lexer state of lexq = lexer state of lexp)
if p− is not immediately below q on stack for parse state q

push q on stack p−

for each parse state r such that r ∈ active-parsers list and r /∈parsers-ready-to-act list
DO-LIMITED-REDUCTIONS(r)

else
create new parse state q with lookaheadp and copy of lexp

push q on stack p−

add q to active-parsers list
add q to parsers-ready-to-act list

add <lookaheadq×q> to lookahead-to-parse-state map

Figure 5.9: The fourth portion of a non-incremental version of the fully modified XGLR parsing
algorithm. The portions of the algorithm contained within the boxes are changed from the original
GLR algorithm. Continued in Figure 5.10.

the algorithm must ensure an equivalence between all possible parsers p− that could shift any of the

lookahead tokens in the equivalence class. We use a map to record all parsers that can immediately

shift a particular lookahead token (the lookahead-to-shiftable-parse-states map). The set of

all equivalent parsers p− is the range of the lookahead-to-shiftable-parse-states map with the

domain being all lookahead tokens in the equivalence class of token lookaheadp.

Since any parser may be out of sync with other parsers, the end of the input stream may

be reached by some parsers before others. These parsers are stored separately in the parsers-at-

end list because it simplifies the control flow logic of the algorithm to have all parsers that are
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DO-LIMITED-REDUCTIONS(parse state r)

look up actions[r×lookaheadr]

for each REDUCE by rule y action
if rule y is not accepting reduction

DO-REDUCTIONS(r, rule y)

Figure 5.10: The remainder of a non-incremental version of the fully modified XGLR parsing algo-
rithm. The portions of the algorithm contained within the boxes are changed from the original GLR
algorithm.

ready to accept the input accept in the same call to PARSE-NEXT-SYMBOL(). We add a Boolean

argument finish-up? to PARSE-NEXT-SYMBOL() to indicate this final invocation and we call the

FILTER-FINISHED-PARSERS() function to move the finished parsers to the parsers-at-end list.

In practice, XGLR uses more memory than GLR. In addition to the two maps above,

which cannot be pruned during the parse (reductions may require looking up any already parsed

token in the map), the lack of synchronization of parsers requires each parser to hold extra state that

is global in GLR. This memory requirement grows linearly as the number of parsers, or equivalently,

as the number of dynamic ambiguities in the program discovered during the parse.

5.4 Embedded Languages

In addition to using this algorithm for programming by voice in this dissertation, it is

also used to write language descriptions for embedded languages and language dialects. Using

Blender, the outer and inner languages that constitute an embedded language can be specified by

two completely independent language definitions, for example, one for PHP and one for HTML,

which are composed to produce the final language analysis tool. Language dialects contain related

language definitions, where one is an extension of the other. For example, Titanium, a parallel

programming language [110], is a dialect and superset of Java 1.4. We can describe Titanium using

two grammars and two lexical descriptions. The outer grammar and lexical description is for Java

1.4; the inner language consists of extra (and altered) grammar productions as well as new lexical

rules for Titanium’s new keywords.

Embedded and dialect language descriptions may be arbitrarily nested and mutually re-

cursive. It is the job of the language description writer to provide appropriate boundary descriptions.
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5.4.1 Boundary Identification

In embedded languages, boundaries between languages may be designated by context

(e.g., the format control in C’s printf utility), or by delimiter tokens before and after the inner

language occurrence. The delimiters may or may not be distinct from one another; they may or

may not belong to the outer (resp. inner) language, and they may or may not have other meanings

in the inner (resp. outer) language. We refer to these delimiters as a left boundary token and

a right boundary token. Older legacy languages, usually those analyzed by hand-written lexers

and parsers, tend to have more fuzzy boundaries where either one of these boundary tokens may

be absent or confused for whitespace. For example, in the description format used by Flex, the

boundary between a regular expression and a C-based action in its lexical rules is simply a single

character of whitespace followed by an optional left curly brace.

One technique for identifying boundaries is to use a special program editor that under-

stands the boundary tokens that divide the two languages (e.g., PHP embedded in XHTML) and

enforces a high-level document/subdocument editing structure. The boundary tokens are fixed, and

once inserted, can not be edited or removed without removing the entire subdocument. The two

languages can then be analyzed independently.

Another technique is to use regular expression matching or a simple lexer to identify the

boundary tokens in the document and use them as an indication to switch analysis services to or

from the inner language. These services are usually limited to lexically based ones, such as syntax

highlighting or imprecise indentation. More complex services based on syntax analysis cannot

easily be used, since the regular expressions are not powerful enough to determine the boundary

tokens accurately. In some cases, it might be possible to use a coarse parse such as Koppler’s [55],

but we have not explored that alternative.

Some newer embedded languages maintain lexically identifiable boundaries (e.g. PHP’s

starting token is <?php and its ending token is ?>). Others contain boundaries that are only

structurally or semantically detectable (e.g. Javascript’s left boundary is <script language

= javascript>).

5.4.2 Lexically Embedded Languages

Lexically embedded languages are those where the inner language has little or no structure

and can be analyzed by a finite automaton. To give an example, the typical lexical description for the

Java language includes standard regular expressions for keywords, punctuation, and identifiers. The
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most complicated regular expressions are reserved for strings and comments. A string is a sequence

of characters bounded by double quote characters on either side. A comment is a sequence of

characters bounded by a /* on the left and a */ on the right. Inside these boundary tokens, the

traditional rules for Java lexing are suspended — no keywords, punctuation or identifiers are found

within. Most description writers will “turn off” the normal Java lexical rules upon seeing the left

boundary token, either by using lexer “condition” states,6 or by storing the state in a global variable.

When the right boundary token is detected, the state is changed back to the initial lexer state to begin

detecting keywords again.

From the perspective of an embedded language, it is obvious that strings and comments

form inner languages within the Java language that use completely different lexical rules. Using

Harmonia, we can split these out into separate components and thereby clean up the Java lexical

specification.

In the case of a string within a Java program, the two boundary tokens are identical, and

lexically identifiable by a simple regular expression. However, aside from a rule that double quote

may not appear unescaped inside a string, the double quotes that form the boundaries are not part of

the string data. This is also true for comments — the boundary tokens identify the comment to the

parser, but do not make up the comment data.

5.4.3 Syntactically Embedded Languages

Syntactically embedded languages are those where the inner language has its own gram-

matical structure and semantic rules. Compilers for syntactically embedded languages typically use

a number of ad hoc techniques to process them. One common technique is to ignore the inner lan-

guage, for example, as is done with SQL embedded in PHP. PHP analysis tools know nothing about

the lexical or grammatical structure of SQL, and in fact, treat the SQL code as a string, performing

no static checking of its correctness.7 Similarly, in Flex, C code is passed along as unanalyzed text

by the Flex analyzer, and subsequently packaged into a C program compiled by a conventional C

compiler. The lack of static analysis leaves the programmer at risk for runtime errors that could

have been caught at compile time.

It is sometimes possible to analyze the embedded program. The embedded program can
6Condition states are explicitly declared automaton states in Flex-based lexical descriptions. They are often used to

switch sub-languages.
7This incomplete and inappropriate lexing forces programmers to escape characters in their embedded SQL queries

that would not be necessary when using SQL alone.
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be segmented out and analyzed as a whole program or a program fragment independent of the outer

program. This technique will not work, however, if the embedded program refers to structures in

the outer program, or vice versa. In addition, the embedded program may not be in complete form.

For example, it may be pieced together from distinct strings or syntactic parts by the execution of

the outer program. Gould, Su and Devanbu [34] describe a static analysis of dynamically-generated

SQL queries embedded in Java programs that can identify some potential errors. In general, to

analyze a particular embedding of one language in another, a special purpose analysis is required,

and often may not exist.

In the next section, we show how language descriptions are written in Blender, our com-

bined lexer and parser generator tool.

5.4.4 Language Descriptions for Embedded Languages

Lexical descriptions are written in a variant of the format used by Flex. The header con-

tains a set of token declarations which are used to name the tokens that will be returned by the

actions in this description. At the beginning of a rule is a regular expression (optionally preceded

by a lexical condition state) that when matched creates a token of the desired type(s) and returns it

to the parser.

Grammar descriptions are written in a variant of the Bison format. Each grammar consists

of a header containing precedence and associativity declarations, followed by a set of grammar

productions. One or more %import-token declarations are written to specify which lexical

descriptions to load (one of which is specified as the default) in order to find tokens to use in

this grammar. In addition to importing tokens, a grammar may import nonterminals from another

grammar using the %import-grammar declaration. Grammar productions do not have user-

described actions.8 The only action of the runtime parser is to produce a parse tree/forest from the

input. The language designer writes a tree-traversing semantic analysis phase to express any desired

actions.

Imported (non-default) terminals and nonterminals are referred to in this paper as

symbollanguage. An imported symbol causes an inner language to be embedded in the outer lan-

guage.
8Because there are multiple parses with differing semantics, some of which may fail, it is tricky to get those actions

right for GLR parsing, as discussed by McPeak [67].
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5.4.5 Lexically Embedded Example

An example of a comment embedded in a Java program is:

/* Just a comment */

To embed the comment language in the outer Java grammar, the following rule might be

added:

COMMENT → SLASHSTAR COMMENTDATAcomment-lang STARSLASH

In Blender, boundary tokens for an inner language are specified with the outer language,

so that the outer analyzer can detect the boundaries. The data for the inner language is written in

a different specification, named comment-lang in the example, which is imported into the Java

grammar. In this simple case, the embedding is lexical. Comment boundary tokens are described

by regular expressions that detect the tokens /* and */. They are placed in the main Java lexical

description (the one that describes keywords, identifiers and literals).

The comment data can be described by the following Flex lexical rule, which matches all

characters in the input including the carriage returns.

.|[\r\n] { yymore(); break; }

However, this specification would read beyond the comment’s right boundary token. Our

solution, which is specialized to the peculiarities of a Flex-based lexer (and might be different in a

different lexer generator), is to introduce a special keyword, END LEX, into any lexical description

that is intended to be embedded in an outer language. END LEX will stand in for the regular ex-

pression that will detect the */. Blender will automatically insert this regular expression based on

the right boundary token following the COMMENTDATA terminal. For those familiar with Flex, the

finalized description would look like:

%{ int comment_length; %}
%token COMMENTDATA
%%
END_LEX { yyless(comment_length); RETURN_TOKEN(COMMENTDATA); }
.|[\r\n] { yymore(); comment_length = yyleng; break; }

We must be careful to insert this new END LEX rule before the other regular expression

due to Flex’s rule precedence property (lexemes matching multiple regular expressions are associ-

ated with the first one), or Flex will miss the right boundary token. Also, since the COMMENTDATA

lexeme will only be returned once the right boundary token has been seen, its text would acciden-

tally include the boundary token’s characters. We use Flex’s yyless() construct to push the right



69

boundary token’s characters back onto the input stream, making it available to be matched by a lexer

for the outer language, and then return the COMMENTDATA lexeme.

This sort of lexical embedding enables one to reuse common language components in sev-

eral programming languages. For example, even though Smalltalk and Java use different boundary

tokens for strings (Java uses " and Smalltalk uses ’), their strings have the same lexical content.

Lexically embedding a language (such as this String language) enables a language designer to reuse

lexical rules that may have been fairly complex to create, and might suffer from maintenance prob-

lems if they were duplicated.

Syntactically Embedded Example

Syntactic embedding is easier to perform because of the greater expressive power of

context-free grammars. One simply uses nonterminals from the inner language in the outer lan-

guage. Following is an example of a grammar for Flex lexical rules:
RULE → REGEXP ROOTregexp WSPC CCODE

CCODE → LBRACE COMPOUND STMTc RBRACE NEWLINE

| COMPOUND STMT NO CRc NEWLINE

A Flex rule consists of a regular expression followed by an optionally-braced C compound

statement. The regular expression is denoted by the REGEXP ROOT nonterminal from the regexp

grammar. The symbol WSPC denotes a white-space character. The compound statement is denoted

by the COMPOUND STMT from the C grammar. COMPOUND STMT NO CR is the same nontermi-

nal as COMPOUND STMT but has been modified to disallow carriage returns as whitespace inside,

as specified by the Flex manual.

We can now show one of the lexical ambiguities associated with legacy embedded lan-

guages. A left brace token is described by the character { in both Flex and in C. A compound

statement in C may or may not be bracketed by a set of curly braces. When a left brace is seen,

it can belong either to the outer language for Flex or to the inner C language. Choosing the right

language usually requires contextual information that is only available to a parser. Even the parser

can only choose properly when presented with both choices, a Flex left brace token and a C left

brace token. This is another example of a single lexeme with multiple lexical types; its resolution

requires enhancements to both the lexer and parser generators as well as enhancements to the parser.

In the next section, we show how embedded terminals and nonterminals are incorporated

in our tools.
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5.4.6 Blender Lexer and Parser Table Generation for Embedded Languages

When a Blender language description incorporates grammars for more than one language,

the grammars are merged.9 Each grammar symbol is tagged with its language name to ensure its

uniqueness. Blender then builds an LALR(1) parse table, but omits LALR(1) conflict resolution.

Instead, it chooses one action (arbitrarily) to put in the parse table, and puts the other action in a

second so-called ’conflict’ table to be available to the parser driver at runtime.

When a Blender language description incorporates more than one lexical description, all

of them are combined. In each description, any condition states declared (including the default

initial state) are tagged with their language name to ensure their uniqueness. All rules are then

merged into a single list of rules. Each rule whose condition state was not explicitly declared is

now declared to belong to the tagged initial condition state for its language. The default lexical

description’s initial condition state is made the initial condition state of the combined specification.

Rules that were declared to apply to all condition states (denoted by <*> at the beginning of the

rule) are subsetted to apply only to those states declared for that particular language. This state-

renaming scheme avoids any problems that the reordering of the rules may cause to the semantics

of each language’s lexical specification.

However, now each embedded lexical description’s initial condition state is disconnected

from the new initial state. It falls to the parser to set the lexer state before each token is lexed. For

each parse state created by the GLR parser generator, the lexical descriptions to which the shift and

reduce lookahead terminals belong are determined. This information is written into a table mapping

a parse state to a set of lexical description IDs. At runtime, as the parser analyzes a document

described by an embedded language description, it uses this table to switch the lexer instance into

the proper lexical state(s) before identifying a lookahead token. If there is more than one lexical

state for a particular parse state, the parser has to tell the lexer instance to switch into all of the

indicated lexical states. However, any parse state that has more than one lexical state causes the

input stream to become ambiguous. The analysis of this ambiguity is described in the next section.

5.4.7 Parsing Embedded Languages

Embedded languages add to the variety of input stream ambiguities described in Section

5.2 by enabling the lexer and parser to simultaneously analyze the input with a number of logical

language descriptions. We can support embedded languages with one change to the XGLR algo-
9Since any context-free grammar can be parsed using GLR, merging causes no difficulty for the analyzer.
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SETUP-LEXER-STATES()
for each pair of parse states p, q ∈ active-parsers list

if lexer state of lexp = lexer state of lexq

set lexp to copy lexq

for each parse state p ∈ active-parsers list
let langs = lexer-langs[p]
if |langs| > 1

let each of q1 .. qn = copy parse state p
for each parse state qi ∈ q1 .. qn

if langsi 6= lexer language of lexp

set lex state of lexqi to init-state[langsi]
add qi to active-parsers list

else if langs0 6= lexer language of lexp

set lexer state of lexp to init-state[langs0]

Figure 5.11: An update to SETUP-LEXER-STATES() to support embedded languages.

rithm presented above.

In Figure 5.11, we see a modified version of SETUP-LEXER-STATES(). Before lexing

the lookahead token for each parser in SETUP-LOOKAHEADS(), SETUP-LEXER-STATES() looks

up the lexical language(s) associated with each of the parse states in the active-parsers list. If the

language has changed, the state of the parser’s lexer instance is reset to the initial lexical state of that

language (via a lookup table generated by Blender). When there is more than one lexical language

associated with the parse state, it implies that there is a lexical ambiguity on the boundary between

the languages. This situation is handled in the same way as the other input stream ambiguities: for

each ambiguity, a new parser is forked, and its lexer instance is set to the initial lexical state of that

language. Each lexer instance will then read the same characters from the input stream but will

interpret them differently because it is in a different lexical state.

The complete XGLR parsing algorithm which supports both ambiguous input streams and

embedded languages can be found in Appendix C.

5.5 Implementation Status

Performance measurements of the parser are dependent on the nature of the grammar used

and the input provided. In Spoken Java, punctuation is optional. Consequently any number of im-

plicit punctuation symbols (e.g. comma, period, left paren, right paren, quote) must be considered

between any two identifiers. This blows up the number of ambiguities during parsing to astronom-
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ical levels for an entire program. In contrast, the possible lexical ambiguities in the specification

rarely increase the ambiguity of the language dramatically, since they typically correspond to only

a few structural ambiguities. In practice, the user interface limits the input between incremental

analyses to 30 or 40 words. Limiting the input in this way makes the parse time tractable, even

though it results in a large number (tens) of ambiguous parses. When filtered by semantic analysis,

the number of semantically valid parses drops to a small number, usually one.

5.6 Related Work

Yacc [46], Bison [17, 22], and their derivatives, which are widely used, make the gener-

ation of C-, C++- and Java-based parsers for LALR(1) grammars relatively simple. These parsers

are often paired with a lexical generator (Lex [58] for Yacc, Flex [75] for Bison, and others) to

generate token data structures as input to the parser. Improvements on this fairly stable base include

GLR parser generation [84, 95], found in ASF+SDF [50], and more recently in Elkhound [67], D

Parser [76], and Bison 1.50. Incremental GLR parsing was first described and implemented by

Wagner and Graham [104, 107, 108] and has been improved in the last few years by our Harmonia

project.

There has been considerable work in the ASF+SDF research project [50] on the analysis

of legacy languages, as well as language dialects. One central aspect of this work increases the

power of the analyses by moving the lexer’s work into the parser and simply parsing character by

character. Originally described as scannerless parsing [88, 89], this idea has been adapted success-

fully by Visser to GLR parsing [99, 100]. Visser merges the lexical description into the grammar

and eliminates the need for a special-purpose analysis for ambiguous lexemes. Some of the messi-

ness of Flex interaction that we describe for embedded languages can be avoided. In making this

change, however, some desirable attributes of a separate regular-expression-based lexer, such as

longest match and order-based matching, are lost, requiring alternate, more complex, implementa-

tions based on disambiguation filters that are programmed into the grammar [98].

In the Harmonia project, a variant of the Flex lexer is used – historically because of the

ability to re-use lexer specifications for existing languages, but more importantly, because a separate

incremental lexer limits the effects an edit has on re-analysis. In Harmonia’s interactive setting, the

maintenance of a persistent parse tree and the application of user edits to preexisting tokens in the

parse tree contribute heavily to its interactive performance. For example, a change to the spelling of

an identifier may often result in no change to the lexical type of the token. Thus, the change can be
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completely hidden by the lexer, preventing the parser from doing any work to reanalyze the token.

In addition, the incremental lexer affords a uniform interface of tokens to the parser, even when the

lexer’s own input stream consists of a variety of characters, normal tokens and ambiguous tokens

created by a variety of input modes.

In principle, both incrementality and the extensions described in this paper could be added

to scannerless GLR parsers. However, as always, the devil is in the details. In an incremental setting,

parse tree nodes have significant size because they contain data to maintain incremental state. If the

number of nodes increases, even by a linear factor, performance can be affected. More significantly,

incremental performance is based on the fact that the potentially changed region of the tree can be

both determined and limited prior to parsing by the set of changed tokens reported from the lexer.

For example, only a trivial amount of reparsing is needed if the spelling of an identifier changes,

since the change does not cross a node boundary. Although we have not done a detailed analysis, our

intuition is that without a lexer, the potentially changed regions that would end up being re-analyzed

for each change would be considerably larger.

Aycock and Horspool [6] propose an ambiguity-representing data structure similar to our

AmbigNode. They discuss lexing tokens with multiple lexical types, but do not discuss how to

handle other lexical ambiguities. Their scheme also requires that all token streams be synced up at

all times (inserting null tokens to pad out the varying token boundaries). Our mechanism is able to

fluidly handle overlapping token boundaries in the alternate character streams without extraneous

null tokens.

CodeProcessor [97] has been used to write language descriptions for lexically embed-

ded languages. CodeProcessor also maintains persistent document boundaries between embedded

documents. Gould et. al. [34] describe a static analysis of potentially dynamically generated SQL

query strings embedded in Java programs. Specialized fragment analyses are likely to be required

to semantically analyze this kind of embedded language.

Synytskyy, Cordy, and Dean [94] provide a cogent discussion of the difficulties that arise

with embedded languages, and describe the use of island grammars to parse multi-language doc-

uments. They also summarize related research in the use of coarse parsing techniques for that

purpose. Unlike the approach we have taken, they handle some of the boundary difficulties, such as

those concerning whitespace and comments, by a lexical preprocessor prior to parsing.
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5.7 Future Work

Blender, our lexer and parser generator, is built using language descriptions for its Flex

and Bison variant input files. Flex, in particular, is made up of three languages: the Flex file for-

mat, regular expressions, and C. The three languages combine to form several kinds of interesting

ambiguities. First, whitespace forms the boundary between regular expressions and C code in each

Flex rule. In many parser frameworks, whitespace is either filtered by the lexer, or discarded by

the parser, but certainly not included in the parse tables. However, in this case, whitespace must

be considered by the parser in order to properly switch among lexical language descriptions at

runtime. Second, whitespace takes on additional significance in Flex since rules are required to

be terminated by carriage returns, even though carriage returns are allowed as general whitespace

characters within rules. Third, it is possible to have non-obvious shift-shift conflicts between mul-

tiple interpretations of the same character sequence because they are interpreted in different lexical

descriptions. For example, the following is the actual grammar production for Flex rules (first de-

scribed in Section 5.4.5):
RULE → STATE? REGEXP ROOTregexp WSPC CCODE

STATE → < ID >

The optional STATE can begin with a < token. But <regexp is a valid regular expression token as

well. Since the STATE is optional, the < character may be lexed as two separate tokens, leading to a

lexical ambiguity. However, the Flex manual states that if a Flex rule begins with a <, it must be the

beginning of an optional STATE, not a regular expression. If the input is not actually a proper state, it

is an error, not a regular expression. We are currently upgrading our language analysis technology

and the grammar transforms used in Blender to handle these three kinds of ambiguities.

New techniques being developed in our research group for batch GLR parser error recov-

ery do not yet take into account the ambiguities discussed in this paper. Extension of the work above

to incorporate batch error recovery is ongoing. Incremental error recovery is change-based and has

already been extended.

Automated semantic disambiguation of both homophones and syntactic ambiguities re-

quires integration with name resolution and type checking. In addition, to handle ambiguities that

arise in an interactive setting (e.g. via edits in a program editor) semantic information must be

persistent and incrementally updateable. Such persistence will enable analysis of edits to a portion

of the program to use semantic information from surrounding code to help disambiguation (for ex-

ample, by providing a list of all legal visible bindings at the edit location). A MultiText identifier
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token appearing in a variable use position can be disambiguated if one of its alternatives matches a

definition that is in scope and has the right static type. Our solutions to these problems are presented

in Chapter 6.
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Chapter 6

The Inheritance Graph – A Data

Structure for Names, Scopes and

Bindings

Automated approaches to generating program analyses have a long history. Lexer and

parser generators are well-known and commonly used in production compilers and program analy-

ses. Machine code is also commonly generated. Name resolution, type checking and optimization,

however, are not often automated.

In this chapter, we present a formalism for name resolution, called the Inheritance Graph

(IG) (originally described in the Ph.D. dissertation of Phillip Garrison [33]), that we have extended

and implemented to address disambiguation of spoken input in a program. The IG is powerful

enough to describe all programming languages’ name visibility rules. It is a graph-based data struc-

ture which represents the names, scopes and bindings found in a program. The nodes of the graph

correspond to scopes in the program. At each node, each name defined in that scope is stored in a

binding with its declared kind and type. A directed edge between two nodes means that any names

that are bound in the origin node are also visible from the destination node, i.e. the name defined in

the origin node is “inherited” by the destination node. Inheritance is transitive – bindings flow from

node to node along the edges. To localize visibility, bindings that are inherited can be copied into

the destination node. This process is called propagation. If two bindings with the same name both

reach a node, they are said to “clash.” Languages vary in their clash resolution rules.

When propagation has finished, each node in the graph has a list of bindings which are
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visible from that point in the program. The design of the IG for a given language may prevent all

visible bindings from flowing to that node. If all visible bindings reach a node, then name lookup

can occur in constant time, despite the complexity of the name or the lookup rules.

The information stored in the graph’s nodes is persistent, and is incrementally updated

as the program changes. A syntactic differencing algorithm is run over the parse tree after an edit,

revealing the places in the program where names may have been added, deleted or changed. Once

the altered names have been used to update the IG nodes and bindings, the graph is re-propagated

to populate all nodes with the latest set of visible bindings.

The IG can be used in place of a symbol table or attribute grammar for type checking. We

use it for spoken language disambiguation in a programming-by-voice system. The ability to list all

names visible at a particular program point can be used to restrict the vocabulary available to the

voice recognizer, improving recognition accuracy. Fast name lookups also enable quick verification

of the many ambiguous interpretations of program input found when speaking programs. The IG’s

persistence enables fast access to semantic information and documentation which many popular

IDEs, such as Eclipse, present to programmers via text hovers in the editor. Listing all names

visible at a particular program point facilitates implementation of code completion tools.

In the rest of this chapter, we describe the IG data structure in greater detail. First, we

summarize concepts in name resolution and visibility, all of which can be modeled using the IG.

Section 6.2 presents a small Java example and its IG. That example is used in Section 6.3.1 to show

how the graph can be designed and constructed. Section 6.3.2 explains the binding propagation

algorithm and clash function which spreads names and bindings throughout the graph. The next

section explains incremental update of the IG after each program edit. Afterwards, we show how

the graph can be applied to type checking, programming by voice and interactions in IDEs. In

Section 6.7, we discuss the implementation of the IG. Finally, we present related work.

6.1 Survey of Name Resolution Rules

Programming languages exhibit a large variety of name visibility rules, ranging from

fairly simple (e.g. Fortran) to downright complex (e.g. Java). We begin this section with a number

of definitions of the terminology used, and then survey name resolution and visibility control rules

for a wide variety of programming languages.1 The concepts shown here will be used in the next
1This section is a summarization of Chapter 2: Survey of Visibility Control in Programming Languages which appears

in Phillip Garrison’s dissertation [33].
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few sections in our discussion of the IG and its realization for the Java programming language.

6.1.1 Definitions

A name is a literal string of characters used to denote an entity in a program. This name is

usually found in programs as identifiers or labels, for example the name of a variable or function. A

qualified name is a sequence of names strung together to form a more specific reference to a single

name found in the program.

An entity is a type, constant, or other program object that is involved in the semantics

of the program. In Java, there are several kinds of entities: classes, interfaces, fields, methods,

constructors, local variables, packages, labels, and catch clauses.

A binding is a mapping between a name and an entity. The name resolution phase of

program analysis is concerned with computing the bindings between all names and entities found

within a program. It is often possible to determine the kind of a name reference directly from its

syntactic position in the program.

A scope is a region of a program where a binding is visible. Early languages such as

Fortran had only two notions of scope, local to a function, or global to the program. Algol 60

introduced block structure which defined nested scopes of visibility. A name defined in an outer

block can be inherited and made visible to an inner block, but not vice versa. In many languages,

scopes can be named, for example a class declaration or record type.

When two bindings that are visible in a scope have the same name, they are said to clash

in that scope. For example, defining two variables with the same name in a block in Pascal is illegal.

In most languages with nested blocks, a variable binding defined in an inner block with the same

name as in an outer block shadows the binding of the outer variable name.

Each programming language has a specific set of visibility rules which define how names

are declared and visible throughout a program. Some languages such as Fortran have very simple

visibility rules, while others (e.g. Java) are much more complex. The rules affect all aspects of name

visibility: how names are declared and implicitly defined in various scopes, how to resolve names,

and how names are declared and defined in explicitly named scopes.

6.1.2 Implicit Name Declarations

Names are usually introduced through explicit declarations, such as a function or variable

declaration. Since almost all languages support nested scopes, it is important to define to which
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scope a declaration in a series of nested scopes belongs. Many languages associate declarations

with the innermost scope in the series of scopes in which they appear. PL/I, however, assigns

implicit name declarations to the global scope.

When a binding is added to a scope, it may clash with another binding with the same

name. Clashes can be resolved in one of five ways: (1) No actual clash: Identical names may be

associated with different namespaces. For instance, functions and variables might have independent

namespaces and can never clash. (2) Shadowing: The new binding overrides the old binding and

takes its place. This is common in languages with block structure. (3) Overloading: A single name is

bound to more than one entity, requiring further semantic information to distinguish between them.

Some languages support overloading of functions based on their argument types. (4) Reference: A

new binding is an actual definition of a prior declaration. (5) Error: Two bindings may not have the

same name.

Languages with single-pass compilers such as C and Pascal often have a declaration-

before-use rule, which means that the declaration of a name must appear textually before its use. In

C, programmers declare prototype functions and variables in header files in order to conform to this

rule. Java requires declaration before use only for fields, and for variables declared inside method

bodies. Lisp employs more complex declaration-before-use rules with its let, let* and letrec

constructs. Each of the three forms allows the introduction of more than one variable, but differ

in the use of those variables in the variables’ initializers. let is the most restrictive – no variable

defined in the construct may be used in any variable’s initializer. let* defines that each variable

initializer executes in the order that it appears, allowing variables that textually precede the other

to be used in the other’s initializer. letrec relaxes all rules and allows all variables to be used in

each other’s initializers.

Names can be created and bound to their entities at compile-time, load-time, or run-time.

Some languages such as Lisp, Logo or Snobol allow programs to create and bind names at runtime.

Languages that support run-time binding such as Lisp or Smalltalk do so to enable a flexible coding

style, but often encounter criticism from proponents of statically-typed, statically-bound languages

where type errors can be caught before applications ship to customers. Traditionally, languages

with dynamic name creation have been implemented with interpreters. Dynamic binding is typically

associated with languages that also support dynamic name creation.
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6.1.3 Name Resolution

Once names have been declared and bound, uses of those names must be resolved to the

proper binding. A name lookup may find a binding in the local scope, or may require searching

several scopes. Each programming language defines a set of search rules for discovering names

within the scopes of the program.

Block structured languages usually rely on lexical (or textual) scoping rules for name

lookups. In this form, the lookup of a name is closely tied to the syntactic structure of the program.

If one block is nested within another, the outer block’s names are visible within. Dynamic scope

uses the notion of runtime nesting to determine the search order for a name. For the most part,

this mimics lexical scope, except when a function has a free variable, one that is not declared

within the function. In dynamic scoping, a definition of that variable name in a scope that encloses

the function call site propagates into the function definition. In a lexically-scoped language with

closures (pointers from functions to the scopes in which they were created), the closure pointer

for a function is searched instead, enabling definitions of names that lexically enclose the function

definition site to propagate into the function.

Some languages have a type-safe way to delay name to type binding until runtime. In

Algol 68, one could statically bind a name to a union of types, and use a type coercion function at

runtime to downcast it to one of the union members in a type-safe way. This is similar to C’s use

of untagged unions, but without the type unsafety. Object-oriented languages formalize a variant

of this mechanism through their inheritance hierarchy. A name can be bound to a superclass and

downcasted to the particular subclass right before its use.

6.1.4 Explicit Visibility

Most languages provide named scopes to control visibility of the names declared within

(e.g. classes in an object-oriented language, named records in Pascal). To enable access to named

scopes, qualified references are provided. A qualified reference is a sequence of name references

that is looked up in order. The binding of the first name points to another named scope which is

used to look up the second name, and so on. Qualified references enable a hierarchical organization

for names in the program, but still enable simple lookups for local names.

A module is a collection of types, functions, variables, records, or other modules used to

define a more general kind of named scope. Modules are known by various names in programming

languages: namespaces in C++, packages in Ada and Java, modules in Modula 2 and Modula 3. In
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object-oriented languages, modules can be extended into objects by allowing them to have multiple

instantiations. In C++, classes can only be defined statically, but in Smalltalk they can be created

on-the-fly and treated as first-class objects themselves.

Every language has a mechanism for declaring access control to names. For example, in

C++ all names defined in structs are by default publicly exported to all outside users of the struct,

but in classes, all names are by default private. Java has four kinds of access: public (available to all

users, private (available only inside members of this class), protected (available to this class and its

subclasses), and the default, package protected (available to all classes within the same package).

Another area of customization is whether access control is absolute or may be overridden by another

declaration.

In object-oriented languages, classes can be associated with one another via inheritance.

In single-inheritance languages, like Smalltalk and Objective-C, a class may only have one super-

class, from which it inherits the names of public and protected methods and fields. In languages with

multiple inheritance, such as Common Lisp and C++, classes may inherit names from any number

of superclasses. This makes name lookups more complex. In Lisp, all superclasses of a class are

sorted topologically; name lookup proceeds in topological order through the superclasses, success-

ful even when the inheritance hierarchy paths have a common ancestor. C++ has no such precise

ordering, which can cause many problems at runtime, including duplicate execution of methods

when superclass hierarchies have common ancestors.

Name-entity bindings in open scopes are visible to other scopes which are lexically or

dynamically nearby. Some languages like Euclid and Modula support closed scopes, into which

outside names can not propagate. Names can be imported into a scope via an import statement.

Import statements reference a name or module from another scope and makes that name or module’s

names available as local names. In Java and C#, closed scopes are used to simplify the qualified

names required in a program that uses many different classes defined in many different packages.

Export statements are the inverse of imports; they make names from one scope available to an

enclosing scope.

The import of a whole module may cause too many names to be imported into a scope,

causing name clashes. A language that allows imports must have a rule for resolving name clashes

between imported and local names. In Ada, if two imported names clash, neither are visible, unless

they are overloadable, in which case only one needs to be visible within the scope anyway. In Java,

if two imported names clash, uses must refer to both entities via fully qualified references, rather

than using their single name.
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int fib(int n) {
if (n < 2) {

return 1;
} else {

int fib_n_minus_1 = fib(n - 1);
int fib_n_minus_2 = fib(n - 2);
return fib_n_minus_1 + fib_n_minus_2;

}
}

Figure 6.1: A small Java method with multiple local scopes.

In a few languages, an aliased entity may be known by more than one name. This can be

confusing to users, who expect that each name will refer to a unique entity. Aliasing is possible in

Fortran and PL/I through overlay mapping of names and types to areas of storage in memory. In

Euclid, one can rebind an entity to a new name. Within the scope of the bind statement, the old

binding may not be referenced in favor of the new one. Ada and Algol 68 have similar rebinding

constructs. Rebinding is also used in dynamic compilation environments; a value may be tagged

as a constant expression whose value is recomputed every time a function is entered (causing the

function to be recompiled and optimized based on the update value).

6.2 Java Inheritance Graph Example

Next, we describe the Inheritance Graph (IG) we have designed to support name resolu-

tion for the Java programming language. Throughout the exposition, we will refer to the fragment

of Java code shown in Figure 6.1.

An IG node represents a scope in the source language. Each binding in a node has a label

designating a Visibility Class. Visibility classes (VCs) also label most edges. The VCs control the

flow of bindings from one node to the next. When a binding in a node has the same VC as an

outgoing edge from that node, it may flow across that edge into the next node.

In the example, the fib() function contains three obvious scopes, one for the method body,

and two for the branches of the if statement. There are actually two more: Java introduces new

scopes for each local variable declaration (so as to properly implement def-before-use). This method

body is represented by five IG nodes connected by the directed edges shown in Figure 6.2. There

are two nodes for the method declaration.
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VarDecl2
[fib_n_minus_2: variable: int]: U
[fib_n_minus_1: variable: int]: U

[n: variable: int]: U

VarDecl1
[fib_n_minus_1: variable: int]: U

[n: variable: int]: U

Usable

Else Block
[n: variable: int]: U

Then Block
[n: variable: int]: U

Usable

UsableUsable

Parameter Hub
[n: variable: int]: U Method Body 

Block
[n: variable: int]: U

Method 
Declaration

[fib: method]: U

Usable

Figure 6.2: The IG subgraph for the Fibonacci method. A binding is marked in brackets and is a
tuple of name, kind and type. The letter after the binding is the binding’s Visibility Class, also shown
in long form labeling the edges. Local bindings are shown in a normal font. Inherited bindings are
in italics.

All names defined in a scope are added as a name-entity binding stored in a set of local

bindings in that scope’s IG node. In fib() there are two local variables defined in their respective

VarDecl IG nodes. A Java entity is a pair of a kind and a type. Both fib n minus 1 and fib -

n minus 2 are variable kind of type int.

The last line of the method uses both variables, and is located in the same scope as the

second VarDecl. In order to resolve both variable names properly, fib n minus 1 must be visible

in the second VarDecl node. All variable bindings are labeled with a VC called Usable. The

edges between blocks’ IG nodes representing a Java method are also labeled with that VC. Thus,

the binding for fib n minus 1 flows from the first VarDecl node into the second. During type

checking, when the variable names are looked up for their use in the plus expression, they are found

in the node containing the plus expression. Their types, both int, are verified to be compatible

with + and the expression type checks properly.

The method body is attached to the method declaration IG node, which contains a binding

that links the name of the method fib() to its kind method and type signature int→ int. Attached to

the method declaration node is a parameter hub node where all of the method parameters are bound.

Method parameters have the same kind as local variables, and employ the same VC, Usable. The

method parameter hub is connected directly to the method body with an edge labeled Usable so that

the method parameters can flow into the method body. Hub nodes are a design pattern used in the
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Inheritance Graph to designate a high-degree node. It is possible to find any IG node in the graph

by knowing to which hub node it should be attached.

Note that the edge from the method declaration node to the method body is not tagged

with Usable even though the method name is. Resolving a method name is not as easy as having it

flow into the node where it can be used, due to method overloading and the interaction between the

lexical scoping of classes and object-oriented inheritance. This issue is discussed in Section 6.6.1.

Class
[Fib: type]: U

Class Body
["Superclass": typeref]: Local

[fib: method]: U
[eval: method]: U

Method Hub
[fib: method]: U

[eval: method]: U

Method
[eval: method]: U

Method
[fib: method]: U

Constructor Hub

Inner Classes and 
Interfaces Hub Field Hub

Static Field Hub

Usable

UsableUsable

Usable

Usable Usable

Usable

Figure 6.3: The IG for the Fib class.

A class in Java contains fields and static fields, methods and constructors, and nested

classes and interfaces. They are represented by several IG nodes (shown in Figure 6.3): one each

for the class declaration and class body, and one node each for a hub for fields, static fields, methods,

constructors, and nested classes and interfaces. The method fib() that was defined earlier is attached

to the method hub node. Other methods in the class (in our example, eval()) are also attached to

the method hub. Fields and static fields are attached to their respective hubs in a linked list in order

to preserve their ordering in the file (declaration order indicates initialization order at runtime).

Constructors and nested classes and interfaces are also connected to their own hubs. All of the

methods, constructors, fields, static fields and nested classes and interfaces are bound with a Usable

VC which enables them to flow into the class body.

Compilation units contain classes via a Class and Interface Hub node. Packages contain

compilation units via a package body IG node. All class bindings in a package flow via Usable into

the package body node. Packages are connected in a nested fashion (even though their semantics do
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not work that way) to the root node of the Java IG.

There are several other VCs used in the Java IG which pass lexical information downward

through the graph from the packages to the method bodies. Examples include Reference and Local.

Reference bindings represent the closest enclosing class or interface, the compilation unit to which

each class belongs, and the package to which each compilation unit belongs. At every IG node,

these reference bindings are available to help with name lookup (rather than propagating all visible

bindings directly to the node). The superclass and superinterfaces for a class or interface are stored

in the class or interface body node with VC Local, and do not propagate anywhere else. The class

itself is the closest enclosing class for its contents, so by resolving the closest enclosing class, it is

possible to find the superclass and superinterfaces with one extra indirection.

6.2.1 Propagation

Each of the VCs enables a certain set of bindings to flow around the graph. When these

bindings have the same name, they clash. As explained in Section 6.1.1, one of five resolutions

to the clash is possible. In Java, if the two names are a method and a field, then there is no clash

because these names do not exist in the same namespace. If they are two of the same kind, they

either overload, shadow or there is an error. Method and constructor names overload (unless they

have identical type signatures, in which case it is an error). Package, class, interface and field names

may not be duplicated – this is always an error. When two references (such as two enclosing scopes)

clash, the inner binding shadows the outer binding.

6.2.2 Name Lookup

Name lookup in Java is very complex. Names can be single or qualified, and composed of

package, class, interface, field and method single names. A given entity may be referenced by many

names depending on where the reference occurs. In fact, the kind of the reference also affects how

it can be resolved, which presents difficulties to the IG model that were not anticipated when it was

designed. Because of these complications, lookups are not done simply by finding the appropriate

binding in the local node. Java lookups are discussed in Section 6.6.1.
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Node
Name name;
set<Edge> inEdges, outEdges;
set<VisBinding> localBindings, inheritedBindings;
defineVis(Binding, VisibilityClass)
replaceVis(Binding oldBinding, VisibilityClass oldVC, 
                  Binding newBinding, VisibilityClass newVC)
replaceVis(Binding oldBinding, Binding newBinding)
removeVis(Binding)
addInheritedBinding(VisBinding)
replaceInheritedBinding(VisBinding oldB, VisBinding newB)

visible()
inheritedVisible()
visible(Name)
inheritedVisible(Name)
visible(VisibilityClass)
inheritedVisible(VisibilityClass)
visible(Name, VisibilityClass)
inheritedVisible(Name, VisibilityClass)

Edge
Node from, to;
set<VisibilityClass> VCs;
String name;
addVisibilityClass(VisibilityClass)
removeVisibilityClass(VisibilityClass)
hasVisibilityClass(VisibilityClass)

VisBinding
Binding binding;
set<VisibilityClass> VCs;

Binding
Name name;
Entity entity;
Node definingNode;

VisibilityClass
String name;

InheritanceGraph
Node root;
map<ASTNode, Node> ASTNodeMap;
map<Node; ASTNode> NodeMap;
set<Node> allNodes;
set<VisibilityClass> allVCs;
createNode(Name)
deleteNode(ASTNode)
deleteNode(Node)

addMapping(ASTNode, Node)
getMappedNode(ASTNode)
removeMapping(ASTNode)
removeMapping(Node)

propagateBindings()
propagateBindingOnce()
propagateBinding()

printInheritanceGraph()

abstract clash(VisBinding newB, VisBinding oldB,
                       Node from, Node to);
abstract resolveClash(VisBinding newB, VisBinding oldB,
                                    Node from, Node to);
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Figure 6.4: UML diagram for the IG. A Graph is made up of a connected set of nodes and directed
edges. Each node contains sets of VisBindings, which define the names in the program that are
defined or visible there. A VisBinding is a pair of a Name-Entity Binding and a set of Visibility
Class labels. These Visibility Class labels are also used to label edges in the graph. VisBindings
flow along the directed edges when at least one of their visibility classes match the ones on the edge.

6.3 The Inheritance Graph Data Structure

The IG (see Figure 6.4) is composed of a language-independent graph data structure com-

bined with a language-dependent extension. The extension defines the types for names, entities,

AST nodes, and the particular VC labels used for a given language.

A node contains a set of in-edges and out-edges that point to other nodes. An edge is a

directed connection between nodes that is labeled with a possibly empty set of VC labels. Edges

may be labeled by more than one VC. There are also two collections of binding information, one
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for bindings declared at that node (local bindings) and the other for bindings inherited by the node

during binding propagation (inherited bindings). A binding is a triplet of a name and entity and the

node where that binding was locally defined. When added to a node, a binding is further paired with

a set of visibility classes drawn from the same set used for edges. Each node and edge has a unique

name to easily identify it during any manipulation of the graph structure.

In addition to the collection of nodes and VCs in the IG, there is a bi-directional map from

AST node to IG node. This map enables parse tree visitors to easily jump to the portion of the IG

corresponding to a visited AST node. The reverse mapping is useful for updating IG nodes when

the user’s program has been edited.

6.3.1 Graph Construction

The IG for most languages can be constructed purely syntactically. Each language has

a finite set of program constructs that represent scopes in the program. For example, in Cool, a

programming language used in an undergraduate compiler class at UC Berkeley, there are nine

kinds of scopes: the entire program, each class, each method and field, each let and let binding,

each type case and case binding, and each anonymous inner scope inside a method body. It is easy

to write down a tree walk of the parse tree that will create IG nodes for each construct.

As each IG node is created, it must be anchored into the growing graph. The graph has

a root node (for Cool, it will be the node corresponding to the program itself), to which top-level

program entities (packages, namespaces, classes) will be attached. For each named entity in the

program, a binding is created and stored in the appropriate IG node’s list of local bindings. When

several names are defined (e.g. method parameter lists, fields and methods in a class) in a single

scope, each name gets its own binding in the node’s local bindings. Every binding is associated with

a set of VCs to determine how it will propagate through the graph.

6.3.2 Binding Propagation

Once all of the bindings from the program are stored in the IG, they must be propagated

to all reachable nodes compatible with their VCs until a fixed point is reached.

In the propagation algorithm (shown in Figures 6.5 and 6.6), the inherited bindings set for

each node is initialized to the value of the local bindings set. This forms the start of propagation.

Next a work list of nodes to process is created. As each node is processed, it is removed from

the work list. If a node changes due to propagation, it is re-added to the list. The work list is
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PROPAGATE-BINDINGS(NodeList nodes)
foreach node ∈ nodes

if not already copied(node)
set inherited bindings of node to local bindings of node

init work list to nodes
while work list 6= ∅

set work list to PROPAGATE-BINDINGS-ONCE(nodes)

PROPAGATE-BINDINGS-ONCE(NodeList nodes)
init work list to empty
foreach node ∈ nodes

if node ∈ work list
remove node from work list

foreach out edge ∈ out-edges of node
foreach visible binding ∈ inherited bindings of node

let VCs = (visibility classes of visible binding) ∩ (visibility classes of out edge)
if VCs 6= ∅

let to node = to node of out edge
let new VB = (binding of visible binding) × VCs
if PROPAGATE-BINDING(node, new VB, node)

// a binding propagated into the to node
add to node to work list

return work list

Figure 6.5: Binding propagation algorithm Part 1.

initially unsorted; a sorting function on the nodes may improve the constant factor of the fixed point

computation.

In PROPAGATE-BINDINGS-ONCE(), for each node, the algorithm processes all inher-

ited binding × out-edge pairs to see which bindings have matching edge labels. If there are any

labels in common, the inherited binding (actually a copy which only includes the matching edge

labels) is propagated to the target of the out edge. Once at the target node, the algorithm checks

(in PROPAGATE-BINDING) whether the binding was already propagated there. If not, it tests for a

clash.

Two bindings clash in a language-specific way, but usually because their names are identi-

cal and their kinds are compatible (i.e. the names are in the same namespace). For example, in Java,

class names and method names may be identical, but can never clash because syntactically they ap-
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PROPAGATE-BINDING(Node from node, Node to node, Visible Binding new visible binding)
foreach old visible binding ∈ inherited bindings of to node

if (binding of old visible binding) 6= (binding of new visible binding)
if CLASH(old visible binding, new visible binding, from node, to node)

let winning binding = RESOLVE-CLASH(old visible binding, new visible binding,
from node, to node)

replace old visible binding ∈ inherited bindings of to node with winning binding
else break // new visible binding cannot clash because it is already present

let added? = add new visible binding to inherited bindings of to node
return added?

CLASH(Visible Binding old visible binding, Visible Binding new visible binding,
Node from node, Node to node)

// Programming Language Specific Code
// Returns a boolean if these two bindings actually clash

RESOLVE-CLASH(Visible Binding old visible binding, Visible Binding new visible binding,
Node from node, Node to node)

// Programming Language Specific Code
// Returns either the old or new visible binding

Figure 6.6: Binding propagation algorithm Part 2.

pear in different contexts. The clash logic for a programming language is contained in the CLASH()

function defined by the language designer. When two bindings are determined to clash, only one

may win (for example, in many languages a local scope binding beats an outer scope binding).

RESOLVE-CLASH() is another language-specific function that returns the winning binding.

During binding propagation, RESOLVE-CLASH() may detect errors in the program, such

as two entities with the same name declared in the same scope. Errors must be propagated back to

the program to be reported to the user. In our uses of the Inheritance Graph, we have stored pointers

to AST nodes in the binding’s entity. When a binding proves erroneous, its entity’s AST node is

used to identify the program location where the error message is put.

Two important invariants must be respected with the design of the IG visibility classes

and bindings. First, binding clashes are transitive. If binding A beats binding B and binding B beats

binding C, then binding A must beat binding C. Second, if two bindings clash, the winning binding

must propagate to the same set of nodes as each binding would have in the absence of a clash.
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Actually, we can be more relaxed about this – the set of nodes to which the losing binding would

propagate in the absence of the winning binding must be a subset of the nodes to which the winning

binding would propagate. This is required to ensure that propagation of bindings is idempotent and

independent of the order of processing of the nodes.

Binding propagation has a time complexity of O(bn3), the number of bindings times the

cube of the number of nodes in the graph. Each node stores two sets of bindings. The size of the first

set is proportional to the number of bindings locally declared at that IG node. The size of the second

set is proportional to the number of bindings in the entire graph. While true in principle, in practice

the sets are much smaller, except in languages without hierarchical structure. Most languages limit

the visibility of names to a local region where that name was declared. Most entities are accessed

by hierarchical names, which enable partitioning of names into scope regions, with few apportioned

to the global scope.

6.4 Incremental Update

The IG is a component of Harmonia, which employs an incremental lexer and incremental

parsing framework to maintain a persistent parse tree representation of the program code being

edited. The parse tree is robust to errors and incompleteness in the user program. All edits to

a user’s program are translated into edits on the parse tree, which then undergoes reanalysis to

incorporate the changes. All edits and tree modifications are stored in a set of database-like data

structures that maintain a complete edit history of attributes for each node in the tree [105].

When an edit results in a change to the parse tree, the Inheritance Graph must be brought

up-to-date. The framework includes an algorithm which, when given two versions of a parse tree,

can produce a set of syntactic differences that can be used to update the IG. This algorithm is

generated from the grammar of the language once it has been annotated with tags that indicate how

each production affects the IG.

6.4.1 Update Tags

The production below describes a class definition in Cool. Cool classes have a name

TYPEID, a single optional superclass TYPE, and a set of semicolon-delimited features, which are

methods and fields. The rule has been annotated with tags that show how changes in the elements

of the right hand side can affect the inheritance graph.
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CLASS → CLASS name:TYPEID super :(INHERITS TYPE)? { features:(FEATURE ;)*} ;

⇒ createsIGNode, affectsThisIG{name super features} ignoredByParentIG

The tag createsIGNode is used on any rule that is directly associated with an Inheritance Graph

node. For Cool, this tag is set on the program root, all class declarations, method and field dec-

larations, anonymous blocks, let bindings and case bindings. These are the only nodes in which a

change to the symbols on the RHS can cause a change in the inheritance graph node associated with

that program element.

The elements of the rule that affect the inheritance graph are listed after the affectsIGN-

ode tag. In the class declaration above, the name of the class, its list of superclasses, and the

features (methods and fields) defined inside are marked as being able to cause changes to the IG.

The name and superclasses are the attributes of a class that are stored in the class’ IG node; if these

are changed, the class IG node must be regenerated. The methods and fields are different, however.

Changes in a field or method do not change the class IG node itself, but only change its in and

out edges, thus they do not require the class IG node to be regenerated. To distinguish between

cases where a change requires the regeneration of the production’s IG node and one where it does

not, the ignoredByParentIG tag is employed. Each RHS nonterminal that is labeled with affect-

sIGNode but that does not require its production’s IG node to be regenerated if it has changed has

its own RHS productions marked with ignoredByParentIG. Neither method nor field productions

are shown above. Intuitively, one can think of changes in RHS elements marked with ignoredBy-

ParentIG as having no effect because the names defined inside do not escape the scope of their

declaration. Method and field names are accessible only inside the class itself. Fields are private,

and methods can only be accessed as part of a qualified name lookup.

6.4.2 Syntactic Difference Computation

Computing syntactic differences requires two tree walks shown in Figures 6.7, 6.8, and

6.9. The first discovers deleted portions of the tree, and the second discovers added and changed

portions. The tree walk begins at the program root.

Changes are accumulated into three sets, deleted-nodes, added-nodes and changed-

nodes via two tree walks. The first tree walk checks nodes tagged with createsIGNode to see if

they themselves were deleted. If this node was not deleted, but it contains the affectsIGNode tag,

its children are checked for changes. Harmonia uses an EBNF grammar for its rules, thus children

may be simple symbols, star or plus sequences (zero or more, or one or more elements) or optional
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COMPUTE-TREE-DIFF(Node root, GVID old-version, GVID new-version)
init deleted-nodes to empty
init added-nodes to empty
init changed-nodes to empty
COMPUTE-DELETED-NODES(root, old-version, new-version)
COMPUTE-ADDED-CHANGED-NODES(root, old-version, new-version)
// In a language-dependent way, process the changes
// to update the Inheritance Graph
PROCESS-DIFF(deleted-nodes, added-nodes, changed-nodes)

Figure 6.7: Syntactic Difference Algorithm Part 1. This part computes a syntactic difference of
nodes in which changes might affect the Inheritance Graph.

symbols. Each type of child requires a custom check for deletion. For example, when a child repre-

senting a star or plus sequence has been deleted, it means the entire sequence was deleted. If it was

not deleted, we check if any of the elements in the sequence were deleted. It is hard to maintain dif-

ferences in the order and content of a sequence, so if any elements are deleted, the entire sequence

is marked deleted as well. Similar checks are performed on optional children (if the child existed

in the old version, but not the new version, it was deleted. If it did not exist in the old version, we

do not need to check it for deletion) and ordinary children. If any of the children were deleted, the

node is added to the changed-nodes set. If the parent is not tagged by ignoredByParentIG and it

was deleted, we return true for the return value of this recursive check. Otherwise, we return false.

A similar algorithm suffices for computing the nodes added between versions.

The syntactic difference computation runs in time linearly proportional to the number

of edits made to the parse tree (not the size of the entire parse tree). Our incremental lexer and

parser algorithms also run in time linear to the number of edits [8, 104, 108] which enables quick

computation up to this point.

6.4.3 Semantic Difference Computation

Once all the syntactic differences have been computed, they have to be translated into se-

mantic differences, differences that affect the IG. One property of our use of the IG is that every call

to create an IG node and subsequent subtree is either independent of other calls or fully dependent

on another call. Thus, if there is a call to create an IG subgraph for a Java class, all other calls to cre-

ate nodes will be contained wholly within that subgraph or create a completely different subgraph.
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COMPUTE-DELETED-NODES(Node node, GVID old-version, GVID new-version)
if node is tagged by createsIGNode

if node does not exist in new-version
add node to deleted-nodes list
return true

if node is tagged by affectsIGNode
if node has nested changes between old-version and new-version

init any-nodes-deleted? to false
foreach symbol ∈ affectsIGNode

init child-deleted? to false
let child = child node named symbol in node in version old-version
if symbol is a + or * sequence?

if child does not exist in new-version
set child-deleted? to true

else foreach element ∈ child sequence
set child-deleted? to child-deleted? or

COMPUTE-DELETED-NODES(element, old-version, new-version)
else if symbol is optional?

if child is in the tree in version old-version
if child is not in the tree in version new-version

set child-deleted? to true
else set child-deleted? to

COMPUTE-DELETED-NODES(child, old-version, new-version)
else if symbol is ordinary?

set child-deleted? to COMPUTE-DELETED-NODES(child, old-version, new-version)
if child-deleted?

add node to changed-nodes list
set any-nodes-deleted? to any-nodes-deleted? or child-deleted?

if node is not tagged by ignoredByParentIG
return any-nodes-deleted?

else return false

Figure 6.8: Syntactic Difference Algorithm Part 2. This part computes a syntactic difference of
nodes in which deletions might affect the Inheritance Graph.
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COMPUTE-ADDED-CHANGED-NODES(Node node, GVID old-version, GVID new-version)
if node is tagged by createsIGNode

if node does not exist in old-version
add node to added-nodes list
return true

if node is tagged by affectsIGNode
if node has nested changes between old-version and new-version

init any-nodes-deleted? to false
foreach symbol ∈ affectsIGNode

init child-added? to false
let child = child node named symbol in node in version new-version
if symbol is a + or * sequence?

if child does not exist in new-version
set child-added? to true

else foreach element ∈ child sequence
set child-added? to child-added? or

COMPUTE-ADDED-CHANGED-NODES(element, old-version, new-version)
else if symbol is optional?

if child is in the tree in version new-version
if child is not in the tree in version new-version

set child-added? to true
else set child-added? to

COMPUTE-ADDED-CHANGED-NODES(child, old-version, new-version)
else if symbol is ordinary?

set child-added? to COMPUTE-ADDED-CHANGED-NODES(child, old-version, new-version)
if child-added?

add node to changed-nodes list
set any-nodes-added? to any-nodes-added? or child-added?

if node is not tagged by ignoredByParentIG
return any-nodes-added?

else return false

Figure 6.9: Syntactic Difference Algorithm Part 2. This part computes a syntactic difference of
nodes in which changes might affect the Inheritance Graph.
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This suggests a simple update strategy. When a parse tree node is deleted or changed, delete the

corresponding IG node and its subgraph and recreate it from scratch. Since in many languages, the

only deleted, changed, or added nodes with any effects on the subgraph will be nested within that

topmost node that has changed, one need not check any node inside a deleted subtree for deletions

in the Inheritance Graph. Added nodes can be dealt with simply by adding the new IG nodes into

the tree as during batch Inheritance Graph creation. If an AST node has been changed in a way that

affects the created IG node itself, and none of its IG children, it can have its bindings brought up to

date with the new information in the parse tree.

6.4.4 Repropagation

Once the IG nodes and local bindings have been brought up to date, the graph must be

repropagated. Normally this requires rerunning the entire propagation algorithm on the entire In-

heritance Graph, but several optimizations are possible. If a change causes the name of a binding to

be altered, the graph can be updated simply by running over all nodes once to delete any inherited

bindings with that name (O(n)), and then running propagation, but only on the old and new names

and only on the nodes where the first name had propagated (O(m3)). If the entity in a binding has

been updated, another linear search of the graph is performed to delete any bindings with this entity,

and then a similar repropagation is performed, but only on the name that was updated. Again, this

is O(m3). If nodes must be added to the graph, consider A to be the set of nodes in the frontier

of the graph that connects to B, the newly added subgraph. For names that propagate from A to B

(from the old graph to the new subgraph), all of A’s inherited bindings are propagated to B, and then

propagation is run only in B (thereby reducing the number of nodes in propagation to the size of the

change). For names in B that must propagate to A, all names in the old graph with names declared

locally in B are deleted, and propagation from B to the old graph is rerun on those names only. If

a node is deleted from the graph, all names declared in those deleted nodes are deleted from every

node in the graph, then propagation is rerun on the entire graph but only with those names (as they

might be defined in the remaining nodes). While propagation is O(bn3), with a little bit of thought,

it is possible to reduce b and n to make the time more tractable in practice.



96

6.5 Language Experiences

6.5.1 Cool

Cool is a language designed for teaching programming language design and compiler

implementation at the University of California, Berkeley [3]. It is object-oriented, statically typed,

and has automatic memory management. Cool is an expression language; all statements have values

(thus they also have computable types). Cool programs consist of classes, methods and fields. A

program begins by executing the “main” method from the “Main” class, and proceeds until it has

returned an integer value. Access permissions are standardized – all classes and methods are public,

while all fields are protected. Especially useful for a compiler course, Cool is a small language

(contains only five built-in types) and employs a whole-program compilation strategy.

Graph Construction

The language-specific portion of the IG for Cool consists of four node types, six visibility

classes, and seven kinds. There are nine graph constructs defined for Cool: the Cool program, each

class, each method and field, each let and let binding, each type case and case declaration, and each

anonymous inner scope.

The initialization of the IG for Cool begins by initializing the visibility classes. The seven

visibility classes are CLASS, METHOD, PARAMETER, VARIABLE, SELF TYPE, and NO -

VISIBILITY. The first four are used to describe the entities that they are named for;

SELF TYPE is used to spread the association between the keyword self and its type in a particular

class which is the class itself. NO VISIBILITY is used to label edges that are semantically signif-

icant to the structure of the graph, but not semantically significant to the propagation of any names

in the graph.

The graph is rooted at the program node. All classes are attached to this node in a star

pattern as shown in Figure 6.10. Since all class names are public and visible to all other classes, the

edges in this part of the graph are labeled with CLASS.

A Cool class is represented by three IG nodes: a class node, a fields hub to which all fields

are attached in a linear doubly-linked list, and a methods hub to which all methods are attached in

a star pattern. This can be seen in Figure 6.11. Within a class, all class names are visible, method

names from the class itself, as well as the binding for SELF TYPE, a special type that is usually the

type of the class itself. The edge from the class to the fields hub is labeled with CLASS, METHOD
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CLASS

Figure 6.10: Inheritance Graph for the root of a Cool program. There are five built-in classes:
Object, IO, String, Boolean, and Integer.

and SELF TYPE. The edge back from the fields hub to the class is labeled only with VARIABLE

because only variables may be defined within the fields of the class. The edge to the methods hub

is labeled with CLASS, VARIABLE and SELF TYPE. The edge from the methods hub is labeled

only with METHOD to allow the methods defined in the class to be visible to the fields. Within the

class node itself, there are two bindings defined, one mapping the name of the class to its type, and

the other mapping the keyword SELF TYPE to the class type with a label of SELF TYPE.

If a class has a super class, it is connected to it by a binding mapping the keyword SU-

PER TYPE to the super class type. This binding has a label of NO VISIBILITY to indicate that

this binding will not propagate anywhere. The super class’ method hub is connected to its subclass’

method hub with a METHOD label. Likewise, the super class’ field hub is connected to its sub-

class’ field hub with a VARIABLE label. This lets the super class variable and methods flow into

its subclass, but not allow any reverse flow.

A method is represented as a single node in the IG. It is connected to the method hub

via two edges. The edge from the hub to the method is labeled CLASS, METHOD, VARIABLE

and SELF TYPE. The opposite edge is labeled only by METHOD. A method node contains local

bindings for each of its formal parameters. Each of these parameter bindings is labeled with PA-

RAMETER. Finally, a method contains a single binding for its own name, labeled with METHOD.

A field is represented as a single node in the IG as well. Fields are linked into the IG via a

linear doubly-linked list beginning at the fields hub. They are linked in the order in which they are

defined in the source code. At runtime, Cool fields are all initialized to default values determined
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Figure 6.11: Inheritance Graph for a Cool class named Main, with two fields named operand1
and operand2, and two methods named calculate and main. Notice how the fields are attached in
a linked list pattern, while the methods are attached in star pattern. The linked list preserves the
textual ordering of the fields in the file, and allows an operational semantics analysis to initialize
the fields in the proper order. Abbreviations are used for the visibility classes: C→ CLASS, M→
METHOD, V→ VARIABLE, and ST→ SELF TYPE.

by their static type, and then reinitialized by their declared initialization code in the order they are

declared. There is a pointer from the fields hub to the last field defined. The new field is linked in

there via two edges. The edge down from the start of the linked list is labeled CLASS, METHOD,

VARIABLE and SELF TYPE to allow these values to flow into the field initializer. The return

edge is declared only with VAR to let the newly defined field to migrate back up the linked list to

the rest of the program.

An anonymous inner scope inherits all names from an outer scope. This kind of scope is

also used for the top-level method body. It is connected to the outer scope by a downward edge (from

the outer scope to the inner scope) labeled with CLASS, METHOD, VARIABLE, PARAMETER

and SELF TYPE. There is no return edge because names cannot escape an inner scope in Cool.

Let and typecase are the only two constructs within a method body in which new

names may be defined. Each consists of a pair of IG nodes: one for the construct itself, and one for

each binding defined within. If either construct declares more than one binding, it is equivalent to
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Main
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,ST
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Figure 6.12: Inheritance Graph for two Cool classes in a superclass–subclass relationship. Subclass
SubMain overrides method calculate from its superclass Main. The superclass’ field hub and method
hub are connected to the subclass’ hubs to allow field and method definitions to flow from superclass
to subclass. The class nodes themselves are connected, but no bindings will flow over that edge.
Abbreviations are used for the visibility classes: C→ CLASS, M→ METHOD, V→ VARIABLE,
and ST→ SELF TYPE.

having each binding defined one at a time in the order it appears within the source code. Let and

typecase nodes are connected from their outer scope node by the same bindings as for anonymous
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calculate(x : Integer, y : Integer) : int {
let x : Integer <- 6 in

y + (let z : Object in
x * operand1)

}

Methods
Hub

calculate(Integer 
x, Integer y)

M C,M,V,ST

let x : Integer

let z : Object

C,M,P,V,ST

C,M,P,V,ST

Figure 6.13: Inheritance Graph for a method named calculate. Calculate takes two parameters, x
and y and has two inner scopes. The first inner scope overrides x with a new value. The second
inner scope introduces a new variable z. Notice how all bindings in the method body flow down
into the body, but not back up. Abbreviations are used for the visibility classes: C→ CLASS, M→
METHOD, V→ VARIABLE, ST→ SELF TYPE, and P→ PARAMETER.

inner scopes. Their bindings are are connected in the same way. Each binding maps the new name

to the type of the variable declared in the let or typecase expression. Each of these bindings is

labeled with VARIABLE, enabling them to flow downward into inner scopes, but not back up.

An example of a method body is shown in Figure 6.13. The calculate method is con-

nected to the method hub. It has two parameters, x and y, both of which are Integers. The parame-

ters flow down into the body of the method via edges labeled with visibility class PARAMETER.

The first let statement overrides the definition of x, and the second let statement introduces a

new variable z. Each variable flows only downward through the method body due to the labeling of

visibility classes on the edges.
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Table 6.1 below describes the results of a clash between Binding A and Binding B. Classes

are all defined at top-level and may not be duplicated. To enable type-checking to proceed anyway,

only a warning is indicated. There is no method overloading in Cool, thus methods with the same

name but a different method signature are disallowed. Methods may be overridden in a subclass,

however, if they have the same name and signature. Thus, the local binding of the method in the

subclass wins over the propagated binding from the superclass. Cool does not allow two fields (or

method parameters) to be defined with the same name, regardless of type. However, all variables

may be shadowed by a variable with the same name (irrespective of type) defined in an inner scope.

Propagated Binding (P)
Local Binding (L) Class Method Field Parameter Let Typecase

Class P (Warning) N/A N/A N/A N/A N/A
Method N/A L (Error if diff signature) N/A N/A N/A N/A

Field N/A N/A Error L L L
Parameter N/A N/A L Error L L

Let N/A N/A L L L L
Typecase N/A N/A L L L L

Table 6.1: Clash Table for Cool Inheritance Graph. Each cell indicates which binding wins when
both reach the same IG node during propagation.

When propagation has finished, each IG node contains every name visible in its associ-

ated scope in the program. Any errors caused by duplicate names are flagged during propagation.

Thus, typechecking can concern itself solely with proving type safety without worrying about du-

plicate name detection. Typechecking in Cool begins constructing the class inheritance hierarchy

and detecting any illegal cycles. Connectivity testing in the class hierarchy is not necessary because

any class without a declared superclass is automatically declared to subclass Object. Next comes a

recursive-descent tree walk through the bodies of each method and initializers of each field in every

class defined in the program. Each use of a variable is looked up in the appropriate IG node for the

variable’s type. If the type employed does not conform to its use, an error is indicated.

The Cool language specification contains tags to support incremental IG update, as de-

scribed in Section 6.4. This update specification is used to minimize edits to the IG when only small

portions of the Cool program have changed. Since most Cool programs are small, this does not ap-

preciably improve performance, but it does provide excellent high-level change information, which

for human studies of programmers is eminently suitable for coding the trace of a programmer’s

editing session.
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6.6 Applications

The IG provides a persistent, incrementally updateable data structure for names and en-

tities declared in a program. It can answer queries of the form, “what does this name mean in this

program location?” and “what names are visible in this program location?” It can also answer the

queries, “is this entity visible in this program location?” and “what is the simplest name of this

entity in this program location?” The answers to these queries form the basis of several useful and

common applications.

6.6.1 Name Lookup and Type Checking In Java

Type checking ensures that all uses of names correspond to valid operations according to

the language’s type system. Type checking often takes the form of a tree walk, computing the type

of each name and expression and validating its correct application. The inherent question asked

during type checking is “what does this name mean at this program position?” which is the main

question that the IG was designed to answer.

Name lookup is required for type checking. In many languages, all names that are visible

in a given scope will have propagated to that scope’s IG node, enabling a constant time name lookup.

Java and C++, however, have complex name lookup rules which are not amenable to this kind of

propagation.

In Java, looking up the single (unqualified) name of a method requires looking in the

current class for methods of the same name. The methods defined in all superclasses and superin-

terfaces of the class are checked next, followed by the enclosing class and its superclasses, and so

forth. If the single name denotes a package, class, interface, field or local variable name, the search

is similar, except that the scope in which the reference occurs is searched first, and enclosing meth-

ods are added to the search path. If the name is still not found, the compilation unit and imported

classes are searched, followed by the current package, imported packages, and then the top-level

package hierarchy.

Qualified names are looked up one single name at a time in the order in which they appear.

The first single name is resolved to an IG node as described above. The rest of the names are

resolved by looking only in the preceding IG node and its superclass or superinterface hierarchy,

but not anywhere else.

The kind of reference can affect the search. If a single name is used as the type in a type

declaration, then it cannot be a field or variable name. An example is the variable declaration Foo
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f; Foo must be a type. If there is a Foo that is a variable, it is ignored. The Java name lookup rules

state that any time during a name lookup, if a field name is found with the same name as a package,

class or interface name, the field name is ignored. However, if the reference is ambiguous (e.g. a

variable used in a math expression), the field name must be considered, and in fact, if inherited by

the local scope, beats the package, class or interface name. An example of this case is the statement

f = Foo; Foo could be a type, field or variable; if Foo is defined as a variable and as a type, Foo

is seen as a variable, not a type. If a qualified name is used as a variable in an expression, the final

single name in the qualified name must be a field or variable. This situation is the same as the one

above, the name is preferred as a variable, rather than a type.

Several problems were not anticipated at the time the IG model was designed (nor are they

handled by any other name resolution model). First, in the era when the IG was designed, it was

possible to completely separate name resolution from type checking in all programming languages.

With C++ and Java, this is no longer the case. Superclasses cannot be resolved without name reso-

lution and graph construction being complete. If superclasses were connected to subclasses by IG

edges, the graph would change structurally every time a superclass was resolved, requiring repropa-

gation and reexecution of name resolution. In addition, the inheritance of names from superclasses

and outer classes must occur in a prescribed order, which would require ordered processing of VC-

labeled edges, whereas inheritance of bindings via edges in the graph is unordered. There is no way

to express such ordering rules in the IG. Consequently, the IG we designed for Java does not contain

edges connecting superclasses to subclasses or outer classes to inner classes. Third, some names

existing in the same namespace (e.g. package, class, interface, field and local variable names) are

not represented in the CLASH() function for Java. This is because context-sensitive name lookup

cannot be easily solved without inserting superclass and outer class IG edges.

6.6.2 Spoken Program Disambiguation

Using programming by voice in a program editor, programmers incrementally modify and

add to programs using speech. Since each utterance occurs in the context of an existing program,

program context can be used to disambiguate the parse forest and choose the most appropriate

interpretation of the input.

There are two ways to use the IG to disambiguate the input, either rule out each interpre-

tation based on the legality of individual names found within, or rule out the entire interpretation

simply by type checking it. Both options are presented here.
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First, the interpretations of the ambiguous parse forest are enumerated. For a given ut-

terance, there can be quite a few interpretations, and many of them can have up to 30 to 40 words

inside, each of which needs to be validated. It is vital to have quick name lookups for all possible

names at a program point. Each interpretation is a small chunk of code that is locally syntactically

correct, but whose words inside must be validated against the program. For example, a user who

says “foo bar” may have meant foo(bar) or foo.bar. Using the IG, one can look up the iden-

tifier foo and find out its kind and type. If foo is not a function definition, the first interpretation

can be rejected. If foo is not a field of the current class, or the name of a class with a static field

bar or the name of a package containing a class name bar, the second option can be rejected.

Each interpretation is analyzed until all but one is rejected, leaving the most likely interpretation for

validation by the programmer.

In the other disambiguation option, the IG is used as if the interpretations are actual edits

to the program. Each interpretation is inserted into the graph at a location appropriate to its context.

For example, an edit may have added a new statement in the middle of a list of statements in a

method. The appropriate anchoring IG node is found and used to insert any IG nodes the new

interpretation may have created. The program is then repropagated and type checked. If any errors

appear (that were not in the original program) the interpretation is not legal.

A key advantage of the IG over other name resolution formalisms is the persistence of

information. This persistence enables disambiguation of spoken input at any point in the program

without recomputation of symbol table information.

6.6.3 Eclipse

The implementation of the IG presented here is part of the Harmonia program analysis

framework. Harmonia has been plugged into the Eclipse IDE [23] and programmed to extend the

Java text editor. Eclipse provides many time-saving semantics-based features to Java programmers

including code completion, Javadoc text hovers, compiler error display, use-def hyperlinks, and

semantic-based search. All of these are easily implementable using the Inheritance Graph. We have

implemented several of them as a test of the power of the Harmonia framework.

Code completion is the display of the results of the query, “what are the names visible in

this list of program scopes?” The list of the program scopes is gathered from asking “what are the

meanings of this identifier at this program position?” and resolving the resulting entities to their

defining program scope. This list is easily filtered based on the prefix of any words further typed
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by the programmer. Javadoc text hovers are the result of a similar query, “what are the meanings

of this name as a (method/field/class/package) in this program position?” The Javadoc of the en-

tity returned is then displayed in a text hover. Compiler errors are computed during propagation

and type checking phases of program analysis and attached to parse tree nodes for display by the

program editor. Use-def hyperlinks are created for each name in the program by asking “what is

the meaning of this name at this program point?” and resolving the resulting entity to its defining

node. Semantics-based search involves some preprocessing. After semantic analysis occurs, tuples

of names, kinds, types and defining nodes are gathered from the IG for a given program and stored

in hashtables for later speedy access by a user search on any stored attribute.

6.7 Implementation

The IG data structure and algorithms are implemented in C++. The language-independent

portion is a C++ template, parameterized by the Name and Entity types and the number of visibility

classes. The language-dependent portion is the instantiation of the template, defining the Name and

Entity types, the visibility classes used, and the implementations of the CLASH() and RESOLVE-

CLASH() functions. In addition, the language implementor designs the graph structure: the kinds of

nodes that are required, how they are connected to one another, what the different visibility classes

mean and how they are placed on bindings and edges to achieve the desired name visibility. We have

found that there are several graph design patterns that can achieve many of the name visibility rules

described in Section 6.1 and have pointed these out wherever appropriate in the Java Example in

Section 6.2. Several diagnostic functions are provided in the implementation to print out the graph

in text and dot [25] file formats. These are invaluable for debugging incorrect graph structures.

In addition, the implementation contains several cross-checking validation functions to ensure the

graph is connected and that bindings propagate where they should.

6.7.1 Performance

Scalability is an important component of program analysis. We profiled the IG on the

Java 1.4.2 library (4,137 files, 6,705 classes and interfaces, 1,293 kLOC) for memory consumption

and speed, even though it has been optimized for neither. The IG for the source code of the Java

library (should the entire library be loaded into memory at once) consists of 582,756 nodes (and

496,116 bindings), for a total memory size of 98 MB. The IG for just the class files of the Java



106

library consists of 423,281 nodes, for a total memory size of 63 MB. To understand this in context,

the uncompressed size of all of the Java 1.4.2 library class files is 32 MB on disk. The IG size

is within a constant factor of the Java 1.4.2 library size, and is easily tractable on today’s typical

one-gigabyte development machines. Note that almost all Java applications developed today are

dwarfed in size by the Java library itself.

We calculated that the IG size in nodes, bindings, and bytes scales linearly with lines of

code. There are approximately 450 IG nodes per kLOC. There are 300 local bindings per kLOC.

Bindings are not evenly distributed through the nodes. In the Java library there is an average of 120

local bindings per file (standard deviation of 172), but a few files have many more local bindings

(the maximum is 2,430 local bindings).

We have made design changes to the Java IG to improve asymptotic performance. Each

file is loaded into an IG subgraph which is connected to the IG only at its CompilationUnit IG

node. There is no flow of names from outside the CompilationUnit into the file’s subgraph. When

changes are made to the contents of the file, it can be reanalyzed in isolation. Since IG propagation

is O(bn3), lowering the number of nodes in this way has a significant effect on propagation time.

Another change is to load portions of the IG on-demand. As each file (especially those in the Java

1.4.2 library) is referenced by a name in a user program, it can be loaded into the IG, propagated

independently, and have its names be available to type checking and other static analyses.

6.8 Related Work

Graham, Joy, and Roubine introduced a technique to handle languages with a mix of open

and closed scopes [35]. They showed that by numbering each scope by its lexical distance from the

global scope, bindings could be marked by numbers indicating in which scopes they were visible.

They described two methods for implementing qualified names and opening of closed scopes. One

was to take each single name in a qualified name and place it in the main symbol table. The second

method was to maintain a secondary table of the qualified names which was searched during a name

lookup. While they chose the first method, our IG data structure employs the second. As this paper

was written in 1979, it focuses heavily on memory footprint and speed, which are not nearly as

important as they once were. Our approach sacrifices some speed and memory for more generality.

Reiss uses a language-independent specification for a symbol table, with names, objects

(what we call entities), and scopes [83]. The paper employs a two-staged name lookup procedure

during lexing and parsing that returns a name given a lexeme, and an entity given a name. The
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IG performs both stages during semantic analysis. Reiss’ name and object classes are similar to

our notion of “kind.” Reiss’ names are divided into explicit classes, but our kinds are implicitly

assigned. Reiss’ work does not handle separate namespaces for identifiers, does not support non-

lexical entities, and has no facility for non-source-code-based reference bindings that link entities

in the program.

Klug described a declarative name resolution system [51] which was subsequently re-

placed by an imperative procedural specification [52] similar in form to a nested set of symbol

tables. It was unclear from the papers how the specification should be applied to an actual program-

ming language, how it should be implemented, or its performance. Klug continued by describing

a collection of visibility constructs that programming languages could exhibit, but the paper lacked

many details [53].

Vorthmann’s Visibility Networks [102, 103] come closest to the IG in design. Vorth-

mann’s graphical representation of the network illustrates concisely how the system will behave.

The CLASH() function has been simplified to three operators (!, = and ↑) applied to edges, corre-

sponding to error, reference and shadow clash resolutions. If two in-edges to a node are labeled

with !, none of their bindings can clash or there is an error. If two in-edges are labeled with =, two

bindings can clash, but they must be equal in value. If an in-edge is labeled with ↑, its bindings

beat others in a clash. This simplified approach can handle many languages, but is not powerful

enough to handle Java or C++ due to their mix of lexical scoping and object-oriented inheritance. In

addition, Vorthmann’s clash operators do not take entity kind into account, leading to an awkward

specification of clashes of names that are not in the same namespace as one another. Visibility Net-

works are also not powerful enough to describe dynamic scoping or other runtime properties, which

are describable in the IG.

There are many other automated approaches to generated name resolution semantic anal-

yses. One notable example is the attribute grammar. Many languages have been described using

attribute grammars alone. Despite having a long history, attribute grammars have not achieved the

same success as other automated program analysis generators such as lexer and parser generation.

6.9 Future Work

The IG is implemented as a single connected graph which must be entirely in memory

at all times. However, in large, hierarchically organized languages like Java and C#, most of the

language and its libraries are unused by many programs and thus unneeded in the IG data structure.
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While the set of referenced classes cannot be anticipated before the program is written, classes that

are infrequently used can be flushed to disk with an MRU paging strategy. Our Java IG structure

is carefully compartmentalized to inhibit name propagation across files, which makes the paging

approach possible.

All languages support compilation of multiple program files, merging the resulting bina-

ries into a single executable program. When programmers edit these multiple source code files in a

program editor, they make changes to the names declared in the file that are used by other files. Our

implementation of the IG does not track these def-use dependencies when deciding when to rerun

the type checker and other static semantic analyses. A naive coarse-grained strategy can be em-

ployed which reruns all analyses after any change to a name, but this can have serious performance

implications. A better approach would be to track dependencies on a compilation unit or program

entity level so that only the uses of the exported name will have its analyses rerun.
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Chapter 7

SPEED: SPEech EDitor

The most tangible artifact of our research is SPEED, the SPEech EDitor. SPEED is a

Java program editor embedded in the Eclipse IDE [23]. Eclipse is a Java-based IDE mainly used

for developing Java software. It is designed to be extensible, and is fortunately open-source, for

when the implementation does not live up to the design goals. SPEED uses the Eclipse IDE both to

maintain the program code being written and to support our voice-based user interface innovations.

SPEED uses Nuance’s Dragon NaturallySpeaking [69] to listen to the user, and the anal-

ysis systems described in the previous chapters to understand what the user said. Its basic code

authoring model is to have the programmer speak fragments of code or names in Spoken Java,

translate the results into Java, and insert them into the program. For code editing, the model is sim-

ilar. The programmer selects a Java construct to edit. The system translates it into Spoken Java, lets

the user edit it via speech, and then translates the edited version back into Java. Since Spoken Java

to Java translation can produce multiple answers, the user is presented with a list of translations to

choose the one he prefers.

This chapter consists of two sections. The first section walks the reader through a pro-

gramming scenario using SPEED. The second section describes the major components of SPEED

and how they work. Chapter 8 will discuss our user studies exploring the utility of SPEED with

professional Java programmers.

7.1 Sample Workflow

We introduce Shari, a programmer experienced in using voice recognition, experienced in

Java, and experienced using the Eclipse programming environment, who wishes to use SPEED to
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create a linked list data structure for primitive integer values. Shari begins by bringing up Eclipse

and creating a new class within her project called LinkedList.

She then opens the editor for LinkedList and turns on Shorthand by clicking on the Short-

hand button in the Eclipse toolbar.

She then puts on her headset microphone and activates it by clicking on the microphone

button in the Eclipse toolbar.
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When Eclipse creates a class, it adds a package declaration and an empty class declaration.

Linked lists have two fields, one of the element itself which will be of type primitive integer, and

the other a pointer to the next element in the list. She begins by navigating to the inside of the class

body and inserting a field.

“Jump to class linked list.” (absolute name-oriented navigation)

“Go down.” (cursor based navigation)

“Insert field.” (example of code template insertion)

The field appears with a default type Object and default name field. Now she must

fix the type and name of the field.

“Go right.”

“Edit this.”
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The edit operation translates the currently selected item into Spoken Java, and then waits

for dictation-style input.

“int. Done.”

She speaks the type “int” and then “done” in order to indicate that she is finished entering

the code. SPEED then translates her utterance back into Java. Since there is only one interpretation:

“int” SPEED inserts it automatically.

“Go right.”

“Edit this.”

“element. Done.”

These utterances edit the name of the field and change it from “field” to “element”.

She repeats the preceding utterances to insert another field of type “LinkedList”.

“Insert field.”

“Go right.”

“Edit code.”

“linked list. Done.”
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As uttered by a person and interpreted by a voice recognizer, LinkedList comes out as

two words separated by space. When Shari says “done,” a translation popup menu appears listing

the possible context-limited interpretations of those two words. There are two choices for the type

name here. The first is linked.list, a reference of an inner class list in outer class linked.

The other, the choice Shari prefers, has concatenated the two words together to form a single type

name, linkedList. In this version of SPEED, Shari must click on her choice to enter it into

the system. However, in a production quality version of SPEED, the choices would be numbered,

and Shari would choose by speaking the number of the desired menu item. Note how the translator

changed the capitalization of the words to CamelCase, the standard style for Java identifiers.

Since the type name linkedList should be capitalized, Shari says:

“Cap that.”

Now she must insert a constructor to set the fields when the linked list is instantiated. She

could say “insert constructor” to insert a constructor template. Another way to do it is to simply

speak the natural language words in the constructor.

In order to insert a new constructor element, Shari must select the second field and say:
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“Insert after.”

She then speaks the literal words in the LinkedList constructor.

“public linked list int value comma linked list next. Done.”

Notice the lack of punctuation, spelling, and lack of control of the spaces between words.

When this is translated to Java, there are six choices from which to choose.

public linked list (int value, linked.list next) {}
public linked list (int value, linked listNext) {}
public linked list (int value, linkedList next) {}
public linkedList (int value, linked.list next) {}
public linkedList (int value, linked listNext) {}
public linkedList (int value, linkedList next) {}

Shari knows from experience that she must not forget the comma! Without it there are

2,654,208 possible interpretations. Spoken Java can be very ambiguous without any punctuation.
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Shari chooses public linkedList(int value, linkedList next) {}.

The spelling of linkedList is missing its capital letter. In this prototype version of SPEED,

the capitalization of identifiers is not yet constrained to names already in scope (such as the LinkedList

class name). She navigates to the name of the constructor and capitalizes it:

“Jump to constructor linked list.”

“Cap that.”
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She navigates into the body of the constructor and assigns the values of the parameters to

each field.

“Go down.”

“Insert here.”

“element equals value. Done.”

This only has one interpretation, so the translate popup menu does not appear.

“Expand selection. Expand Selection.”

“Insert after.”

“this dot next equals next. Done.”
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This translates to this.next = next;. There is only one interpretation. Even if we

had left out the dot, there still would have been only one translation.

Next, Shari creates a printString method, to print out each list element.

“Go down.”

“Insert after.”

“public string print string. Done.”

There are 11 possible interpretations of even this simple method declaration.

public string() { print(string); }
public string() { print string; }
public string(print string ) {}
public string.print string() {}
public string.print string;
public string print, string;
public string printString() {}
public string printString;
public stringPrint string() {}
public stringPrint string;
public stringPrintString() {}
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They appear in the translation popup menu in SPEED.

Shari chooses public string printString() {}.

“Go right.”

“Cap that.”
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“Go right.”

“Go right.”

“Insert here.”

“return quote element space quote plus element. Done”

The final program is as follows:

package Moo;

public class LinkedList {

public int element;

public LinkedList next;

public LinkedList(int value, LinkedList next) {
element = value; this.next = next;

}
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public String toString() {
return "element " + element;

}
}

7.2 Early SPEED Prototypes

Prior to creating SPEED, we created two prototype editors that integrated speech recog-

nition with XEmacs. Neither the syntax analysis nor the semantic analysis were developed at the

time, so we added code template expansion to see how far one could get. It turns out that it is not

far. In fact, while structures were easy to insert into the editor, the vast majority (around 85%) of

words in the Java program were identifiers. Identifiers appeared often, and when they appeared

were often contiguous, producing long strings of identifiers. For example, a valid Java statement is

javax.swing.UIManager.setLookAndFeel(

javax.swing.UIManager.getSystemLookAndFeelClassName()). When spoken, there

are 21 distinct words that can be uttered in a row. No code template expansion service is going to

be able to help very much here.



121

7.3 Final SPEED Design

We activate SPEED using the commercial speech recognizer Nuance Dragon NaturallySpeak-

ing [69]. Dragon NaturallySpeaking is available only for the Microsoft Windows operating sys-

tem, thus limiting our tool to running on Windows. Harmonia itself, and all of the other tech-

nology described here runs on Windows, Linux, Solaris and MacOS X. We attach Dragon to

Eclipse using a third-party Java Speech API (JSAPI) [93] library called Cloudgarden TalkingJava

SDK [16]. Cloudgarden’s JSAPI implementation works with all Microsoft Speech API-compliant

(SAPI-compliant) speech recognizers such as IBM ViaVoice [39], Dragon [69], and Microsoft’s

own Speech SDK [38].1

SPEED is composed of seven main parts: Eclipse’s JDT, Shorthand, Speech Recognition

plugin, Context-sensitive Mouse Grid, Cache Pad, What Can I Say?, and How Do I Say That?. The

next sections will explain the implementation of each of them.

7.3.1 Eclipse JDT

Eclipse has been designed to be an extensible platform for building rich client applica-

tions. The star of their application suite is the Eclipse Java Development Toolkit (JDT). The JDT,

shown in Figure 7.1, contains a syntax-aware program editor, an outline view showing all mem-

bers of the current document, and a package hierarchy view showing all packages and classes in the

workspace. The JDT provides a language-aware search tool, enabling programmers to look for class

names, method names, field names, strings, and other Java-specific entities. Programmers can also

visualize the callers of a method, the superclass and superinterfaces and subclass and subinterface

for a class or interface. Code completion allows short several letter abbreviations to be expanded

into code templates that can be filled in like a Web form. Java-specific refactoring support is exten-

sive, both on the package and class structural level as well as within method bodies. JDT support

also extends to Java debugging on par with most other GUI-based IDEs for Java.

The JDT is not merely a passive editor waiting for users to ask for analyses and refactoring

support. Behind the scenes, it uses up to seven Java parsers to analyze the code being written for

compiler errors, potential runtime errors, code style problems, and other suggestions that it calls
1At the time of this dissertation, the desktop speech recognition market has been consolidating. IBM no longer actively

develops ViaVoice. Nuance, which purchased and develops the Dragon NaturallySpeaking recognizer also now sells IBM
ViaVoice for IBM. Microsoft’s Speech SDK has shipped with Windows XP and Microsoft Office, but has not otherwise
been marketed very strongly. All other recognizers on the market are intended for backend use supporting phone-based
voice recognition for call centers.
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Figure 7.1: A screenshot of the Eclipse Java Development Toolkit editing a file named Com-
poundSymbol.java. Notice the compiler error indicated by the red squiggly underline under the
word “part” in the method empty().

Quick Assists. Quick Assists appear in the left-hand gutter as icons with a light bulb, or as squiggly

underlines (red for errors, yellow for suggestions) underneath lines of code. When the user activates

a quick assist, a menu of suggestions pops up, requiring only a click to enact his changes on the

code.

All of the features provided by the JDT (except the program editor) have been speech-

enabled by Jeff Gray’s SpeechClipse project at the University of Alabama [90]. He and his col-

leagues have created extensive speech command grammars for the menus, dialog boxes and the

GUI, but did not speech-enable the program editor, which is the concern of this dissertation.

7.3.2 Shorthand

Shorthand is an Eclipse plug-in that we created as part of the Harmonia project. It is de-

signed to enable small sequences of keystrokes to create and modify program code. Programmers

can move a structural cursor (a cursor that highlights words, expressions, statements, blocks, meth-
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ods, classes, etc) through the program using arrow keys. The cursor can be expanded or shrunk in

size to encompass more or less program structure.

Shorthand is built on top of the Eclipse IDE, JDT, and Harmonia program analysis frame-

work. Shorthand extends the JDT CompilationUnitEditor with a editing model akin to structure-

based editors. Harmonia analyzes the program text in the background and provides a parse tree

representation for Shorthand to use. Shorthand is designed around a “box” model. A “box” is a

selectable entity in the program that maps to one or more parse tree nodes. In Shorthand, the cur-

rent box determines the keystrokes available and the actions they perform. First, the box and its

associated node are examined through a set of parse tree patterns loaded from an XML file. For

each pattern that matches, a set of action maps is activated. Each action map (also loaded from

an XML file) defines a set of keystrokes and the actions they invoke. Thus, by activating a set of

action maps, a set of keystrokes is activated for the programmer to press. When the box is moved

around (via navigation) the set of action maps is updated. Action maps are composable; each set

of keystrokes should be mutually exclusive. In the case when this is not possible, there is a priority

ordering system used to determine which action’s keystroke will win.

Context-sensitive actions are dependent both on structural and temporal state. For ex-

ample, selecting the public keyword in a class declaration enables the “p modifier” action. If

the user presses “p” on the keyboard, Shorthand will change public to protected. If pro-

tected were highlighted instead, “p” would change it to private. Pressing “p” one more time

would cycle back to public. Other commands are available to insert code templates (class, inter-

face, method, constructor and field), or sequences of entities (e.g. new statement, new expression,

new variable). The most powerful action is the activated box. When “spacebar” is pressed, the

current selection activates, meaning that it becomes editable by free form text (as if the user were

programming in a plain text editor). The boundaries of the activated box are fixed; even if all the

text is deleted, the box is still activated and editable. The activated box can be committed or aborted

when the programmer is done. When aborted, the original text is returned to the document. If

committed, the new text replaces the old.

An action may edit code or navigate through the program. Navigation simply moves the

box around to a particular node in the parse tree, or text offset in the file. Edits are specified textually,

however, since any edit may affect the structure of the parse tree, perhaps invalidating other actions’

edits. Edits consist of add-text and delete-text commands and are processed in reverse order (back

to front). By processing the edits in reverse order, the character positions designating the location of

each edit do not need to be updated as the edits are applied to the document. Once the edits occur,



124

Figure 7.2: A screenshot of the What Can I Type? view. Keystrokes are listed on the left, and
descriptions of the keystrokes’ actions are on the right.

the program is reparsed, the box is repositioned and the cycle begins again.

Shorthand has over 50 actions available, and has not yet been finished. To ease the learn-

ing curve for all these actions, Shorthand provides a What Can I Type? view shown in Figure 7.2.

This view shows all the keystrokes available for the current cursor location and describes what they

do.

Shorthand was conceived by John J. Jordan. Jordan built both a prototype version and the

Eclipse plug-in. The author collaborated with Jordan to extend the design and implementation to

make it appropriate for programming by voice.

7.3.3 Speech Recognition Plug-in

Speech recognizers support two modes of interaction, command mode and dictation mode.

Command mode requires the application to supply a set of finite-state grammars containing all pos-

sible commands in the system. When the microphone is turned on and the user speaks a phrase that
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is recognized by the command grammar, the Java Speech API (JSAPI) invokes a callback with the

recognized command. In dictation mode, however, all spoken words are allowed. As each word or

group of words is recognized, another callback is invoked by JSAPI to alert the application. Com-

mand mode and dictation mode may be intermixed and both turned on simultaneously. The first

words spoken after a pause are processed as both dictation and commands. If the words do not form

a command, they are returned to the application as dictation. In order to switch from dictation to

commands, the user must pause for a moment to reset the recognizer’s command recognizer. Com-

mand mode tends to be more accurate due to the constricted vocabulary. Dictation mode allows all

possible words to be uttered, restricted only by a hidden Markov model trained on documents that

the user has supplied to the recognizer.

SPEED provides speech recognition control over Shorthand. Each action map in Short-

hand is represented by a rule in a speech command grammar. Each action in Shorthand can be

activated by a spoken phrase. The spoken phrases defined in the action map XML file are strung

together into an string of alternative tokens. Each rule may be turned on and off independently, so

as Shorthand moves its box around the program, the speech recognizer plug-in enables and disables

rules to correspond to the active commands. Activated boxes in Shorthand allow for freeform dicta-

tion. When a box is activated, dictation recognition is turned on and recognized words are inserted

into the box.

To improve recognition accuracy of dictation, a corpus of 60 Java files, converted from

Java to Spoken Java using the Java to Spoken Java translator described in Section 3.3, was used to

retrain the Dragon NaturallySpeaking speech recognizer. Each file was scanned for new vocabulary

words and for pairs and triplets of words. This new ground truth data is used to alter the hidden

Markov model so that when a user speaks some Spoken Java code, for example, “field Object

object,” the dictation engine is more likely to return the correct words than if it were trained simply

on natural language documents.

7.3.4 Context-Sensitive Mouse Grid

As we reported in Section 2.2.1, navigation with voice recognition suffers from excessive

cognitive load and delay. This causes an unsatisfactory user experience. One idea that came out of

our study was the context-sensitive mouse grid.

The beauty of the commercial speech recognition tools’ mouse grid command (see Chap-

ter 2.2.1) is its simplicity and speed in quickly moving the cursor to a precise location on the screen.
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However, it does not “know” what is on the screen. In addition, people do not and cannot remember

unique terms for all semantically important areas visible on the screen (even worse, icons usually

have no text alternative).

If mouse grid could be context-sensitive and be able to tag semantically important areas of

the screen, such as the menu bar, toolbar, scrollbar, document with textual names or numbers, then,

when the user invoked mouse grid, visible tags would appear on the screen naming the area of the

screen which can be zoomed in upon. The zoomed-in mouse grid would then tag more important

areas within that initial area (such as each individual menu, or each section of the toolbar, or the

large areas of the scrollbar (thumb, up arrow, down arrow, page up section, page down section)

etc. If the user zoomed in on text, the text would be annotated with numbered tags to visualize

the paragraph, then sentences/lines, then words (and characters if necessary) to enable the user to

precisely drill down and move the cursor where he wants it to go.

We have implemented this idea in the context of the SPEED program editor. The user can

easily select by number (using keyboard or voice) any program construct shown on the screen.

Context-sensitive mouse grid is based on the structure of the program being edited. Top-

level structures that are visible on screen are enumerated and labeled by red arrows with numbers

inside. This can be seen in Figure 7.3. For example, the package line, each import and each top-

level class visible on screen is labeled. The user can then type or say the number to zoom in on that

program element. A new list of numbered arrows is generated for the substructure found within. If

the desired element is not on-screen, the user can page up or page down to see more of the program.

The user selects numbers until the correct program structure is highlighted, at which point he hits

the Enter key or say “select.” The Shorthand box is then moved to the selection, and an appropriate

set of commands is enabled.

Java programs are not very deep hierarchically, so many structures can be selected with

very few numbers. Cognitive load is decreased because program elements need only to be read, not

spoken, to be selected. Delay in recognition is also improved since the user can point at the absolute

location of the program element without having to repeatedly speak the same command. One caveat

of context-sensitive mouse grid is that the numbers shown on screen, while deterministic, are not

predictable. Since they depend on the program, as the program changes, the numbers change. Since

they only apply to the part of the program that is visible on screen, as the user scrolls, the set of

shown numbers will change as well. Traditional mouse grid would not be as useful as one might

think, since many program structures exist at the same point on the screen. Selecting the point would

necessarily need to be followed by expand selection Shorthand commands to navigate hierarchically
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(a)

(b)

Figure 7.3: Part (a) shows Context-Sensitive Mouse Grid just after being invoked. Three arrows
label the top-level structures in the file. Part (b) shows the same file after the number 2 (the class
definition) has been picked. The entire class has been highlighted, and new arrows appear on the
structural elements of the class that can be chosen next.
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Figure 7.4: A screenshot of the Cache Pad. It shows the twenty most common words in the currently
edited Java file.

to the proper structure. Context-sensitive mouse grid conflates the two operations resulting in fewer

commands spoken.

7.3.5 Cache Pad

Speech recognizers are notorious for mangling the recognition of uncommon words, es-

pecially those used in new contexts that do not conform to the models of documents that have been

used for recognizer training. In addition, since the programmer can not easily verbalize spelling,

capitalization or the spaces between words, considerable effort can be expended to wrangle an iden-

tifier name into the proper form. After going through this process, the programmer certainly does

not want to do it again. The Cache Pad is a numbered view of twenty recently spoken identifier

names (found through a search in the parse tree) that may be inserted into the program by refer-

ring to the word’s number. The CachePad, shown in Figure 7.4 is activated during any activated

box, which includes all identifiers in the languages. Number recognition is much more accurate
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and consistent than recognition of words, lowering considerably the effort requiring to reuse an

identifier.

Since the Cache Pad holds only a limited number of words, the programmer can choose,

at run-time, from a number of Cache Pad policies that specify how to fill the twenty slots. The

simplest approach is to take the twenty most recently uttered identifiers in the hope that their use

enjoys temporal locality. However, perhaps the hardest words to say should be in the Cache Pad,

for instance, the longest words, the ones with the most number of subwords or the most common

words. Or perhaps the words immediately surrounding the cursor, taking advantage of spatial lo-

cality. Cache Pad could tie into the code completion facility in Eclipse, and try to predict the most

frequently used identifiers that come next after the cursor.

Learning what the best policy is would be easy if we could study logs of programmers

working on their programs. At any point in time, the best policy would predict the next twenty

words the programmer will say. Until this study is undertaken, we enable the programmer to choose

the policy he would like by inserting the policies into a second panel in the Cache Pad and labeling

them with letters. We can look at how programmers choose which Cache Pad policy works best for

them and perhaps find a good set of choices to use for defaults.

7.3.6 What Can I Say?

An important result from Christian, Kules, Shneiderman and Youssef showed that verbal-

izing commands takes up more short-term memory than typing the same commands [15]. This is

caused by cognitive interference between speaking and short-term memory. As speaking is the pri-

mary form of input in SPEED, there may be two problems for programmers: 1) They could forget

what they are allowed to say. 2) They could forget their program as they are writing it. To address

the first issue, we created a What Can I Say? analog to the What Can I Type? view which displays

all of the legal commands that one can say at any given time. This view, shown in Figure 7.5, up-

dates as the Shorthand box is moved around. The second issue is addressed through the interaction

mode for SPEED. While creating and editing programs, developers receive visual feedback of what

they are saying. They edit a program they can see on the screen, so they are always aware of the

context of what they are saying. The absence of this context helped to cause the problems reported

by Christian et. al. above, since the short-term memory of the context is what was interfering with

the speech.
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Figure 7.5: A screenshot of the What Can I Say? view. Spoken phrases are listed on the left, and
descriptions of the phrases’ actions are on the right.

7.3.7 How Do I Say That?

Learning to speak a new natural language, especially as an adult, can be a trying experi-

ence. In addition to learning new vocabulary, people must also learn new grammatical structures,

culture-specific idioms and a large body of literature in order to become truly fluent. Similar prob-

lems plague software engineers who learn several programming languages during their computer

science education. In addition to learning the vocabulary and grammar for a particular program-

ming language, they must also learn the “culture” of logic and algorithms and decipher many exist-

ing programs and APIs to learn how they work and how they may be used for their own purposes.

Learning to speak programs out loud will be easier for those who already know how to

write code. Since programmers already know the written language, libraries and code examples,

all that is left to learn is new vocabulary and grammar. However, training will be required to teach

programmers how to use this new input modality. In addition to training by a human teacher, we

have provided the How Do I Say That? feature to SPEED. By moving the Shorthand box onto a
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language construct in the editor, the programmer can ask for a dialog box to show the construct’s

translation to Spoken Java. This Spoken Java text can be uttered exactly as written on screen to enter

the same code. By using How Do I Say That? on a variety of program constructs, programmers can

grow comfortable with speaking code out loud, as well as have a crutch to fall back on when they

do not remember the right words or phrase structure to use.

We had hoped to incorporate a Java to Spoken Java text-to-speech system to speak pro-

grams out loud, but we did not have the time to work on it. This spoken feedback would provide

an alternate means of teaching and reinforcing proper Spoken Java vocabulary and grammar. A

simple approach would translate Java code to Spoken Java, which removes most punctuation, but

preserves all of the natural language words, and pass the translated code to a text-to-speech engine

that comes with most commercial speech recognizers. To make this Spoken Java speech synthesis

more useful in practice, we would adopt approaches taken by Smith and Francioni in their work

with blind programmers [91, 32].

7.3.8 Phonetic Identifier-Based Search

Phonetic identifier-based search technique is similar to a Google search for words in the

program, without regard for correct spelling, capitalization, or word boundaries. All of these relax-

ations of a strict match are important because users cannot say them easily in a voice-based search

tool. This tool uses phonetic (Soundex) searching rather than exact character matches. The order

of the words does not matter, making the search more similar to a Google search, rather than a

traditional word processor search. In addition, this find tool is non-modal, to eliminate extraneous

dialog box interactions (bring up the dialog box, click OK to dismiss, click Find Next to continue

the search) which slow down voice control. When invoked, the search tool brings up all results of

the search and displays them in summarized form (with a sentence of context above and below) on

one side of the screen. Each match is numbered and the user speaks the number of the desired match

to go to the location.

We have not yet implemented this search feature in SPEED.

7.4 Spoken Java Command Language

SPEED employs a command language for navigating around the program and editing

code. There are several categories of commands listed in Tables 7.1 and 7.2. The first category is
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Navigation Between Boxes
Go Up Jump to Class class name Expand Selection
Go Down Jump to Method method name Shrink Selection
Go Left Jump to Field field name Mouse Grid
Go Right

Editing a Box
Edit Code
Insert Here
Insert After
Insert Before
Delete
Insert Line

Editing Within a Box
Go Left Delete Left Done
Go Left Word Delete Left Word Cancel
Go Right Delete Right Go Home
Go Right Word Delete Right Word Go End
Select All Insert Line Translate That
Select Left Word Space Cap That
Select Right Word Scratch That Lowercase That

Table 7.1: Programming by Voice Commands Part 1

Navigation between Boxes. This category contains commands to move the Shorthand box around

the program. Jump To commands enable direct navigation to a named entity in the program. Expand

and Shrink selection change the size of the currently selected expression. These selections move

up and down the parse tree, skipping chain productions (productions with only one symbol in their

right-hand-side). Mouse Grid activates the context-sensitive mouse grid feature.

Box Editing Commands contains the commands for modally editing or creating code

with Spoken Java. Edit Code edits existing Java code, while the Insert commands create new Java

code. Delete gets rid of the currently selected code, and Insert Line inserts a carriage return before

the currently selected box.

Once a box is used to edit or create Spoken Java code, commands in the Editing Within

a Box category are available to manipulate the cursor. The Go Left and Go Right commands go left

and right one character. The Go Left Word and Go Right Word commands go a full word. Go Home

and Go End move the full length of the box. Delete commands are analogous. When the user makes

a mistake, he can say Scratch That to undo the last utterance, or say Select All, Select Left Word

or Select Right Word to highlight some text and speak it over again. Since carriage returns and

spaces are difficult to say, commands to insert these are available. Cap That and Lowercase That

commands change the capitalization of the first letter of a word, useful for camel-cased identifier

names. When the user is done talking, he says Done to accept the changes, and Cancel to revert

back to the original. After he accepts the changes, the user says Translate That to pop up a list of
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Code Template Insertion
Insert Class
Insert Interface
Insert Method
Insert Constructor
Insert Field
Insert Comment
Add Initializer

Miscellaneous Commands
Cut This Cap That
Copy This Lowercase That
Paste This
Undo Redo

Table 7.2: Programming by Voice Commands Part 2

Java interpretations of the Spoken Java input.

Code Template commands are used to insert boiler plate code, textually, into the code

buffer. New entities are created with default names and pretty printing. Add Initializer adds a

default initialization routine to variable declarations.

Finally, there are Miscellaneous Commands to operate the clipboard, and undo/redo

functionality. Cap That and Lowercase that can change the capitalization of identifiers.
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Chapter 8

SPEED Evaluation

SPEED is a novel programming environment, both for its spoken user interface and for the

Spoken Java language. While the design of the programming environment was based on an initial

set of user studies, it is important to conduct follow-up studies to validate the design and discover

problems that can be addressed in future work. We consider our work successful if programmers

can use SPEED to write and edit code by voice in a reasonable amount of time. In this chapter, we

describe a study we conducted to have expert Java programmers write and edit code in SPEED.

In our study, we asked programmers to build a data structure and associated algorithms.

This study helped us to understand how developers mix Spoken Java with the Spoken Java command

language as well as showed us the kinds of commands the programmers use to manipulate the

code in the editor. In addition, we were able to classify the mistakes that programmers and our

system made that affect non-contiguous code entry and edits. By coding a simple data structure,

any observed difficulties were likely to be an indicator of the programmers’ efforts to learn and use

SPEED rather than of their efforts to create the program itself.

Our user study was conducted in two distinct sessions. The sessions were identical except

for voice recognition technology. In the first, we used Dragon NaturallySpeaking. In the second,

we used a non-programmer human to listen to the programmer from behind a curtain and type in

what the programmer said. The first session represents what can be done with the state-of-the-art

in voice recognition tools with minimal training. However, since the goal of our study was to learn

how programmers used SPEED, and not to explore the limitations of voice recognition technology,

our use of a human speech recognizer in the second session illustrates how SPEED could be used

when the voice recognition accuracy is as close to perfect as it can get.
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8.1 Participants

The participants in the study were expert Java programmers with an average of twelve

years of experience, drawn from the software development industry. Most of the programmers had

never used speech recognition software before; those who had used it played with it for a short time,

but quickly abandoned it because of poor accuracy. None of the participants had motor disabilities

which would make typing difficult. The first session had three people; the second session had two.

Participants had been using Java-based IDEs for around a year; most used Eclipse. All

of the participants used these IDEs to write code, edit code, and browse through code. Some also

used them for building applications and running tests. In their everyday work, participants did not

spend an equal amount of time coding versus reading. The split varied by the phase of the project

or the programmer’s own job in the project team. At times, all the programmer’s time was spent

writing new code, sometimes it was 100% editing code. Navigation and browsing usually took

around 30-50% of a programmer’s time no matter what their primary task was.

When asked whether they would consider using voice recognition for programming, most

were apprehensive, pointing out problems with noise pollution (many work in cubicle farms, which

are very noisy to begin with), cognitive interference (speaking interferes with thinking), and a poten-

tial for wasting the use of their hands while speaking. One person would only use voice recognition

if everyone else were to do it. One person might use it at home if he worked alone, where he could

not bother anyone else.

8.2 User Tasks

Developers were asked to perform a programming task in 20 minutes: create a linked list

data structure with an append method. Linked lists usually contain two fields, one pointing at the

element, and another pointing at the rest of the list. The constructor is used to build a linked list

node. The append function takes two linked list parameters and merges them. An alternate form of

the linked list has a nested node class to hold the list element and next pointer. This list also contains

a pointer to the end of the list so that extending the list can be done in constant time.
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8.3 Experimental Setup

SPEED was deployed on a Pentium 4 3.2 GHz computer with 2 GB of RAM. Program-

mers used a Plantronics DSP-300 microphone. Screen captures of the experimental sessions were

taken with Camtasia Studio 3. The developers’ voices were recorded using Quicktime Pro on an

Apple PowerBook computer with the microphone from an iSight video camera.

The first session’s software developers went through a 15-minute Dragon NaturallySpeak-

ing 8 voice training process and a 15-minute SPEED training session before they began their tasks.

To augment the What Can I Say? feature of SPEED, developers were given a paper crib sheet with

commonly used commands printed in a big font (this was in addition to the What Can I Say? view

in SPEED itself). The second session skipped the 15-minute voice recognizer training process.

During the second session, a human volunteer was recruited to be a voice recognizer. He

was set up behind the study participant, facing the opposite direction. His display was connected

to the study computer via VNC [81], allowing both him and the study participant to see what was

happening on the screen at the same time. For performance purposes, instead of using VNC to

control the mouse and keyboard, the human voice recognizer used a second keyboard and mouse

connected to the study computer via USB cable.

The human voice recognizer was trained for 45 minutes prior to the studies to practice

interpreting Spoken Java commands, and when to just type in what the user spoke. To assist in

translation, the human was also given a crib sheet indicating the mapping between command phrases

and keystrokes used to activate those commands. Punctuation and other non-words were entered in

an arbitrary way by the human as he saw fit. Depending on the brand of voice recognizer, a software

client may receive a punctuation mark or the spelled out punctuation. So, this setup is similar to the

kind of text that the voice recognizers return.

8.4 Evaluation Metrics

The users’ programming sessions were analyzed on a number of metrics:

• Number of Commands or Dictated Phrases

• Number of Correctly Interpreted Recognition Events

• Number of Commands Uttered
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• Number of Dictation Words Uttered

• Features Used (further subdivided into code template commands, dictation of identifiers or

statements, navigation commands, editing commands, and commands used to fix mistakes

(caused by any reason).

• Number of Speech Recognizer Mistakes (further subdivided into mistakes where extra words

were inserted vs. incorrect words inserted vs. when the recognizer did not respond to what

was said)

• Number and Types of SPEED Mistakes (further subdivided into mistakes where the system

should have interpreted the utterance properly but did not due to a bug, the number of mistakes

due to design flaws in the system, and the number of times that SPEED crashed)

• Number of User Mistakes (further subdivided into mistakes where user did not know what to

say, user used the wrong command, and user said the right command but said it ungrammati-

cally or used the wrong words)

Metrics were coded by one viewer watching the screen capture while listening to the audio

recording of participants performing the tasks. Each participant’s video and audio recording was

played back three times to confirm the measurements.

8.5 Hypotheses

SPEED is designed to be a voice-enabled structure editor with modal activation of Spoken

Java dictation. We hypothesize that SPEED users will follow a typical programming pattern: they

will navigate through the document to a desired insertion point, activate Spoken Java, and add

new code or edit existing code. A few of the editing commands will be used in the majority of

situations, so we anticipate that learning the commands should take only a few repetitions. Based

on our earlier user studies, we anticipate that speaking the Spoken Java language should be intuitive

and natural for programmers without any training. Our GOMS analysis predicts that programmers

should work more slowly when programming by voice than by keyboard due to the slow speed of

speech recognition compared to typing. Finally, based on the results of our document navigation

study, we think that programmers will sometimes make the kinds of mistakes where they do not

remember what they were doing because of anticipated cognitive interference between speaking

and thinking about code.
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8.6 Results and Discussion

We present the data recorded from the study according to the metrics described above.

User 1 User 2 User 3 User 4 User 5
Machine Voice Recognizer Human Voice Recognizer

Commands or Dictated Phrases 131 125 275 102 105
Correctly Recognized Speech 66 97 164 81 92
Commands 73 105 206 68 70
Dictated Phrases 58 20 69 34 35
Features Used Code Template 4 10 7 7 4

Dictation 10 14 16 14 9
Navigation 16 43 71 25 29
Editing 49 51 130 36 36
Fix Mistakes 18 4 60 1 1

VR Mistakes Extra Words 6 0 3 0 0
Incorrect Words 8 3 34 1 3
Did Not Hear 13 15 42 1 0

SPEED Mistakes Bug 5 0 2 2 4
Design Flaw 1 2 0 2 0
Crash 4 6 5 2 4

User Mistakes Did Not Know 2 0 2 5 2
Wrong 2 2 3 0 3
Ungrammatical 2 2 11 1 0

Table 8.1: Data recorded from SPEED User Study from all participants.

8.6.1 Speed and Accuracy

The first session of programmers had a decidedly different experience than the second

session. They were stymied by the speed and accuracy of the voice recognition software and were

only able to accomplish a portion of the code creation task in the 30 minutes allotted. They could

create a class, some fields and a constructor, but were not able to fill in the code for the constructor

or create any methods. The second group, which used the human voice recognizer, enjoyed almost

error-free recognition, and were able to complete far more of the code creation task. They were

able to complete two classes (a list node and a list class), each with several fields, a constructor to

initialize the fields and the beginnings of an append method.

The accuracy of the machine voice recognizer was abysmal. At times, the recognizer

would just not hear anything the programmers said. Other times, it would recognize a series of

commands perfectly. Dictation, however, was fairly unusable. Breathing was often interpreted

as a single syllable word, so programmers learned to use the mute button on the microphone to
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prevent this from happening. Often, words were recognized poorly, coming close to what the user

wanted, but not close enough. For example, “linked” came out as “links.” Text editing commands

(as opposed to program editing commands) provided by SPEED were minimal, though similar to

those provided by Dragon NaturallySpeaking, and were tedious to use, so most programmers used

“scratch that” to undo the utterance and try it again.

For two programmers, we trained the speech recognizer on a corpus of Spoken Java pro-

grams. However, out of several hundred thousand words, this corpus contained a few, very com-

mon words with uncommon spellings (containing punctuation in strange places, odd capitalization),

which caused the speech recognizer to generate them over and over again. In addition, many iden-

tifiers in the corpus were unique to that corpus and not applicable for the linked list program. Most

of the study participants did not have their recognizers trained on this corpus.

The second group reported almost error-free recognition due to the human speech rec-

ognizer. This contributed significantly to a reduction in the number of commands uttered to fix

mistakes. Recognition delay was about the same for both groups, around 0.5 to 0.75 seconds. The

reaction time of our human recognizer was about equal to the processing time of the computer. We

imagine that faster computers will reduce this processing time further, while the human reaction

time will remain the same.

A major component of the software speed problem was Camtasia Studio. When it was

recording, the software slowed down by at least three times. One participant who got to use SPEED

for a short time without screen capture reported that the speed was perfectly fine.

Due to the speed and accuracy problems, participants in the first session adopted a stop-

and-go pattern of speaking and waiting for the results. Their mistrust of the voice recognizer caused

them to program very slowly and increased their frustration with SPEED. The second group were

able to speak at a normal pace, and often paused in the middle of commands as they were uttered,

something a machine speech recognizer would have never recognized correctly.

8.6.2 Spoken Java Commands

All users learned the SPEED commands fairly quickly, requiring only one or two repeti-

tions of each command to be able to use it without looking at their crib sheet. Command error rates

caused by user error were fairly low for all participants. Out of around 148 commands each, the

average number of errors was around 6 (one user made 26 errors), giving an average user error rate

of 5.5%.
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User 1 User 2 User 3 User 4 User 5
Machine Voice Recognizer Human Voice Recognizer

% Correct Recognition Events 50.4 77.6 59.6 79.4 87.6
% Commands To Fix Errors 13.7 3.2 21.8 1.0 1.0
% Commands For Navigation 12.2 34.4 25.8 24.5 27.6
% Commands For Editing 37.4 40.8 47.3 35.2 34.3
% Commands Inserting Code Template 3.1 8.0 2.5 6.9 3.8
% Commands Starting a Dictation 7.6 11.2 5.8 13.7 8.6

Table 8.2: Distribution of Spoken Java commands spoken for various purposes.

In Table 8.2, we see a breakdown of the distribution of Spoken Java commands used for

different purposes. The first few users had recognition error rates between 23% and 50%, which

made the system unusable. With the human recognizer, the final two participants enjoyed less than

21% error rate. The errors made by these users were their own, however; they were not caused by

misrecognition, which because it was under the users’ control, was much easier to accept.

The two most used command types were code template insertion and edits of field, method

and type names. Code template insertion was seen as providing a lot of text for very few words.

Editing was a simple repetitive process that involved navigating to the word, saying “edit this,”

saying the new name, and then “done.” Most new names were single words, enabling SPEED to

automatically translate what users said from Spoken Java to Java without any need for interaction.

The majority of commands spoken were for editing. Editing commands were mainly used

to take the place of string editing facilities that are usually performed by repetitive single keypresses,

such as deleting a character from a word, inserting spaces in between words, or changing the capi-

talization of a word. As predicted by our GOMS analysis in Section 2.3.2, spoken commands that

result in few letters changing on the screen cannot compete with typing for efficiency. We have no

good ideas for reducing the complexity of these actions other than to use the keyboard.

Spoken commands need to have a big payoff in modifying the program to be efficient.

Thus, the small percentage of code template commands achieved the largest payoff for the pro-

grammer, and are almost directly correlated with the number of program structures created by the

study participants. Code dictation was almost always used to edit the name of a field, method or

type name. Since most new names were single words, SPEED was able to automatically translate

what users said from Spoken Java to Java without any need for interaction. Multi-word identifiers

were concatenated automatically, using our speech-away programming language analyses, enabling

developers to skip some tedious editing commands to affect spacing and capitalization. Capitaliza-
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tion of the first letter of a word (encoding a style convention in Java that class names start with a

capital letter) was not performed automatically, and thus some of the remaining editing commands

were required to change the initial letter of an identifier to capitalize it.

Two users used context-sensitive mouse grid for navigation, and both felt that this was a

huge improvement over the simple arrow-key-like navigation commands otherwise provided.

Participants had suggestions for better commands. One wanted a Jump To command

where the user could read code off the screen and have the SPEED cursor jump there. This is very

similar to Select and Say, from Dragon NaturallySpeaking. Several wished that the code templates

could take a parameter with the name of the item being created. For example, “insert field element”

instead of “insert field.” Code templates only worked on blank lines. One user wanted the com-

mands to work anywhere, since for example, there is only one logical place to insert a field when

you are inside a class, no matter what you are currently selecting in that class.

A few asked to customize both the command names to insert code as well as what code

templates were available. One participant explicitly said there should be no customization in order

to make it easier for all users of a speech programming tool to learn the same language, as well as

to make it easy to move from one speech-based programming environment to the next.

8.6.3 Speaking Code

Participants were apprehensive about speaking the natural language words in the program

when dictating code, but not when saying identifier names. In fact, most dictation utterances were

for identifiers. One called the idea of dictating code “strange.” Four preferred to describe the code

instead of dictating it. This is an unexpected, but interesting finding. One felt that describing the

code was a higher-level of programming, apparently concluding that if higher-level programming is

a good idea, then describing code must be as well.

Two participants felt that tandem use of keyboard and voice would potentially be more

efficient than either alone. Without specialized navigation commands, voice is inefficient at moving

the cursor to a particular location on screen, especially inside pure-text regions. But a keyboard and

mouse make this simple. For code entry, voice could be more economical through code templates.

Code templates are available by keyboard in Eclipse, but participants had trouble remembering

all the proper keywords to activate them. They thought the voice commands were much easier to

remember.

One wished for integration of voice with Eclipse’ code completion feature. When the user
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was entering a method parameter’s type, a list of all types could be shown in a popup menu. As the

user spoke the words composing the type name, the menu would be filtered to only show matches.

Once there was only one left, the user could then select it.

8.6.4 Evaluation by Participants

The participants concluded that none of them would use this programming environment

for daily coding, especially with the poor accuracy provided by the machine voice recognizer. How-

ever, they all would consider using the software if they came down with RSI, worked from home, or

were stuck in a hands-free environment, such as while pacing around the room, or sitting with their

feet up on the desk with the keyboard far away. In spite of their reluctance to use this software, all

programmers noted that since coding was not a significant component of their daily work, using a

voice-based programming environment would not have a significant effect on their efficiency as a

programmer.

8.7 Future SPEED Designs

The next step in a user-centered approach for programming-by-voice is to learn from our

study and iterate the design. Based on our study, there are several features of SPEED that could

be improved. Code template commands were found to be easy to learn, so we would increase the

number of templates to cover program statements, as well as improve the customizability of the

templates to let users build their own. Editing commands for string edits have proven to be imprac-

tical to conduct by voice. We can look into enhancing our program analyses to better predict likely

spelling, capitalization and word spacing for names and identifiers commonly used by programmers

in their own programs. In addition, we could add a machine learning algorithm to analyze the names

used in a particular developer’s programs and use that information to help predict the most likely

spellings for spoken identifiers.

Participants’ reluctance to use code dictation services needs to be further explored. We

need to understand the source of the discomfort; perhaps it could be overcome by further training.

While code dictation would not be more efficient than code templates, it would be useful for code

constructs that do not have programmer-understood names and for complex program constructs that

programmers will only use once. Finally, the entire IDE will need to be speech-enabled. We can

build off the SpeechClipse work to achieve this goal [90].
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8.8 User Study Improvements

The user study showed that voice recognition performance after 15 minutes of training is

too poor for use in a study. Programmers would have to train for many hours before recognition ac-

curacy would improve enough to be usable. Obviously, continuing to use a human voice recognizer

distorts the accuracy results by assuming a perfect recognizer. One approach to fixing this could

be to use speaker-independent voice recognition software. These are designed to work without any

training, although most of them do not support free dictation, only commands.

Our study looked primarily at writing new code. Editing commands were used to fix

mistakes and edit identifier names, but clearly, large-scale code maintenance, and even small code

motion operations would need to be speech-enabled and evaluated. Operations that invoke IDE

commands have more traditional implementations (all recognizers can speech-enable menu items

and GUI buttons), but the more common operations could benefit from evaluation through a user

study.

Few users tried code navigation via context-sensitive mouse grid. For the first three partic-

ipants, recognition of numbers was not working at all, preventing its use. The next two users used it

once or twice (more often in the training session) and would use it again. We would like to evaluate

this feature more completely, out of the context of code manipulation, to see how understandable its

code selections are, and to figure out whether it enables navigation to all desirable program points.

This will require another user study.

8.9 Summary

The five programmers each learned to program by voice using SPEED in their study

session. The commands were each learned with one or two uses. The inaccuracy of the voice

recognition adversely affected programmers’ performance, but did not change how they used the

SPEED commands. Programmers noticed that they were less efficient with voice-based program-

ming, independent of recognition errors, though this inefficiency would not adversely affect their

job performance. This was predicted by our GOMS analysis (see Section 2.3.2) and confirmed by

the programmers in their post-study interviews. Several classes of improvements can be made to

streamline the commands. Some of these involve combining separate commands that are always

used together into a single command. Others include voice-enabling the rest of the IDE outside

of the program editor to enable use-def program navigation and Eclipse-provided program refac-
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torings. Assuming the social problems associated with voice-based programming in a work envi-

ronment can be solved, programming by voice does appear to be a viable alternative to typing for

creating, editing and navigating programs.
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Chapter 9

Commenting By Voice

In this chapter, we discuss commenting by voice, the technique of documenting program

code using voice recognition. We explore possible reasons for the lack of documentation in existing

software, and propose commenting by voice as a possible solution. By employing two input modal-

ities: keyboard and speech, it may be possible to overcome physical interference between coding

and commenting activities. Then we explore several commenting by voice scenarios to explain its

utility in real-life situations. We end by discussing a prototype implementation of commenting by

voice and propose an experimental study to validate the idea.

9.1 Documentation of Software

Writing documentation is a perpetual exercise for the creators of software artifacts. For

end-users, documentation is a key resource to learn how to use the artifact, but for the developer,

documentation enables much more – not only the ability to understand someone else’s code, but to

document one’s own thought processes regarding the architecture of the artifact and the code itself.

Unfortunately, programmers usually do not create enough documentation, nor high enough quality

documentation to replace an in-person discussion of the code. We believe this to be caused not by

the inherent “laziness” of programmers to document their code, but by physical interference in the

commenting activity, since both programming and commenting utilize the same input channel: the

keyboard (or in voice-based programming environments, voice recognizers). Programmers should

have a tool that enables them to create code comments using audio recording and speech recognition

at the same time as they are typing in their program code by keyboard. These audio comments can

then be inserted in their code with the same status as textual comments. We hope that by paralleliz-
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ing their input channels, programmers will comment their code more, and in doing so, enable others

to better understand the original thought processes involved in the coding task. Programmers are

quite expressive writing code; if given a chance, we hope that they become as expressive talking

about it.

Documentation about software artifacts is at least as ubiquitous as the program code re-

quired to implement them. Programmers need many forms of documentation to do their work. For

instance, programmers use API documentation to understand how to use libraries created on-site

and purchased from outside vendors. Application designers create system architecture documen-

tation to describe how all the components of a system fit together. Developers create engineering

specifications to refine the client specifications in order to explicitly state the myriad implicit details

that were left out.

In the source code itself, programmers create header documentation to describe the pur-

pose of a file. Comments about code are also ubiquitous, and can span the gamut from a high-level

description of an algorithm to low-level explanations for non-intuitive (read: clever) code. In this

section, we will concentrate on code documentation in the form of program comments. We will

justify this focus later in this section.

If documentation is so pervasive, why then is it almost universally perceived as being of

such low quality? Communication and writing skills have often been found lacking in new college

graduates in computer science. Since programmers have such bad writing skills, McArthur claims

that they should not be the ones writing any documentation for end-users of a system [66].

End-users are not the only consumers of documentation, as we saw above. Programmers

themselves use documentation for many purposes, so we should ask, do programmers write good

documentation for their own kind, and if so, what benefits are derived from the activity and the

product? Detienne’s studies [21] indicate that programmers who write comments before they begin

coding seem to perform better on code comprehension tasks. Comments appear to aid in chunking,

the process of grouping pieces of knowledge together. Unfortunately, there is a pitfall to comment-

ing that can affect comprehension: comment management. When the comments do not appear in

the code, but in a separate document, one runs the risk, especially in larger software projects, of the

documentation getting out of sync with the code that it is describing [59].

Sometimes there is too much documentation that focuses on details that experts find use-

less. Often this sort of documentation is written by novices because they themselves do not under-

stand how a program works, so when told to comment their code, they concentrate on the lexical

and syntactic pieces that they do understand [13]. Why are these kinds of comments (about a pro-
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gram’s lexical and syntactic properties) less useful than comments about the semantics? Riecken,

Koenemann-Belliveau and Roberston performed a study on expert programmers’ intentions for their

comments [85]. First, they found that experts communicated semantic rather than syntactic knowl-

edge about their program in the comments. This was because syntactic knowledge was assumed to

be already understood by any reader (even complicated syntax was perceived to be a rite of passage

for novices to understand), whereas the semantic knowledge was the hard part to understand and

therefore the most critical to convey.

The flip-side of the problem of too much documentation is too little. The fact that pro-

grammers do not write documentation until after they are done coding or perhaps never at all

is well-known in the technology industry and is perhaps one instigating factor of the many new

programming methodologies that pop up every few years to encourage programmers to comment

more [28].

9.1.1 Solutions

We can solve some of these documentation problems rather easily. If programmers are

bad writers, we can just hire technical writers to write the end-user documentation for them. Better

programmer education as well is advocated to improve not only programmers’ communications

skills, but to improve their programming methodology and habits [111].

We can solve the out-of-sync documentation problem by inlining structured documenta-

tion in the code and processing it with a separate tool to generate the final documentation. Such a

technique is used by JavaDoc [56] for the Java programming language.

Some feel that tool support would help programmers document their code more eas-

ily [12]. There is a long history of automatic commenting tools [26, 96] which derive a description

of the code through program analysis. More recently, an interactive commenting tool for Prolog

was developed [86] that enables the programmer to comment on each step of execution of a Prolog

query and insert those comments back into the code. Work with commenting agents has also been

reported [27] to help users design user interfaces.

9.1.2 Programmers Are Just Lazy

However comprehensive this research seems, there is still one zebra left in our herd of

horses. Programmers are perceived to be lazy. The unspoken argument is that they do not document

because they do not want to expend the effort. We argue that this strawman argument is correct,
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but for the wrong reasons. Programmers are not lazy. In fact, programmers are anything but lazy.

Who else would commit to the same long hours in pursuit of a bug or finishing off a feature before

a deadline?

9.1.3 Or Are They?

We assert that programmers comment poorly because there is no good time to do it. There

are only three times during coding when a programmer could comment her code: before she starts,

while she is coding, and after she is finished. The kind of comments that can be written before the

code are only blackbox comments – they must necessarily be descriptive of the intent and semantics

of the code, for the lexical and syntactic structures have not yet been written. After the programmer

has spent a few hours poring over her solution, and the code is completely written, she feels as if

she knows the code like the back of her hands. It may even seem that there is no reason to comment

code that appears so intuitively obvious (however non-obvious the code will appear in a week). Of

course, the explanation is that “the source code is the documentation.”

If the programmer can not be fully descriptive with her comments before she starts, and

does not want to or forgot to comment her code after she finishes, that leaves only one time to

comment: while she is coding. We argue that programmers do not comment while coding as often

as they should because coding and commenting use the same input channel: the keyboard. Thus, in

order to comment their code, they must necessarily stop coding, and vice versa. Even if they would

like to be very descriptive with their comments about the actual code, in the end, it is the code that

they get paid to write, not the comments.

9.1.4 Voice Comments

In this work, we aim to solve this input channel conflict. We enable the programmer to

construct voice comments as they program by recording what the programmer says out loud into a

headset microphone. We use a speech recognizer (IBM ViaVoice [39]) to translate the audio into

text, and insert this audio/text combination into the code as a comment. Voice comments can be

played back aurally or read visually at any time. The comments are saved (structurally) with the

program document and restored when the document is reloaded.

By using the voice channel in addition to the keyboard channel, a programmer can talk

about his code at the same time as he codes it by hand. It is similar to a Think Aloud study, in

which participants are encouraged to talk about what they are doing while performing an action.



149

This enables an experimenter to gain insight into the thought processes involved in a task without

cognitively interfering with the task itself. We speculate that utilizing both voice and keyboard input

channels will enable a programmer to annotate her code with spoken utterances about the thought

processes that are going on in her head as she designs and writes down the program. In the rest of

this section, we present the design and implementation of the voice commenting project, as well

as possible scenarios for its use in the real world. We then discuss experiments we would like

to perform with novice and expert programmers to both better design the system and elucidate its

impact on the programming process. Finally, we describe future work and conclude.

9.2 Scenarios

In this section, we present some possible scenarios of interaction with a prototype Voice

Commenting tool. The first is drawn from an educational perspective, and the second from a code

review perspective.

The notation that we use for visualizing the code is as follows. Program code is marked in

Courier font. Traditional program commands are marked in italics and bordered by language-

defined boundary tokens (e.g. Java uses /* A comment */). Voice comments are marked in italics

with� and� boundary tokens.

9.2.1 Education

It has long been the case that everyone grading a programming assignment laments that

they do not understand how a student could have possibly come up with the answers that he did.

Students do not comment their code enough, and the code itself is usually written in a language or

style that is particularly obtuse. Also, the submitted copy represents only a tiny fraction of the code

that the student actually typed in while trying to make his project.

Would it not be nice if you could follow a student’s thought process along from beginning

to end, and see not just the end product of his efforts, but all intermediate stages in between? Even

better, if you could not only watch his code develop, but you could also know what he was thinking

when he wrote it? That would give a teacher/grader much more information to work with in order to

understand how a student developed his code, and more easily identify where he went wrong (and,

where he had a great flash of insight!).

Consider a second-year computer science student working on a Java programming assign-
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ment to implement a linked list data structure. The student must define the appropriate Java class,

but first thinks out loud about what he needs to do.

�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�
Then the student types in the class declaration:

�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�

public class LinkedList {
}

The student next states out loud that he knows one of the fields to add to the class:

�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

}
And, he then defines the value:

�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;
}

At this point, the student wavers a bit. He is not sure how to complete the data structure.
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�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;

�And I know there’s another to continue the list but I don’t know what it

should be�

}
Fortunately for him, he knows his TA can read back what he is saying, so he puts a coded

message in there for him.

�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;

�And I know there’s another to continue the list but I don’t know what it

should be�
�I guess I can leave it out for now and my T A will understand what I meant

to write�

}
The student then completes, to the best of his abilities, the functions in the LinkedList

(head and tail) data structure and turns in his assignment to the TA.

At this point, the TA needs to grade this student’s programming assignment. He runs the

automatic testing suite, and finds that this student’s program has failed all the tests. “How is that

possible?” the TA thinks to himself. “He was doing OK in the beginning of the term.”

Using Harmonia, the TA loads up the student’s program. He reads the voice comments

in the code and does not understand what the student meant to write. Perhaps if he played back the

edit history of the document, he will be able to figure out where the student went wrong. Using

Harmonia in XEmacs, the TA types in M-x replay-history. The document refreshes to an
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empty state, and replays each edit at a rate of one every three seconds. When the computer replays

a voice comment, it plays back the audio of the comment in real-time synchronized with the text

edits that occurred while the student was speaking.

Once the edit history plays back the last voice comment, the TA understands that the

student knew he should extend his LinkedList with a pointer to the next LinkedList in the chain (or

nil). The TA then adds his own voice comment to the student’s code:

�The assignment says to create a linked list. I guess I’ll need to declare the

data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;

�And I know there’s another to continue the list but I don’t know what it

should be�
�I guess I can leave it out for now and my T A will understand what I meant

to write�
�Yes, I figured it out. You need to declare an-

other field with the linked list type. Also try

to think about what you would do to point to the

end of the linked list.�

}
The TA sends back the annotated assignment for the student to correct. He was able to

provide the voice comment facility to give appropriate and more directed feedback to the student to

help with his next revision.

9.2.2 Code Review

In this scenario, an employee of a networking startup in Silicon Valley is reviewing the

code for a proxy server written by a colleague. He is reviewing the code at 2am because he is a

night owl, and could not find a time to meet with his colleague that was suitable to both.

The code looks like this:
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for (int i = 0; i < 10; i++ ) {
Server serv = new Server(i);

Socket sock = serv.recvConn();

String input = sock.readStream();

execute(input, i);

}
First, the employee states the obvious:

�It’s a loop of 10 connections.�

for (int i = 0; i < 10; i++ ) {
Server serv = new Server(i);

Socket sock = serv.recvConn();

String input = sock.readStream();

execute(input, i);

}
Then, he notices an inefficiency. The employee’s colleague is allocating a new Server

object for every new connection when he should be reusing it:

�It’s a loop of 10 connections.�

for (int i = 0; i < 10; i++ ) {

�Why are you allocating a new server socket every time?�

Server serv = new Server(i);

Socket sock = serv.recvConn();

String input = sock.readStream();

execute(input, i);

}
Reading onward, he notices an egregious security violation:
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�It’s a loop of 10 connections.�

for (int i = 0; i < 10; i++ ) {

�Why are you allocating a new server socket every time?�

Server serv = new Server(i);

Socket sock = serv.recvConn();

String input = sock.readStream();

�@#@%! This is a huge security hole right here! You didn’t check the input for

validity before executing it.�

execute(input, i);

}
After making these comments, the employee quickly fires off two emails – one to the

security officer at the company to turn off the alpha version of the server, and the second to his

colleague berating him for leaving such as glaring security hole in their software.

This use of voice comments illustrates the benefit of informal voice commenting to an-

notate production source code and to rationalize quick decisions which everyone else can easily

verify.

9.2.3 User Model

We next designed the user model. We integrated the voice commenting feature into

Harmonia-Mode [37], an XEmacs plug-in developed for Harmonia. Harmonia-Mode uses the fea-

tures of Harmonia to support interactive error detection and display, syntax highlighting, indenta-

tion, structural navigation and selection, structurally-filtered searches, and elision throughout the

code document.

Our desired user model would allow the user to talk modelessly and have his speech

inserted into the document at various points as voice comments. Some design questions about the

user model concerned us.

1. If a user speaks a voice comment, where should it go? Should it be inserted at the current

cursor position? Perhaps we should speech-to-text the comment and use artificial intelligence

to interpret what he is talking about. For example, the user says ”This field needs to be
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renamed.” before a class definition. Since the user is talking about a field, the comment

could be associated with the field declaration. Could a comment be associated not just with

a text position in the buffer, but also with structural elements in the syntax tree? This way

a comment could be associated with a class, or a field, and even if that field is subsequently

edited or moved, the comment could be kept near it. We decided to go with option 1, where

the comment is inserted at the cursor position because it was the simplest option. Artificial

intelligence is not our specialty, so we ruled out option 2. We ruled out option 3 as well

because the text-oriented (as opposed to syntax-oriented) user model of the editor does not

preserve enough information to determine anything but the text location where the comment

should go.

2. If a user speaks for a length a time while simultaneously editing the document, where

does the comment go? It could go at the position where he initially started speaking, or

go at the end where he stopped speaking. Or the comment could span the entire range of

characters. Unfortunately, Harmonia-Mode associates text ranges in the buffer with nodes

in the syntax tree. Without a node to represent this expanded range, we could not make the

proper association. We decided to insert the comment at the cursor position where the user

first began to speak, since that was likely close to what he intended to comment.

3. When should comments be inserted in the code? Should they go in as soon as the pro-

grammer stops speaking, or should we wait a few seconds? If the comments go as the user is

coding, it could disrupt the visual flow of the program and interrupt the programmer’s thought

process – exactly the opposite of our intentions. In addition, if the comment is too colorful

for code (such as the expletive uttered by the code reviewer in the second scenario above),

the speaker may not want it to go on. Likewise, the speaker may have forgotten to turn off

the microphone when talking to a colleague in the room and the comment inadvertently was

recorded. We could batch up spoken comments with their insertion locations and store these

in a buffer. When enough time has passed or there are too many voice comments in the buffer,

we interactively ask the programmer whether it should be inserted. It is important to present

the voice comment inserted into the buffer with context above and below in order for the

programmer to remember what they were thinking when they spoke the comment.

4. How should voice comments be rendered? Should a voice comment be translated into the

programming language’s syntax for a comment? If yes, the user would not be able to visually
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identify which comments contained audio and which did not. We thus chose to present the

voice comment in a distinct typeface. Should a voice comment be a simple one-character

glyph or should we present the entire speech-to-text translation with special delimiter glyphs?

We chose to render the entire text of the comment in order to facilitate skimming. If all of

the voice comments needed to be played back in order to find out what was in them, then one

would have to listen to all of the comments to find anything. To reduce the clutter from the

voice comments, we enable the user to elide their visual representation into a two character

glyph (the boundary tokens of the fully expanded voice comment). The user can also click on

the voice comment and choose to have the recorded audio spoken back out the speakers.

5. Can voice comments be edited? If so, are they editable in text or solely in audio? If voice

comments are modifiable via text, it is important to keep the audio in sync. One would have

to know the time indices of all of the words in the audio stream and be able to cut and paste

them. If the user reordered the words in the comment, the audio could be recut to match. But

what if a user deleted a few characters of an existing word, or even added a completely new

word? Should the tool synthesize new speech and insert it in the audio? Since this project was

more about how the voice comments would be used as an annotation tool and not intended to

be a complete prototype, we did not allow any editing of voice comments.

We made all the aforementioned modifications to our Harmonia-Mode for XEmacs (all

except that code comments are automatically inserted into the code buffer two seconds after the

programmer has finished speaking each one) and informally tried out our prototype. Barring some

initial technical difficulties with IBM ViaVoice related to discovering when the user has started

and stopped speaking into the microphone (the speech recognition engine only reports when it is

decoding voice into text, and reports the overall input volume level, which the author used to infer

when the programmer stopped speaking), the prototype worked well.

9.3 Experiments

The next step would be to conduct experiments to see how voice comments can be used

by both novice and expert programmers to create better comments in their code. For novices, we

could deploy the system to several students in an introductory programming class (conducted in the

Java programming language), and ask them to use voice commenting on one of their programming
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assignments. We would hope to see an increase in commenting in the program itself as compared

to the rest of the students in the class.

Our main metrics will be the total number of comments, number of comments per class,

field, method and line in the code, as well as the number of characters in the comments themselves.

Another metric will be the number of comments that are about semantic information in the program,

rather lexical and syntactic. This would be mainly a comparative one with the other students in the

class, since novices tend to comment poorly anyway. Indirect metrics would be evaluations from the

students as to the distraction or benefits they see from talking about their code, and an evaluation

from readers who grade the programming assignments to see if they feel that they gain a better

understanding of what the students were thinking when they were writing their programs. This last

evaluation is critical to understanding whether or not playback of the comment audio is useful to

the reader, as well as if it is possible to wade through the (hopefully) copious quantity of comments

in the code to find out what is important.

For experts, we can conduct a similar experiment except that instead of a programming

assignment, the expert’s current project will be studied. A tool created by David Marin [65] can

report statistics on commenting behavior found in a code repository. We could use this tool to

establish a baseline for an expert’s tendency to comment her code. Then, we encourage the expert

to use our voice commenting system, and look at the changes, if any, in her commenting behavior

by examining the repository. We can use the same metrics as for the novices as well as the same

evaluation by the programmer to identify any cognitive issues that interfere with the programming

activity.

9.4 Summary

We hope further experiments will show that programmers, both novices and experts, will

be able to use this tool to comment their code more completely and descriptively. Exploration of the

cognitive interference issues will be critical to its success – speaking about one’s code may interfere

with programming, or even if not, the stream-of-consciousness style of comment may increase the

likelihood that the comments will be lexical or syntactic in nature, rather than the more useful

semantic form of comments.

The one incontrovertible benefit of voice comment is that it will form an indelible and

more complete record of the programmer’s process while performing his duties. Programmers have

a lot to say – it is time that we started capturing it.
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Chapter 10

Conclusion

This dissertation has proven our thesis:

1. Programmers can learn to program using voice recognition.

2. It is possible to successfully understand spoken program code and commands and render them

as code in a traditional text-based form by adapting a program analysis system for spoken

input.

This dissertation’s contributions follow a human-centric view of the problem. First, we

studied programmers to understand how they would speak code and navigate through documents

independent of any system that might have to understand them. We used this information to design

a spoken input form that balances a human’s desire to speak in natural language with our ability

to develop a speech understanding system to analyze it. Then, we implemented this speech un-

derstanding system by taking existing program analysis tools that were created for unambiguous

programming languages and adapting them to understand ambiguous speech. We plugged these

new analyses into a program editor and then tested it with professional programmers to see how

well both the programmers and the system perform. The lessons we learned will help us design the

next version of the system as well as advance the community’s knowledge about how programmers

express themselves when programming.

This is the concluding chapter of this dissertation. We begin by discussing what we

learned by designing and building these algorithms and systems and objectively evaluate the work.

We lead into a discussion on structure-based editors and consider their future when operated by

voice. We then present future work and illustrate the many different directions in which program-
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ming by voice may go. Finally, we end with a discussion of where the field is today and where it

could go in the future.

10.1 Design Retrospective

There are several major components to this dissertation.

1. Spoken Program Studies – Studies of programmers to identify how they would speak code

and navigation commands.

2. Spoken Java Language – Design of the Spoken Java language.

3. XGLR Parsing Algorithm – Design and implementation of the XGLR parsing algorithm.

4. Inheritance Graph – Design and implementation of the Inheritance Graph data structure for

names, scopes and bindings.

5. SPEED – SPEech EDitor composed of Shorthand, Eclipse, What Can I Say?, How Do I Say?,

Cache Pad, Context-Sensitive Mouse Grid, and a plugin for a speech recognizer.

6. SPEED User Studies – Studies to find out how developers learn to program by voice.

The following sections discuss each component above. We end with a overall review.

10.1.1 Spoken Program Studies

There were two programmer studies conducted in the early days of this research. The

first looked at how programmers might speak code out loud if they read it off a piece of paper. The

second looked at document navigation commands in commercial speech recognizers.

In the first study, we learned a lot about the ambiguities present in speech that cause

problems for understanding spoken programs. Homophones, punctuation, spaces between words,

and capitalization all cause difficulty for automatic recognition of spoken code. Abbreviations and

partial words are difficult to say out loud, and appear quite often in programs, especially in system

libraries. In hindsight, many of these issues seem obvious, but there had been no studies before ours

detailing the issues.

Programmers tend to speak in abstractions when they perceive patterns in their code. It is

not clear yet whether this is a side-effect of speaking pre-written code or something that program-

mers would also do when speaking spontaneous code.
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In the SPEED user study session that employed commercial speech recognition tools, we

noticed that programmers tended to speak in short bursts due to recognizer malfunctions. Sometimes

the wrong word was recognized, but more often, no words were recognized. When the wrong word

appeared in dictation, programmers had to spend time and commands to correct the error. This

effect was not seen in the spoken programs study because participants were programming into a

tape recorder, and could not see the results of the transcription.

The document navigation study showed that all forms of document navigation provided by

commercial speech recognition are sub-par. They take too long to activate and compared with mouse

and keyboard navigation require too much reading and speaking. The biggest problem exposed by

watching people navigate documents by voice is the cascading recognition error. People who tried

to use the find dialog box would speak words that were incorrectly transcribed. When they tried

to undo their utterance by saying “scratch that” or “correct that,” the recognizer would write down

those words instead of interpreting them as commands. Subsequent utterances might be interpreted

correctly or incorrectly, but usually it proved easier to exit and restart the dialog box to begin with a

clean slate.

10.1.2 Spoken Java Language

Spoken Java was designed to be natural for experienced Java programmers to speak out

loud. Since most programmers speak the same words when speaking Java code, it sufficed to build

a single lexical specification and grammar for the language. There is plenty of variability supported

in the language. For each lexeme, there are often three or four ways to say it. For several grammar

constructs, there are two or three ways to say them, including dropping optional punctuation markers

(or their equivalent verbalized forms). Our SPEED user study showed that developers who were

trained to speak the English words in their program without the punctuation felt that they understood

exactly how to enter the code in the acceptable form.

While this design aimed to cover the majority of the spoken form of Java, it is not and

cannot be complete. A robust system would need to be extensible, and learn how the particular

programmer verbalizes code. Learning would work fairly well because even though programmers

exhibit a fair amount of variation in the words they choose to use when speaking code, it is drawn

from a finite vocabulary and grammar. It should be possible to adapt natural language grammar

machine understanding systems to making the Spoken Java language specification extensible.

In the SPEED study, several developers felt more comfortable with code template in-
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sertion commands rather than directly dictating code. They explained this by associating code

templates with higher-level coding actions, describing code rather than speaking it literally. Our

Spoken Programs study also saw this trend during verbalization of code read from a piece of pa-

per. Programmers tended to abstract the code on the paper, especially when there were obvious

patterns. There were no obvious patterns in the SPEED study, but programmers still wanted to use

abstractions. Supporting user-identified program abstractions will be an important topic for future

study.

10.1.3 XGLR Parsing Algorithm

The XGLR parsing algorithm is without a doubt the highlight of the technology developed

for this research. It is the only parser capable of handling lexical ambiguity, not just when one token

has multiple spellings, but also when a single token has multiple meanings (lexical types) and

when a character stream may have several different interpretations leading to a distinct sequence of

tokens being produced for the parser to consume. Further parser developments are ongoing in the

areas of structural editing (using single tokens to represent subtrees) and parsing program fragments.

Both of these features require significant alterations to the parse tables that can be done only using

Generalized LR parsing as a substrate.

As part of the XGLR project, we developed Blender, a combined lexer and parser gen-

erator. Blender is composed of two languages modules, one representing the lexical specification

and one representing the grammar of the input files. Each is written in Blender itself. Blender

is bootstrapped from language modules written with Flex and Bison. Once the zeroth Blender is

loaded, its additional power is used to compile the language modules for the first Blender. Further

research in whitespace specification and language embedding should enable us to create a second

Blender, developed with the increased power of the first, which will support a lexical specification

composed of three sub-languages, file structure, regular expressions and C. This composition would

also support a simpler file format, approaching the simplicity of the original Flex file format, which

employs whitespace as language boundaries between sub-documents.

Blender’s parser generator uses DeRemer and Pennello’s LALR(1) lookahead set gen-

eration algorithm. This algorithm is extensively referenced in the literature, but is almost never

implemented. There are relatively few parser generators in the world, and most people who need

to write a language use one of the existing generators to do it. Bison contains an implementation

of this algorithm, but does it all with data structures that contain only two and three letter variable
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names used in data structures that consist solely of varieties of C integer arrays. There is almost no

documentation and no high-level data structures.

Given that it has been 23 years since the publication of the paper, much of the terminol-

ogy used within has evolved. Since most compiler students never create their own parser generator,

most programmers today are completely unfamiliar with the knowledge required to implement this

algorithm. Consequently, it was found to be such a challenge to implement DeRemer and Pen-

nello’s algorithm that we felt compelled to include a concrete easy-to-understand, easy-to-copy

implementation in Appendix D of this dissertation. DeRemer and Pennello’s algorithm is clever

and well-explained, but only if you already understand it. Since it is hard to understand, it is easy to

have bugs. We would like to explore ideas for validating generated parse tables for large languages

in which manual table validation proves infeasible. One bug in our parse table generator survived a

whole year of use before being discovered.

There is considerable speculation as to how much benefit parsing embedded XGLR lan-

guages might receive from moving to scannerless parsing. GLR support for lexing would provide

the needed grammatical mechanisms and structures for input stream ambiguities – in fact, the re-

sults of our parse are very similar to what you might get with a scannerless parser. We still feel,

however, that a scannerless approach loses some useful functionality with respect to parser incre-

mentality and lexical specification. Having a separate lexical phase prevents simple changes to the

spellings of variably-spelled tokens (e.g. identifiers, numbers) from causing the parser to reanalyze

the edit. Scannerless parsing also suffers from extra overhead with parser conflicts on tokens with

common prefixes (keywords vs. identifiers). It has no longest-match regular expression criterion

and no ability to prioritize tokens by their order in the lexical description. While scannerless parsing

systems can employ disambiguation filters to approximate these facilities, their deployment is not

as simple or easy to use as in the separate lexical specifications.

XGLR was implemented by extending an incremental parsing framework. It was believed

at the time that this framework was created (mid 1990s) that batch parsing a document after every

keystroke edit would take too much time and destroy the user interface experience. For the most

part this is not true today. With CPU speeds in the multi-gigahertz range, a batch parse of a 20K

file takes around 30-50 milliseconds. The incrementality in incremental parsing adds additional

overhead compared to batch parsing, so even though a program edit may have small effects on the

parse tree, it may still take on the order of several milliseconds to process. This overhead could be

mitigated by increasing the granularity of the incremental parse to the current method or structural

unit. The added complexity of maintaining the parser’s incremental features was quite painful and
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caused many bugs until we got it right.

Implementation issues aside, incrementality does have its benefits. Incrementality enables

the parser to preserve annotations on the unchanged portions of the parse tree, as well as identify

the structural portions of the tree that have changed. This is a very good substrate upon which to

build a semantic differencing engine. The difference between two parse trees is simple to extract

from our versioned parse tree data structure. Processing this syntactic difference is the work of a

fairly routine and automatically generatable semantic differencing algorithm. Semantic differences

can be used for documentation of changes to source code, for automatically coding a user’s edits

at a level higher than keystrokes and mouse motions, and for supporting structural undo operations

that liberate the user from the chronological jail of traditional undo implementations.

10.1.4 Inheritance Graph

The Inheritance Graph simplified the scoping data structures used in Java semantic anal-

ysis. By storing all of the type and use-def information in a separate data structure, later analyses

could reference all of this information without reconstructing it from scratch. Type checking for

most languages is fairly easy to implement using the Inheritance Graph since it can report the type

of a reference knowing only the reference’s name and position in the program.

Unfortunately, for Java, the Inheritance Graph proved to be a big disappointment both

in terms of power and utility. The formalism is not powerful enough to describe Java or C++,

languages with context-sensitive name visibility rules. The way the name appears in the program

affects the name lookup algorithm, obviating the IG’s language-independent algorithm for name

propagation. Consequently, the Inheritance Graph for Java or C++ cannot quickly and efficiently

answer the questions, “what does this name mean?” and “what names are visible here?” Fast,

efficient access to this information was going to be the lynch pin of semantic disambiguation, the

technique for taking a forest of parse trees and deducing the ones that are semantically correct in

the context of an existing program. This problem does not arise for languages without context-

sensitive visibility, which covers almost all other programming languages including C, Lisp, Pascal,

Cobol, and many others. Hence, if one were to build programming by voice solutions for other

programming languages, this approach might prove useful. Further study would be needed to find

out.

As we attempted to use the Inheritance Graph for disambiguation, we noticed that disam-

biguation and type checking shared many of the same algorithms, especially for name lookup. One
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could either take each terminal in a parse forest and look it up to see what kind and type it has in

order to rule out illegal interpretations, or enumerate each interpretation, insert each one into the

parse tree and type check the parse tree. It turned out to be much more economical to take the type

checking approach. This might appear expensive, due to the many interpretations found inside of

an ambiguous subtree, but it is not slow in practice. Most ambiguous parse forests have less than

ten interpretations, and Java type checking is fairly quick when run on a single compilation unit.

All this being said, it turns out that even this form of disambiguation is not useful in

practice for Java. Each ambiguous interpretation is often so far removed from the others that a

human presented with a list that holds as many as 20 ambiguities can spot the correct interpretation

with very little time or mental effort. In addition, since programs may be written out of order (in

other words, not top down) it is fairly common to use names before they are defined. If strict type

checking rules are used, those constructs are illegal. If they were filtered out completely, and they

were the ones that the user intended, then the user would be unable to choose the right interpretation

when he wanted to. Likely, the user would believe there to be a bug in the analysis system and

try to redictate the offending code. It is better to let the Java programmer have his way and accept

semantically illegal (but syntactically legal) code than to worry about presenting him with too many

interpretations from which to choose.

10.1.5 SPEED

The SPEED editor is a composition of three main components: Eclipse, Shorthand, and

the speech recognizer. Eclipse is an unwieldy substrate upon which to base an editor. Eclipse’s

developers say it was designed for extensibility, but this really only holds in the design of the core

APIs. The Eclipse Java Development Toolkit (JDT) is a completely custom, one-off creation and

was not designed to be very extensible at all. In creating Shorthand, we had to modify several pieces

of JDT source code to expose the requisite APIs. We even had to disable the ability of the JDT to

auto-load files with the .java extension to prevent it from activating in place of the Shorthand

editor.

Shorthand turned out to be a structure-based editor, despite our intentions to have it behave

in a more freeform manner. In order to enable any of its editing features, it needed to have access

to the parse tree of the document. In fact, Shorthand requires that the parse tree be maintained

correctly, or its commands fail to work properly. The history-based error recovery created by Tim

Wagner for his incremental LALR(1) parser [104] and subsequently used by our XGLR parser
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implementation is intended to preserve as much of the parse tree structure as it can in the face of

erroneous inputs and edits to the program. However, the structure returned by this error recovery

has errors inside. Within the erroneous subtree isolated by error recovery, parse tree information

is suspect, and certainly the terminals near the edit site are incorrect. Thus, Shorthand, a client of

the parse tree, must rely on incorrect information to run its user interface. To make sure this never

happened, we provided only syntactically valid structural editing operations to the user, in the spirit

of the earliest, strictest, structure editors.

This is not all bad, however. Within the limits of structural edits, there can be surprising

amounts of flexibility. The editing facility for voice allows for freeform dictation bounded by a

target nonterminal to which the input must conform. When there is a series of chain productions

in the grammar, we choose the highest nonterminal in the grammar to provide the most flexible

interpretation of the input.

Another problem we found with Shorthand was in code authoring. When code is written

by the user one token at a time, it usually does not parse correctly until the last brace or semicolon

is inserted. This means that a structure-based editor will have incorrect structure in the area where

the programmer needs it most – where he is currently writing code.

To try to work around this difficulty, we created a novel predictive parser called a program

fragment parser [9]. Built into a modified GLR parser framework, program fragment parsing can

start a parse at any state in a parse – in fact, it uses the first word entered by the user to choose parse

states in which to start. The parse proceeds normally until the first reduction. Normally on a reduce

action, the parser would traverse the graph-structured stack backwards by the number of symbols

in the production being reduced. However, if the parse started in the middle of the production,

there are not enough graph-structured stack nodes to traverse. If the parser reaches the beginning

of the parse before having traversed enough nodes, nodes are created to fill out the beginning of

the production – nonterminal completer nodes and terminals. Likewise, if the parse input runs out

before the parse is complete, symbols are created on the right side until the parser can reduce to a

nonterminal whose yield covers the entire actual input. This strategy creates a forest of parse trees

for all possible structures the user could have been typing, which can be used to reenable structure-

based editing. Since the structure is now ambiguous, care must be taken to ensure that any available

actions are consistent with all interpretations of the input. As the user enters more words, the parse

trees become more and more constrained, until a single interpretation is reached, and the system

can completely predict the structure that the user is typing.

Program fragment parsing is a nice idea, and useful for many more applications than
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interactive editors. Code fragments are quite common, appearing in email, instance messages, soft-

ware developers’ spoken conversations with one another, and in programs written in embedded

languages. It is useful to be able to analyze these fragments of code in isolation, especially when

the surrounding program context is missing or difficult to analyze.

The difficulty with program fragment parsing, however, is that the degree of ambiguity

found in typical programming languages is more than our implementation can handle. With short

phrases of up to three words, there are often thousands of possible parses. This is mainly due to

the recursivity of most programming language grammars, especially at the statement or expression

level. The problem we encountered is very similar to the situation natural language parsing experts

found themselves in in the 1960s when trying to parse English sentences. There was so much

recursivity and variable sentence structure available that there were too many parses to handle.

In the end, we abandoned program fragment parsing, and reverted back to a pure structure-based

editing strategy.

Spoken Java’s command grammar is not as powerful as it could be. We had hoped to

integrate the command grammar with the language commands in order to support editing, naviga-

tion and transformation operations that referenced fragments of code. Instead, we created a sepa-

rate command grammar using the speech recognizer’s support for finite-state command grammars.

Whenever code can be entered, SPEED switches into dictation mode and matches the more free-

form input against the Spoken Java language directly. This engineering choice is not too much of

a limitation given the fairly modest capabilities of this first prototype of SPEED. A structure-based

editor lends itself to small self-contained operations on small fragments of the program; the ability

to speak arbitrary code in the command is less necessary when there is adequate support to refer

to these pieces of code through the user interface (for example, through mouse grid). It would be

useful, however, to support Dragon NaturallySpeaking’s Select-and-Say operation on code. Avoid-

ing the use of dictation mode for commands should result in more accurate recognition of those

commands. Commercial speech recognizers are highly tuned for command mode recognition; they

are much less accurate in dictation mode.

Cloudgarden’s JSAPI implementation works as advertised, but fails to integrate with na-

tive speech recognition user interfaces. In fact, if Dragon NaturallySpeaking is running, Cloudgar-

den’s JSAPI often cannot start up. When it does, it misleads the programmer by claiming to work

properly, but then simply will not recognize anything the user speaks into the microphone. All of

Dragon’s extensive built-in grammars are turned off as is the entire Dragon user interface, which

was carefully designed and built over eight generations of the product. We had to reimplement many
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of their features using JSAPI. Aside from this, the voice recognition interface for SPEED turned out

to be very simple. Shorthand defines actions using keyboard or voice inputs. We gather all the

voice inputs into various rules in a speech grammar and activate them. Whenever a command is

recognized, the text of the command is sent directly to Shorthand for processing. While recognizers

often claim to support changing grammars and rules after each word or command recognized, this

is not quite as true as advertised. Changing grammars or rules (even to just turn them on and off)

pauses the recognizer for up to one second. An early prototype of SPEED activated and deactivated

grammars for words that were available based on where the user had clicked. However, recognition

of multiple commands in a row was frustrated due to the delay in changing grammars after each

individual command. The subsequent commands were never heard.

Context-sensitive mouse grid is a success. It is fairly easy to use, and precise in its ability

to point to any interesting program structure. In fact, the current version of Dragon NaturallySpeak-

ing contains a context-sensitive mouse grid numbering the links on a web page in Internet Explorer.

If more of the programming task could be rendered as choosing numbers from a list, the program-

ming tasks would become more efficient and less prone to inaccurate transcription by the voice

recognizer. The structural parts of a program (as indicated above) are good candidates for this kind

of editing since there are very few structural elements (fitting into a small numbered list) and these

elements have few truly variable forms, other than their label given by the user. Imperative code

found inside method bodies and field initializers is less amenable to this approach because of its

highly variable nature.

Cachepad suffers from a similar problem as the What Can I Say? view, namely too many

items to display. There are many unique identifiers found in Java programs, and the cachepad can

only hold 20. Cachepad uses plugin policies to determine which ones go in, but we have not yet

figured out the “right” policy that comes up with a cachepad full of identifiers that programmers

are likely to need. We plan to do a study of edit logs produced by programmers editing code over

significant periods of time to see if we can produce an oracle that can predict the next ten identifiers

that will be used at any point in the log. This oracle, if it can be discovered, will be the “right”

policy.

10.1.6 SPEED User Studies

When we started conducting the SPEED user study, we intended to use only commercial

speech recognizers. However, once the initial three participants used the software, we realized that
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the extravagant error rates were impeding our ability to understand how SPEED could be used. Con-

sequently, we employed a human speech recognizer to take the place of the recognition software.

This recognizer’s near-flawless accuracy enabled participants to get much further in writing a small

Java program and let them use many more features in SPEED. While a human recognizer does not

represent the state-of-the-art in commercial or research speech recognition software, it does indicate

where the speech recognition field may end up with another burst of progress.

Users learned the commands very easily and made few errors on their own. Most errors

were caused either by the speech recognizer’s inaccurate transcription or by bugs in the SPEED

editor present at the time of their participation in the study. Users did want to customize the com-

mands to make them easier to say and more familiar to what they were used to. If this feature were

not available, they all thought it would only take at most a week of training to become fluent in the

supplied command vocabulary and grammar.

Code template insertion was used far more often than code dictation (outside of editing

identifier names). Programmers perceived dictation to get “more bang for the buck.” This result

concurs with our own GOMS analysis, as well as with Snell’s findings that code template insertion is

a useful feature for programmers to most easily enter large amounts of code. In addition, participants

felt that describing code with code templates was a higher level means of programming than code

dictation. While they might type code literally, speaking code literally was more foreign to them.

None of the participants would use this software unless they had to due to their circum-

stances, such as contracting RSI or being in a hands-free situation. However, we found from our

pre-study interview that programming was not a significant component of their daily workday, lead-

ing all of them to the conclusion that the use of a voice-based programming tool, while inefficient

compared to keyboard, would not slow them down significantly in their job performance.

10.2 Structure-based Editing by Voice

A recent study showed that Java developers typically perform structural operations when

they program, even though their editors support only textual edits [54]. What is not clear from

this study is whether programmers understand that they are performed structural edits either before

or after they make the textual edits. Certainly afterwards, a programmer can spot the structural

edits (e.g. changed a method name, inserted a new variable, changed the value of the argument to

a procedure call) they did, but what about before? Much of the early research in structure-based

editors came with the assumption that programmers could not only intuitively understand how to
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make structural edits to their programs, but that they would want to think of their edits that way.

Alas, there is no research to explore this issue; in fact, it may be quite difficult as even a think-

aloud protocol might perturb how the programmer perceives the changes they are making. In fact,

it may be that editing by keyboard involves a form of motor memory and activity that may not be

consciously controlled. By moving the user to structural editing, the environment may be removing

their facility for keyboard-based editing below conscious thought and moving it up to conscious

thought, increasing the cognitive load and likely slowing the programmer down. Of course, there is

one other major reason why structure-based editors did not catch on: programmers are resistant to

giving up text-based editing because of its powerful robustness in the face of lexical, grammatical

and semantic errors that might occur in the program at any stage during the edit.

Another issue came up with Shorthand that surprisingly does not appear often in criticisms

of structure-based editors. There are too many commands, and they are context-sensitive. In order

to learn all of the the operations you can perform on a particular structure in the program, you

would have to have a program that exemplified them all. This proves quite difficult in practice.

Often, programmers encounter editing situations on a code construct they had never edited before,

leading to confusion as to what operations they can perform and how to invoke them. The What Can

I Say? and What Can I Type? views help, but the sheer number of commands available causes these

views to scroll, leaving many commands invisible on the screen. It reminds us of DOS WordPerfect,

which required a paper template to fit over your keyboard with all of the 50 function-key commands

on it.

Structure-based editing is also about details, and a human’s understanding of these details

often runs contrary to the grammatical representation. For example, inserting a final keyword

into a class, method or field declaration involves adding it to a list of modifiers, but placing it on a

local variable declaration means adding it to an optional grammar production. You can add another

field to a field declaration using the command ‘insert after’, but if you had intended ‘insert after’ to

insert a completely new field declaration, you would have had to expand the selection from the field

name to encompass the entire field declaration before using the ‘insert after’ command. Inserting

new code templates requires getting the indentation and the carriage returns inserted into the right

places. The only reasonable option here is to pretty-print the code for the user, potentially erasing

important spatial landmarks in the code.

Another mismatch in perception between human and machine concerns whitespace. Har-

monia’s parse tree stores whitespace to the right of every terminal in the program. But a human sees

whitespace as the space from the beginning of the line to the first terminal on that line, and the space
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after the end of the last terminal on that line. Line boundaries in Harmonia are often buried inside

of whitespace terminals, leaving the editor to parse line breaks without parser support. All of these

are examples where the compiler-based grammar used in our program analyses created needless

complexity for the editor.

Michael Van de Vanter warns that the edit-time grammar and the compile-time grammar

of programming languages should be different because the needs of their client applications are

different [18]. We concur. In fact, we will go one step further and say that the needs of the client

application usually do not require perfect, difficult-to-implement analyses, but coarser, easy-to-

implement analyses would suffice and be more robust. A compiler certainly needs strict adherence

to a grammar and semantics in order to produce a correct binary. But an editor, even a structure-

based editor, requires too much of a programmer if he must conform to the structure all the time.

Advances in structure-based editors, including in this dissertation, enable limited free-form editing,

but still require the structure to end up being correct after the edit is complete. This, too, is still

confining.

A better structure for structure-based editors would be based on a coarse parsing technol-

ogy. Eclipse’s JDT contains seven parsers for various purposes. A simple implementation would

have at least two independent parsers: one for the structure of the program file itself (class, method,

field, etc) and another for imperative code (statements and expressions). Structural elements can eas-

ily be programmed in a top-down way. Imperative code is often written bottom-up, and only later

contained within grammatically correct structures. Until the containment is complete, structure-

based editors would either make this form of edit illegal, or fail to provide services on the text in

this area. Instead, if a coarser parser were used to identify possible or probable containing struc-

tures, a limited set of services might be available. In addition, since containment, in Java indicated

by braces, is often broken in the middle of text edits, robustness to this form of breakage is essential.

Clues about containment can easily be gathered from indentation (similar to Python and Haskell),

from style (variable declarations often appear at the beginnings of blocks, but not at the end), or not

at all, when it does not affect the editor services. If a variable’s lifetime is not properly bounded

because of a missing close brace, including that variable in code completion will not cause problems

for a human programmer who can easily ignore the inappropriate reference.

We think that the future of structure-based editors lies in statistical learning and inference

techniques. Important features such as style of indentation, containment, variable name choice and

length, common semantic constructs (such as always storing the return value of a system function

in a newly declared local variable), name-type bindings, and even bugs can be extracted by studying
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existing programs. This database of knowledge can be used to infer structure when precise parses

and semantic analyses fail due to incorrectness or incompleteness. When parsing does succeed,

but the semantic interpretations are still ambiguous, statistical inferencing can help assign proper

probabilities to the choices, helping raise the likely choice to the top.

10.3 Future Work

Voice-based entry of code introduces many lexical and syntactic ambiguities that can-

not be resolved until semantic analysis is run. In the system built for this dissertation, lexical and

syntactic analysis phases must generate all possible interpretations of the input in order for se-

mantic analysis to choose the correct one. In some cases, this process may not scale (as natural

language researchers discovered about English language analysis in the 1970s). It should be pos-

sible to use partial parsing (based on our work in program fragment parsing with GLR) and partial

semantic analyses to help prune ambiguities as early as possible in the analysis process. Additional

techniques can be developed by adapting natural language disambiguation algorithms to the more

limited domain of programming languages.

In addition to composing and editing code, the programmer may wish to perform high-

level program manipulations. For example, she may invoke a program refactoring or search for a

particular structural or semantic entity in the code base by saying “Find all references to the MyList

dot getElement method and replace them with StandardList dot getElementAt”. To support this

combination of commands and code, we must use Blender to define a new embedded language of

Spoken Java code embedded within a grammar for the SPEED commands, and create a semantic

analysis that can understand the combination. This analysis would trigger either built-in or custom-

designed transformations provided by the editor infrastructure.

Programmers do much more than create, edit and navigate through code. They also debug,

document and review code written by themselves and by others. It is important to extend voice-

based interaction to these tasks. SpeechClipse [90] and EmacsSpeak [80] are good solutions to this

problem.

In the second session of our second user study, we employed a non-programmer human

to transcribe the spoken commands and code of the programmer study participant. It would be

fascinating to ask a third-party software developer to try to transcribe a spoken program. How

often does a human programmer correctly understand spoken code? The places where a human

has trouble ought to be especially difficult for a computer, if he were to employ similar algorithms
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for speech understanding. Another interesting study would deliberately try to confuse the human

transcriber by speaking odd programs that use non-obvious or ambiguous words to represent Java

constructs. A similar study would be to look at how pair programmers understand one another when

they speak code.

We did not do any study of editing prior to the SPEED study. While we are confident

that the spoken language we discovered for the Java programming language is the one that many

people speak, we do not know what kind of natural commands people would use to move around the

editor. Since we designed the SPEED editing commands by fiat, without the help of a user study,

we propose a Wizard of Oz study to look at this issue further. Set up a programmer in front of an

editor with a microphone, but no keyboard and mouse. The user must speak commands and code

into the microphone to program a simple data structure. The Wizard listens to the microphone and

secretly interprets what the user says according to a loose set of rules, moving the cursor around and

typing in code. The session and its code are recorded and coded for later analysis. It is not obvious

that non-voice recognition users will have any novel ideas for navigation, but since the wizard can

not react to any physical actions the programmer takes, the recording will have a complete record

of all utterances required to get the program into the editor.

Choosing options from a numbered list is one of the most reliable voice interfaces. It is

this author’s intuition that if many more interfaces on the computer could be reduced to a list of

numbered choices, then speech recognition would become much more usable. For programming

purposes, top-level program structures in statically typed object-oriented languages (like classes,

functions, modules, etc.) vary little in typical programs – usually the name is the only parameter

that varies. While code template insertion can take care of these cases, the activation of the code

templates could be done with a numbered list followed by the user speaking the name of the created

construct. Once function body code needs to be entered, dictation support is warranted, due to its

much more variant forms and larger number of options available at any program position.

A major component of this work was the design of a spoken variant of the Java pro-

gramming language. This design was guided by studies of Java programmers speaking code. The

design methodology we used could be applied to other programming languages, and even other for-

mally specified languages, such as scripting languages, design languages, command languages and

domain-specific languages. Languages that lend themselves to static program analyses would also

be good candidates for our methodology and technology in supporting programming by voice.
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10.4 Future of Programming-by-Voice

A major component of programming by voice is its dependence on commodity desk-

top speech recognition tools. Unfortunately, desktop speech recognition never grew larger than a

niche market, leading several vendors to abandon their products in favor of back-end telephone call

centers. As our user study of developers using SPEED showed, even these commercially available

products are not yet robust enough to power programming by voice without either more high-quality,

accurate recognizers or more speech training by software developers. We had thought that retraining

the statistical database included with the speech recognizer would gain us more accuracy. However,

the training material — the programs in the software developer’s code base — is not sufficiently

general to be useful. The identifiers defined in one program are either unique to that program,

which means their inclusion in the training set skews the probabilities, or they appear in other pro-

grams in slightly altered form, leading to greater likelihood of recognition error. This problem will

have to be addressed by further research in speech recognition.

Repetitive strain injuries from keyboard and mouse use are a motivator for this work, but

speech interfaces are not problem-free. Voice strain is a very real problem that heavy users of speech

recognition often encounter while they adjust to using a speech environment. Techniques have been

developed to help avoid voice strain such as maintaining proper hydration, speaking in a soft voice

(while turning up the gain on the microphone), and taking frequent breaks. These techniques are as

important to the voice programming training period as learning to use the analysis system.

10.5 Final Summary

Programming-by-voice systems can be a viable alternative to keyboard-based program-

ming environments, especially for those suffering from repetitive strain injuries. By first learning

how programmers naturally verbalize code and then developing a formal spoken code analysis sys-

tem based on the lessons we learned, we are taking one of the first human-centric approaches to

achieving the goals of this field. Our studies revealed valuable information about the kinds of ambi-

guities that emerge from spoken programming (which do not appear when using a keyboard), about

the use of voice expression and prosody for disambiguation, about the differences between native

English and non-native English speakers, and about the human tendency toward abstraction over

verbalization of details.

Based on these initial lessons, we designed a new dialect of Java, called Spoken Java,
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which is easier to speak out loud. We have used programming language tools to formally describe

Spoken Java, and have enhanced these tools to support the kinds of ambiguities that arise from spo-

ken programs. We classified the lexical ambiguities caused by these situations into four types, and

developed both a lexer and parser generator and a set of lexing and parsing analysis enhancements

to address each one. These tools enabled us to create a program editor that supports programming

by voice for three kinds of tasks: code authoring, editing and navigation. These tools have been

incorporated into the SPEED editor, which we have evaluated through a user study. We found that

programmers are able to learn to program verbally with small amounts of practice, but have signifi-

cant trouble when the speech recognizer misinterprets their commands and dictation. Programmers

prefer high-level abstraction to code dictation, and perceive voice-based programming to be less

efficient than keyboarding, but efficient enough to perform their daily work adequately.

Programming-by-voice can enable motor-impaired software engineers to continue pro-

gramming, albeit at reduced efficiency compared with an unimpaired programmer. With more study,

different user interface designs and better analysis tools, software developers will one day be able

to use voice-based programming to compete effectively in the workforce.
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Appendix A

Java Code For Spoken Programs Study

This appendix contains the text of the one page Java program that participants in the

Spoken Programs study (described in Chapter 2) read out loud.

package yoyo;

import java.util.Stack;

public class Pool implements Runnable {

static Object undefined = new Object();

static Object[][][] pool;
static int[] ptrs;

static {
pool = new Object[8][10][];
ptrs = new int[8];
for(int i = 0; i<8; i++) {

ptrs[i] = 0;
}
new Thread(new Pool()).start();

}

public static synchronized Object[] getArray(int size,
Context c) {

//System.out.println("get Array size: " + size);
if (size >= 8) return new Object[size];
//System.out.println("thepool: " +
// YoYo.printToString(pool[size]));
//System.out.println("ptrs[size]: " + ptrs[size]);
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Object[][] thepool = pool[size];
if (ptrs[size] == 0) {

Object[] output = new Object[size];
for(int i = 0; i < size; i++) {

output[i] = undefined;
}
return output;

}
return thepool[--ptrs[size]];

}

public static synchronized void dropArray(Object[] array,
Context c) {

int size = array.length;
if (size >= 8) return;
for(int i = 0; i<size; i++) {

array[i] = undefined;
}

Object[][] thepool = pool[size];

if (ptrs[size] >= thepool.length) {
Object[][] newarray = new Object[thepool.length * 2][];
System.arraycopy(thepool, 0, newarray, 0, thepool.length);
pool[size] = newarray;
thepool = newarray;

}
thepool[ptrs[size]++] = array;

}

// Cleanup thread. Runs every 5 seconds or so to clean
// out the pools.
public void run() {

Thread thread = Thread.currentThread();
while (true) {

try {
thread.sleep(5000);

}
catch (InterruptedException e) {}
cleanPool();

}
}

public static synchronized void cleanPool() {
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for(int i = 0; i < 8; i++) {
Object[][] thepool = pool[i];
int numentries = ptrs[i];
if (numentries > 10) {

ptrs[i] = 10;
for(int j = 10; j < numentries; j++) {
thepool[j] = null;

}
}

}
}

}
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Appendix B

Spoken Java Language Specification

B.1 Lexical Specification

The following is the Whisk lexical specification for the Spoken Java language. First, each

token is declared with its default spelling. Then a set of regular expression macro definitions are

shown. Finally, all of the rules are given that map a regular expression to a Spoken Java token.

%token WSPC { spelling " " }
LINE_COMMENT { spelling "comment" }
BLOCK_COMMENT { spelling "block comment" }
DOC_COMMENT { spelling "javadoc comment" }
VOICECOMMENT

/* literals */

%token LongIntLiteral
IntLiteral
FloatLiteral
DoubleLiteral
CharacterLiteral
StringLiteral

/* reserved words */

%token ASSERT { spelling "assert" }
BREAK { spelling "break" }
CASE { spelling "case" }
CATCH { spelling "catch" }
CLASS { spelling "class" }
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CONTINUE { spelling "continue" }
DEFAULT { spelling "default" }
DO { spelling "do" }
ELSE { spelling "else" }
EXTENDS { spelling "extends"}
FINALLY { spelling "finally" }
FOR { spelling "for" }
IF { spelling "if" }
IMPLEMENTS { spelling "implements" }
IMPORT { spelling "import" }
INTERFACE { spelling "interface" }
NEW { spelling "new" }
PACKAGE { spelling "package" }
RETURN { spelling "return" }
STAR { alias ’*’ spelling "star" }
SWITCH { spelling "switch" }
THROW { spelling "throw" }
THROWS { spelling "throws" }
TRY { spelling "try" }
WHILE { spelling "while" }

/* modifiers */

%token ABSTRACT { spelling "abstract" }
NATIVE { spelling "native" }
PRIVATE { spelling "private" }
PROTECTED { spelling "protected" }
PUBLIC { spelling "public" }
SYNCHRONIZED { spelling "synchronized" }
STATIC { spelling "static" }
FINAL { spelling "final" }
TRANSIENT { spelling "transient" }
STRICTFP { spelling "strict f p" }
JVOLATILE { spelling "volatile" }

/* primitive types */

%token JBOOLEAN { spelling "boolean" }
JBYTE { spelling "byte" }
JCHAR { spelling "character" }
JFLOAT { spelling "float" }
JINT { spelling "integer" }
JLONG { spelling "long" }
JDOUBLE { spelling "double" }
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JSHORT { spelling "short" }
VOID { spelling "void" }

/* constants */

%token FALSE_TOKEN { spelling "false" }
TRUE_TOKEN { spelling "true" }
NULL_TOKEN { spelling "null" }
THIS { spelling "this" }
SUPER { spelling "super" }

/* identifiers */

%token IDENTIFIER { spelling "identifier" multitext
affects-ig }

/* separators */

%token LBRACE { alias ’{’ spelling "{" }
RBRACE { alias ’}’ spelling "}" }
LBRACKET { alias ’[’ spelling "[" }
RBRACKET { alias ’]’ spelling "]" }
SEMICOLON { alias ’;’ spelling ";" }
COMMA { alias ’,’ spelling "," }
DOT { alias ’.’ spelling "." }

/* operators */

%token ASSIGN { alias ’=’ spelling "gets" }
PLUS_ASSIGN { alias ’+=’ spelling "+=" }
MINUS_ASSIGN { alias ’-=’ spelling "-=" }
TIMES_ASSIGN { alias ’*=’ spelling "*=" }
DIV_ASSIGN { alias ’/=’ spelling "/=" }
AND_ASSIGN { alias ’&=’ spelling "&=" }
XOR_ASSIGN { alias ’ˆ=’ spelling "ˆ=" }
OR_ASSIGN { alias ’|=’ spelling "|=" }
REM_ASSIGN { alias ’%=’ spelling "%=" }
LSHIFT_ASSIGN { alias ’<<=’ spelling "<<=" }
RARITHSHIFT_ASSIGN { alias ’>>>=’ spelling ">>>=" }
RSHIFT_ASSIGN { alias ’>>=’ spelling ">>=" }
HOOK { alias ’?’ spelling "?" }
COLON { alias ’:’ spelling ":" }
COND_OR { spelling "or" alias ’||’ }
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COND_AND { spelling "and" alias ’&&’ }
OR { alias ’|’ spelling "|" }
XOR { alias ’ˆ’ spelling "ˆ" }
JAND { alias ’&’ spelling "&" }
EQ { spelling "is equal to" alias ’==’ }
NE { spelling "is not equal to" alias ’!=’ }
LE { spelling "is less than or equal to" alias ’<=’ }
GE { spelling "is greater than or equal to" alias ’>=’ }
GT { alias ’>’ spelling "is greater than" }
LT { alias ’<’ spelling "is less than" }
INSTANCEOF { spelling "is an instance of" }
RARITHSHIFT { spelling ">>>" alias ’>>>’ }
RSHIFT { spelling ">>" alias ’>>’ }
LSHIFT { spelling "<<" alias ’<<’ }
PLUS { alias ’+’ spelling "plus" }
MINUS { alias ’-’ spelling "minus" }
TIMES { alias ’x’ spelling "times" }
DIV { alias ’/’ spelling "divided by" }
REM { alias ’%’ spelling "mod" }
JCAST { spelling "cast" }
UPLUS { spelling "positive" }
UMINUS { spelling "negative" }
COND_NOT { alias ’!’ spelling "not" }
NOT { alias ’˜’ spelling "negate" }
INCR { spelling "plus plus" alias ’++’ }
DECR { spelling "minus minus" alias ’--’ }
LPAREN { alias ’(’ spelling "left paren" }
RPAREN { alias ’)’ spelling "right paren" }

/* additional Spoken Java keywords */

%token SETVAR { spelling "set" }
BODY { spelling "body" }
OFARRAY { spelling "of array"}
SUB { spelling "sub" }
TO { spelling "to" }
THEN { spelling "then" }
NOARGS { spelling "with no arguments" }
OFSIZE { spelling "of size" }
EMPTY { spelling "empty" }
ARRAY { spelling "array" }
ELEMENT { spelling "element" }
THE { spelling "the" }
A { spelling "a" }
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/* additional Spoken Java punctuation equivalents */

%token CLOSE_CLASS { spelling "close class" }
CLOSE_IF { spelling "close if"}
CLOSE_METHOD { spelling "close method" }
CLOSE_FOR { spelling "close for" }
CLOSE_WHILE { spelling "close while" }
CLOSE_DO { spelling "close do" }
CLOSE_FOREVER { spelling "close forever" }
CLOSE_INTERFACE { spelling "close interface" }
CLOSE_CONSTRUCTOR { spelling "close constructor" }

/* Lexical states */

%x IN_DOC_COMMENT IN_BLOCK_COMMENT

/* Lexical macros */

IDENTIFIER <<[A-Za-z_$][A-Za-z_$0-9]*>>
DIGIT <<[0-9]>>
HEXDIGIT <<[A-Fa-f0-9]>>
OCTDIGIT <<[0-7]>>
DECNUMBER <<0|[1-9]{DIGIT}*>>
HEXNUMBER <<0[Xx]{HEXDIGIT}+>>
OCTNUMBER <<0{OCTDIGIT}+>>
DECLONG <<{DECNUMBER}[Ll]>>
HEXLONG <<{HEXNUMBER}[Ll]>>
OCTLONG <<{OCTNUMBER}[Ll]>>
EXPONENT <<[Ee][+-]?{DIGIT}+>>
FLOATBASE <<((({DIGIT}+\.{DIGIT}*)|

({DIGIT}*\.{DIGIT}+))
{EXPONENT}?)|({DIGIT}+{EXPONENT})>>

/* The {DIGIT}+ part of both of these is contrary

* to the written spec, but the compiler accepts 0f

* as a valid float literal, so I needed to add this

* for compatibility. */
DOUBLE <<({FLOATBASE}[Dd]?)|({DIGIT}+[Dd])>>
FLOAT <<({FLOATBASE}|({DIGIT}+))[Ff]>>

/* Harmonia is not Unicode clean and never will be.
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* For this reason, we accept unicode escapes

* (and assume they are legal string characters) in

* character/string constants, but do not allow them

* in general */
OCTESCAPE <<\\([0123]{OCTDIGIT}{2}|{OCTDIGIT}{1,2})>>
ONECHAR <<[ˆ\\\n\r"’]|(\\[ntbrf\\’"])|

{OCTESCAPE}|(\\u{HEXDIGIT}{4})>>
CHARLITCHAR <<{ONECHAR}|\">>
CHARACTER <<"’"{CHARLITCHAR}"’">>
STRINGCHAR <<{ONECHAR}|’>>
STRING <<\"{STRINGCHAR}*\">>
WHITESPACE <<[ \f\n\r\t\v]+>>

%%

/* Lexical rules */

/* Comments and whitespace */

<IN_DOC_COMMENT><<"*/">> {= BEGIN(spoken_java_INITIAL);
RETURN_TOKEN(DOC_COMMENT); =}

<IN_DOC_COMMENT><<"close comment">>
{= BEGIN(spoken_java_INITIAL);

RETURN_TOKEN(DOC_COMMENT); =}
<IN_BLOCK_COMMENT><<"*/">> {= BEGIN(spoken_java_INITIAL);

RETURN_TOKEN(BLOCK_COMMENT); =}
<IN_BLOCK_COMMENT><<"close comment">>

{= BEGIN(spoken_java_INITIAL);
RETURN_TOKEN(BLOCK_COMMENT); =}

<IN_DOC_COMMENT><<.|[\n\r]>> {= yymore(); break; =}
<IN_BLOCK_COMMENT><<.|[\n\r]>> {= yymore(); break; =}
<<"/*">> {= BEGIN(spoken_java_IN_BLOCK_COMMENT);

yymore(); break; =}
<<"block comment">> {= BEGIN(spoken_java_IN_BLOCK_COMMENT);

yymore(); break; =}
<<"/**">> {= BEGIN(spoken_java_IN_DOC_COMMENT);

yymore(); break; =}
<<"javadoc comment">> {= BEGIN(spoken_java_IN_DOC_COMMENT);

yymore(); break; =}
<<"/**/">> {= RETURN_TOKEN(BLOCK_COMMENT); =}
<<"empty comment">> {= RETURN_TOKEN(BLOCK_COMMENT); =}
<<"//"[ˆ\n\r]*>> {= RETURN_TOKEN(LINE_COMMENT); =}
<<"comment"[ˆ\n\r]*>> {= RETURN_TOKEN(LINE_COMMENT); =}
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<<{WHITESPACE}>> {= RETURN_TOKEN(WSPC); =}

/* literals */

<<{DECLONG}|{HEXLONG}|{OCTLONG}>>
{= RETURN_TOKEN(LongIntLiteral); =}

<<{DECNUMBER}|{HEXNUMBER}|{OCTNUMBER}>>
{= RETURN_TOKEN(IntLiteral); =}

<<{CHARACTER}>> {= RETURN_TOKEN(CharacterLiteral); =}
<<{FLOAT}>> {= RETURN_TOKEN(FloatLiteral); =}
<<{DOUBLE}>> {= RETURN_TOKEN(DoubleLiteral); =}
<<{STRING}>> {= RETURN_TOKEN(StringLiteral); =}

/* reserved words */

<<"to">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(TO, IDENTIFIER); =}

<<"abstract">> {= RETURN_TOKEN(ABSTRACT); =}
<<"assert">> {= RETURN_TOKEN(ASSERT); =}
<<"boolean">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JBOOLEAN, IDENTIFIER); =}
<<"break">> {= RETURN_TOKEN(BREAK); =}
<<"byte">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JBYTE, IDENTIFIER); =}
<<"case">> {= RETURN_TOKEN(CASE); =}
<<"catch">> {= RETURN_TOKEN(CATCH); =}
<<"char">> {= RETURN_TOKEN(JCHAR); =}
<<"class">> {= RETURN_TOKEN(CLASS); =}
<<"continue">> {= RETURN_TOKEN(CONTINUE); =}
<<"default">> {= RETURN_TOKEN(DEFAULT); =}
<<"do">> {= RETURN_TOKEN(DO); =}
<<"double">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JDOUBLE, IDENTIFIER); =}
<<"else">> {= RETURN_TOKEN(ELSE); =}
<<"then">> {= RETURN_TOKEN(THEN); =}
<<"extends">> {= RETURN_TOKEN(EXTENDS); =}
<<"false">> {= RETURN_TOKEN(FALSE_TOKEN); =}
<<"final">> {= RETURN_TOKEN(FINAL); =}
<<"finally">> {= RETURN_TOKEN(FINALLY); =}
<<"float">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JFLOAT, IDENTIFIER); =}
<<"for">> {= RETURN_TOKEN(FOR); =}
<<"if">> {= RETURN_TOKEN(IF); =}
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<<"implements">> {= RETURN_TOKEN(IMPLEMENTS ); =}
<<"import">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(IMPORT, IDENTIFIER);=}
<<"instanceof">> {= RETURN_TOKEN(INSTANCEOF); =}
<<"int">> {= RETURN_TOKEN(JINT); =}
<<"interface">> {= RETURN_TOKEN(INTERFACE); =}
<<"long">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JLONG, IDENTIFIER); =}
<<"native">> {= RETURN_TOKEN(NATIVE); =}
<<"new">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(NEW, IDENTIFIER); =}
<<"null">> {= RETURN_TOKEN(NULL_TOKEN); =}
<<"package">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(PACKAGE, IDENTIFIER); =}
<<"private">> {= RETURN_TOKEN(PRIVATE); =}
<<"protected">> {= RETURN_TOKEN(PROTECTED); =}
<<"public">> {= RETURN_TOKEN(PUBLIC); =}
<<"return">> {= RETURN_TOKEN(RETURN); =}
<<"short">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JSHORT, IDENTIFIER); =}
<<"static">> {= RETURN_TOKEN(STATIC); =}
<<"super">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(SUPER, IDENTIFIER); =}
<<"switch">> {= RETURN_TOKEN(SWITCH); =}
<<"synchronized">> {= RETURN_TOKEN(SYNCHRONIZED); =}
<<"this">> {= RETURN_TOKEN(THIS); =}
<<"throw">> {= RETURN_TOKEN(THROW); =}
<<"throws">> {= RETURN_TOKEN(THROWS); =}
<<"transient">> {= RETURN_TOKEN(TRANSIENT); =}
<<"true">> {= RETURN_TOKEN(TRUE_TOKEN); =}
<<"try">> {= RETURN_TOKEN(TRY); =}
<<"void">> {= RETURN_TOKEN(VOID); =}
<<"volatile">> {= RETURN_TOKEN(JVOLATILE); =}
<<"while">> {= RETURN_TOKEN(WHILE); =}

<<"no arguments">> {= RETURN_TOKEN(NOARGS); =}
<<"with no arguments">> {= RETURN_TOKEN(NOARGS); =}
<<"takes no arguments">> {= RETURN_TOKEN(NOARGS); =}
<<"body">> {= RETURN_TOKEN(BODY); =}
<<"start body">> {= RETURN_TOKEN(BODY); =}
<<"begin body">> {= RETURN_TOKEN(BODY); =}

<<"self">> {= RETURN_TOKEN(THIS); =}
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<<"set variable">> {= RETURN_TOKEN(SETVAR); =}
<<"set">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(SETVAR, IDENTIFIER); =}
<<"make">> {= RETURN_TOKEN(SETVAR); =}
<<"initialize">> {= RETURN_TOKEN(SETVAR); =}

<<"cast">> {= RETURN_TOKEN(JCAST); =}
<<"typecast">> {= RETURN_TOKEN(JCAST); =}

<<"strict f p">> {= RETURN_TOKEN(STRICTFP); =}

<<"bool">> {= RETURN_TOKEN(JBOOLEAN); =}
<<"integer">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JINT, IDENTIFIER); =}

<<"char">> {= RETURN_TOKEN(JCHAR); =}
<<"character">> {= RETURN_TOKEN(JCHAR); =}
<<"car">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(JCHAR, IDENTIFIER); =}

<<"empty">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(EMPTY, IDENTIFIER); =}

<<"dot">> {= RETURN_TOKEN(DOT); =}
<<"point">> {= RETURN_TOKEN(DOT); =}

<<"semicolon">> {= RETURN_TOKEN(SEMICOLON); =}

<<"comma">> {= RETURN_TOKEN(COMMA); =}
<<"array">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(ARRAY, IDENTIFIER); =}
<<"of array">> {= RETURN_TOKEN(OFARRAY); =}
<<"of size">> {= RETURN_TOKEN(OFSIZE); =}
<<"element">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(ELEMENT, IDENTIFIER); =}

<<"close class">> {= RETURN_TOKEN(CLOSE_CLASS); =}
<<"end class">> {= RETURN_TOKEN(CLOSE_CLASS); =}

<<"close interface">> {= RETURN_TOKEN(CLOSE_INTERFACE); =}
<<"end interface">> {= RETURN_TOKEN(CLOSE_INTERFACE); =}

<<"close if">> {= RETURN_TOKEN(CLOSE_IF); =}
<<"end if">> {= RETURN_TOKEN(CLOSE_IF); =}



197

<<"close method">> {= RETURN_TOKEN(CLOSE_METHOD); =}
<<"end method">> {= RETURN_TOKEN(CLOSE_METHOD); =}

<<"close constructor">> {= RETURN_TOKEN(CLOSE_CONSTRUCTOR); =}
<<"end constructor">> {= RETURN_TOKEN(CLOSE_CONSTRUCTOR); =}

<<"close for">> {= RETURN_TOKEN(CLOSE_FOR); =}
<<"end for">> {= RETURN_TOKEN(CLOSE_FOR); =}

<<"close while">> {= RETURN_TOKEN(CLOSE_WHILE); =}
<<"end while">> {= RETURN_TOKEN(CLOSE_WHILE); =}

<<"close do">> {= RETURN_TOKEN(CLOSE_DO); =}
<<"end do">> {= RETURN_TOKEN(CLOSE_DO); =}

<<"close forever">> {= RETURN_TOKEN(CLOSE_FOREVER); =}
<<"end forever">> {= RETURN_TOKEN(CLOSE_FOREVER); =}

<<"equals equals">> {= RETURN_TOKEN(EQ); =}
<<"equal equal">> {= RETURN_TOKEN(EQ); =}
<<"equals">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(EQ, ASSIGN); =}
<<"is equal to">> {= RETURN_TOKEN(EQ); =}
<<"equal to">> {= RETURN_TOKEN(EQ); =}

<<"plus equals">> {= RETURN_TOKEN(PLUS_ASSIGN); =}
<<"minus equals">> {= RETURN_TOKEN(MINUS_ASSIGN); =}

<<"multiply equals">> {= RETURN_TOKEN(TIMES_ASSIGN); =}
<<"times equals">> {= RETURN_TOKEN(TIMES_ASSIGN); =}
<<"star equals">> {= RETURN_TOKEN(TIMES_ASSIGN); =}

<<"divide equals">> {= RETURN_TOKEN(DIV_ASSIGN); =}
<<"div equals">> {= RETURN_TOKEN(DIV_ASSIGN); =}

<<"and equals">> {= RETURN_TOKEN(AND_ASSIGN); =}

<<"x or equals">> {= RETURN_TOKEN(XOR_ASSIGN); =}
<<"xor equals">> {= RETURN_TOKEN(XOR_ASSIGN); =}

<<"or equals">> {= RETURN_TOKEN(OR_ASSIGN); =}
<<"mod equals">> {= RETURN_TOKEN(REM_ASSIGN); =}
<<"left shift equals">>
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{= RETURN_TOKEN(LSHIFT_ASSIGN); =}
<<"l s h equals">> {= RETURN_TOKEN(LSHIFT_ASSIGN); =}

<<"right shift equals">>
{= RETURN_TOKEN(RSHIFT_ASSIGN); =}

<<"r s h equals">> {= RETURN_TOKEN(RSHIFT_ASSIGN); =}

<<"arithmetic right shift equals">>
{= RETURN_TOKEN(RARITHSHIFT_ASSIGN); =}

<<"a r s h equals">>
{= RETURN_TOKEN(RARITHSHIFT_ASSIGN); =}

<<"or">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(COND_OR, OR); =}

<<"and">>
{= RETURN_TOKEN_WITH_3_ALTERNATES(COND_AND, COMMA, JAND); =}

<<"bitwise or">> {= RETURN_TOKEN(OR); =}

<<"x or">> {= RETURN_TOKEN(XOR); =}
<<"xor">> {= RETURN_TOKEN(XOR); =}

<<"bitwise and">> {= RETURN_TOKEN(JAND); =}

<<"gets">> {= RETURN_TOKEN(ASSIGN); =}

<<"not equal">> {= RETURN_TOKEN(NE); =}
<<"not equals">> {= RETURN_TOKEN(NE); =}
<<"does not equal">> {= RETURN_TOKEN(NE); =}
<<"is not equal to">> {= RETURN_TOKEN(NE); =}
<<"not equal to">> {= RETURN_TOKEN(NE); =}

<<"less than or equal to">> {= RETURN_TOKEN(LE); =}
<<"is less than or equal to">> {= RETURN_TOKEN(LE); =}
<<"greater than or equal to">> {= RETURN_TOKEN(GE); =}
<<"is greater than or equal to">> {= RETURN_TOKEN(GE); =}
<<"less than">> {= RETURN_TOKEN(LT); =}
<<"is less than">> {= RETURN_TOKEN(LT); =}
<<"greater than">> {= RETURN_TOKEN(GT); =}
<<"is greater than">> {= RETURN_TOKEN(GT); =}
<<"instance of">> {= RETURN_TOKEN(INSTANCEOF); =}
<<"is an instance of">> {= RETURN_TOKEN(INSTANCEOF); =}

<<"left shift">> {= RETURN_TOKEN(LSHIFT); =}
<<"l s h">> {= RETURN_TOKEN(LSHIFT); =}
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<<"right shift">> {= RETURN_TOKEN(RSHIFT); =}
<<"r s h">> {= RETURN_TOKEN(RSHIFT); =}

<<"arithmetic right shift">>
{= RETURN_TOKEN(RARITHSHIFT); =}

<<"a r s h">> {= RETURN_TOKEN(RARITHSHIFT); =}

<<"plus">> {= RETURN_TOKEN(PLUS); =}
<<"add">> {= RETURN_TOKEN(PLUS); =}

<<"minus">> {= RETURN_TOKEN(MINUS); =}
<<"subtract">> {= RETURN_TOKEN(MINUS); =}

<<"positive">> {= RETURN_TOKEN(UPLUS); =}
<<"negative">> {= RETURN_TOKEN(UMINUS); =}

<<"times">> {= RETURN_TOKEN(TIMES); =}
<<"star">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(STAR, TIMES); =}

<<"divided by">> {= RETURN_TOKEN(DIV); =}
<<"div">> {= RETURN_TOKEN(DIV); =}

<<"mod">> {= RETURN_TOKEN(REM); =}

<<"not">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(COND_NOT, NOT); =}

<<"bang">> {= RETURN_TOKEN(COND_NOT); =}

<<"negate">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(NOT, IDENTIFIER); =}

<<"invert">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(NOT, IDENTIFIER); =}

<<"plus plus">> {= RETURN_TOKEN(INCR); =}
<<"increment">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(INCR, IDENTIFIER); =}
<<"minus minus">> {= RETURN_TOKEN(DECR); =}
<<"decrement">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(DECR, IDENTIFIER); =}

/* punctuation */
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<<"left paren">> {= RETURN_TOKEN(LPAREN); =}
<<"right paren">> {= RETURN_TOKEN(RPAREN); =}
<<"open paren">> {= RETURN_TOKEN(LPAREN); =}
<<"close paren">> {= RETURN_TOKEN(RPAREN); =}

<<"left bracket">> {= RETURN_TOKEN(LBRACKET); =}
<<"right bracket">> {= RETURN_TOKEN(RBRACKET); =}
<<"open bracket">> {= RETURN_TOKEN(LBRACKET); =}
<<"close bracket">> {= RETURN_TOKEN(RBRACKET); =}
<<"sub">> {= RETURN_TOKEN(SUB); =}

<<"left square bracket">> {= RETURN_TOKEN(LBRACKET); =}
<<"right square bracket">> {= RETURN_TOKEN(RBRACKET); =}
<<"open square bracket">> {= RETURN_TOKEN(LBRACKET); =}
<<"close square bracket">> {= RETURN_TOKEN(RBRACKET); =}

<<"left brace">> {= RETURN_TOKEN(LBRACE); =}
<<"right brace">> {= RETURN_TOKEN(RBRACE); =}
<<"open brace">> {= RETURN_TOKEN(LBRACE); =}
<<"close brace">> {= RETURN_TOKEN(RBRACE); =}

<<"left curly brace">> {= RETURN_TOKEN(LBRACE); =}
<<"right curly brace">> {= RETURN_TOKEN(RBRACE); =}
<<"open curly brace">> {= RETURN_TOKEN(LBRACE); =}
<<"close curly brace">> {= RETURN_TOKEN(RBRACE); =}

<<"the">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(THE, IDENTIFIER); =}

<<"a">>
{= RETURN_TOKEN_WITH_2_ALTERNATES(A, IDENTIFIER); =}

/* identifiers */

<<{IDENTIFIER}>> {= RETURN_TOKEN(IDENTIFIER); =}

/* separators */

<<"{">> {= RETURN_TOKEN(LBRACE); =}
<<"}">> {= RETURN_TOKEN(RBRACE); =}
<<"(">> {= RETURN_TOKEN(LPAREN); =}
<<")">> {= RETURN_TOKEN(RPAREN); =}
<<"[">> {= RETURN_TOKEN(LBRACKET); =}
<<"]">> {= RETURN_TOKEN(RBRACKET); =}
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<<";">> {= RETURN_TOKEN(SEMICOLON); =}
<<",">> {= RETURN_TOKEN(COMMA); =}
<<".">> {= RETURN_TOKEN(DOT); =}

/* operators */

<<"=">> {= RETURN_TOKEN(ASSIGN); =}
<<">">> {= RETURN_TOKEN(GT); =}
<<"<">> {= RETURN_TOKEN(LT); =}
<<"!">> {= RETURN_TOKEN(COND_NOT); =}
<<"˜">> {= RETURN_TOKEN(NOT); =}
<<"?">> {= RETURN_TOKEN(HOOK); =}
<<":">> {= RETURN_TOKEN(COLON); =}
<<"==">> {= RETURN_TOKEN(EQ); =}
<<"<=">> {= RETURN_TOKEN(LE); =}
<<">=">> {= RETURN_TOKEN(GE); =}
<<"!=">> {= RETURN_TOKEN(NE); =}
<<"&&">> {= RETURN_TOKEN(COND_AND); =}
<<"||">> {= RETURN_TOKEN(COND_OR); =}
<<"++">> {= RETURN_TOKEN(INCR); =}
<<"--">> {= RETURN_TOKEN(DECR); =}
<<"+">> {= RETURN_TOKEN(PLUS); =}
<<"-">> {= RETURN_TOKEN(MINUS); =}
<<"*">>

{= RETURN_TOKEN_WITH_2_ALTERNATES(STAR, TIMES); =}
<<"/">> {= RETURN_TOKEN(DIV); =}
<<"&">> {= RETURN_TOKEN(JAND); =}
<<"|">> {= RETURN_TOKEN(OR); =}
<<"ˆ">> {= RETURN_TOKEN(XOR); =}
<<"%">> {= RETURN_TOKEN(REM); =}
<<">>">> {= RETURN_TOKEN(RARITHSHIFT); =}
<<">>>">> {= RETURN_TOKEN(RSHIFT); =}
<<"<<">> {= RETURN_TOKEN(LSHIFT); =}
<<"+=">> {= RETURN_TOKEN(PLUS_ASSIGN); =}
<<"-=">> {= RETURN_TOKEN(MINUS_ASSIGN); =}
<<"*=">> {= RETURN_TOKEN(TIMES_ASSIGN); =}
<<"/=">> {= RETURN_TOKEN(DIV_ASSIGN); =}
<<"&=">> {= RETURN_TOKEN(AND_ASSIGN); =}
<<"ˆ=">> {= RETURN_TOKEN(XOR_ASSIGN); =}
<<"|=">> {= RETURN_TOKEN(OR_ASSIGN); =}
<<"%=">> {= RETURN_TOKEN(REM_ASSIGN); =}
<<"<<=">> {= RETURN_TOKEN(LSHIFT_ASSIGN); =}
<<">>=">> {= RETURN_TOKEN(RARITHSHIFT_ASSIGN); =}
<<">>>=">> {= RETURN_TOKEN(RSHIFT_ASSIGN); =}
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/* lexical errors */

<*><<.>> {= ERROR_ACTION; =}

B.2 Spoken Java Grammar

The following is a Ladle grammar for the Spoken Java grammar. It is based on the

Java grammar used in the Harmonia program analysis tool (available in source code form on the

Web [36]). Productions that are modified from the original grammar are noted, as are new produc-

tions.

%import-tokens spoken_java "spoken_java.wsk" default
%grammar-name spoken_java

%whitespace WSPC THE A
%comment LINE_COMMENT BLOCK_COMMENT

DOC_COMMENT VOICECOMMENT

/* operators in precedence order (lowest to highest) */

%right ASSIGN PLUS_ASSIGN MINUS_ASSIGN TIMES_ASSIGN \
DIV_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN \
REM_ASSIGN LSHIFT_ASSIGN RARITHSHIFT_ASSIGN \
RSHIFT_ASSIGN

%right HOOK COLON
%left COND_OR
%left COND_AND
%left OR
%left XOR
%left JAND
%left EQ NE
%left LE GE GT LT INSTANCEOF
%left RARITHSHIFT RSHIFT LSHIFT
%left PLUS MINUS
%left STAR DIV REM
%nonassoc JCAST !CAST
%right UPLUS UMINUS COND_NOT NOT INCR DECR
%left !POSTINCR !POSTDECR
%nonassoc LPAREN RPAREN
%nonassoc !LOWER_THAN_ELSE
%nonassoc ELSE
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%nonassoc !LOWER_THAN_DOT
%nonassoc DOT
%nonassoc !LOWER_THAN_LBRACKET
%nonassoc LBRACKET

%nonterm CompileUnit { can-isolate }
%nonterm PackageDecl { can-isolate }
%nonterm ImportDecl { can-isolate }
%nonterm TypeDecl { can-isolate }
%nonterm ClassBody { can-isolate }
%nonterm ClassBody2 { can-isolate }
%nonterm InterfaceBody { can-isolate }
%nonterm VarInitializer { can-isolate }
%nonterm MethodBody { can-isolate }

%%

CompileUnit
: pDecl:(pDecl:PackageDecl)? iDecls:(iDecl:ImportDecl)*

tDecls:(tDecl:TypeDecl)*
{ classname CompilationUnit }

;

/* semicolon removed */
PackageDecl

: package_kw:PACKAGE name:Name
{ classname PackageDeclaration }

;

/* semicolon and dot removed */
ImportDecl

: import_kw:IMPORT name:Name ondemand:(’*’)?
{ classname ImportDeclaration }

;

TypeDecl
: cDecl:ClassDecl

{ classname ClassTypeDeclaration }
| iDecl:InterfaceDecl

{ classname InterfaceTypeDeclaration }
| semi:’;’

{ classname SpuriousToplevelSemi }
;
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Modifier
: mod:PUBLIC { classname PublicMod }
| mod:PROTECTED { classname ProtectedMod }
| mod:PRIVATE { classname PrivateMod }
| mod:STATIC { classname StaticMod }
| mod:FINAL { classname FinalMod }
| mod:ABSTRACT { classname AbstractMod }
| mod:NATIVE { classname NativeMod }
| mod:SYNCHRONIZED { classname SynchronizedMod }
| mod:STRICTFP { classname StrictFPMod }
| mod:TRANSIENT { classname TransientMod }
| mod:JVOLATILE { classname VolatileMod }
;

/* classes */

ClassDecl
: mods:(mod:Modifier)* class_kw:CLASS name:Ident

extends:(extends:ExtendsDecl)?
implements:(implements:ImplementsDecl)? body:ClassBody

{ classname ClassDeclaration }
;

ExtendsDecl
: extends_kw:EXTENDS name:Name

{ classname ClassExtends }
;

/* Comma separators removed from names list */
ImplementsDecl

: implements_kw:IMPLEMENTS names:(name:Name)+
{ classname ClassImplements }

;

/* Class2 is new. Braces are removed, and optional terminator

* added */
ClassBody

: lbrace:’{’ decls:(decl:ClassBodyDecl)* rbrace:’}’
{ classname Class }

| decls:(decl:ClassBodyDecl)* CLOSE_CLASS?
{ classname Class2 }

;
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/* ClassBody2 is new. Used for anonymous class definitions. */
/* Class4 is a plus list, Class2 is a star list. */
ClassBody2

: lbrace:’{’ decls:(decl:ClassBodyDecl)* rbrace:’}’
{ classname Class3 }

| decls:(decl:ClassBodyDecl)+ CLOSE_CLASS?
{ classname Class4 }

;

ClassBodyDecl
: decl:FieldDecl { classname ClassFieldDecl }
| decl:MethodDecl { classname ClassMethodDecl }
| decl:StaticInitDecl { classname ClassStaticInitDecl }
| decl:InitDecl { classname ClassInitDecl }
| decl:ConstructDecl { classname ClassConstructorDecl }
| decl:ClassDecl { classname ClassIClassDecl }
| decl:InterfaceDecl { classname ClassIInterfaceDecl }
| semi:’;’ { classname SpuriousClassSemi }
;

/* interfaces */

InterfaceDecl
: mods:(mod:Modifier)* interface_kw:INTERFACE name:Ident

extends:(extends:IntExtendsDecl)? body:InterfaceBody
{ classname InterfaceDeclaration }

;

/* Comma removed from names list */
IntExtendsDecl

: extends_kw:EXTENDS names:(name:Name)+
{ classname InterfaceExtends }

;

/* Interface2 is new. Braces are removed, and optional

* terminator added. Note that both close class and

* close interface are allowed to close an interface. */
InterfaceBody

: lbrace:’{’ decls:(decl:InterfaceBodyDecl)* rbrace:’}’
{ classname Interface }

| decls:(decl:InterfaceBodyDecl)*
( (CLOSE_INTERFACE | CLOSE_CLASS ) )?

{ classname Interface2 }
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;

InterfaceBodyDecl
: decl:ConstantDecl

{ classname InterfaceConstantDecl }
| decl:AbstractMethodDecl

{ classname InterfaceAbstrMethodDecl }
| decl:ClassDecl

{ classname InterfaceIClassDecl }
| decl:InterfaceDecl

{ classname InterfaceIInterfaceDecl }
| semi:’;’

{ classname SpuriousInterfaceSemi }
;

/* Semicolon is optional */
ConstantDecl

: mods:(mod:Modifier)* vDecl:VariableDecl semi:(semi:’;’)?
{ classname ConstantDeclaration }

;

/* Comma separators are removed from vDecls list */
VariableDecl

: typ:Type vDecls:(vDecl:VarDeclarator)+
{ classname VariableDeclaration }

;

/* Semicolon is optional. */
AbstractMethodDecl

: mods:(mod:Modifier)* result:ResultType
declr:MethodDeclarator throws:(throws:Throws)?
semi:(semi:’;’)?

{ classname AbstractMethodDeclaration }
;

/* fields */

/* Field keyword added. Semicolon is optional */
FieldDecl

: mods:(mod:Modifier)* vDecl:VariableDecl
semi:(semi:’;’)?

{ classname FieldDeclaration }
;
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/* variable declarations */

VarDeclarator
: id:Ident dims:(dim:Dim)* init:(’=’ init:VarInitializer)?

{ classname VariableDeclarator }
;

VarInitializer
: expr:Expr { classname ExprVarInitializer }
| init:ArrayInit { classname ArrayVarInitializer }
;

/* Comma removed as list separators. */
ArrayInit

: lbrace:’{’ inits:(init:VarInitializer)* rbrace:’}’
{ classname ArrayInitializer }

;

/* methods */

/* Method keyword added. */
MethodDecl

: mods:(mod:Modifier)* result:ResultType
declr:MethodDeclarator throws:(throws:Throws)?
body:MethodBody

{ classname MethodDeclaration }
;

/* Optional body keyword added. Made optional with new open brace.

* Optional terminator added */
MethodBody

: ( (BODY | ’{’) )? block:Block (CLOSE_METHOD)?
{ classname BlockMethodBody }

| semi:’;’
{ classname AbstractMethodBody }

;

/* Parens around argument list are removed. */

* Added MethodSignature2. Used when method declaration has no

* arguments */
MethodDeclarator

: id:Ident params:(param:FormalParameter)*[’,’]
dims:(dim:Dim)*

{ classname MethodSignature }
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| id:Ident NOARGS dims:(dim:Dim)*
{ classname MethodSignature2 }

;

FormalParameter
: final:(FINAL)? type:Type id:Ident dims:(dim:Dim)*

{ classname FormalParam }
;

/* Comma separators removed from names list */
Throws : throws_kw:THROWS names:(name:Name)+

{ classname ThrowsDecl }
;

/* initializers */

/* Body keyword introduced. Make optional with left brace. */
InitDecl

: (BODY | ’{’) block:Block
{ classname Initializer }

;

/* Body keyword introduced. Make optional with left brace. */
StaticInitDecl

: static_kw:STATIC (BODY | ’{’) block:Block
{ classname StaticInitializer }

;

/* constructors */

/* Parens surrounding argument

* list are removed. ConstructorDeclaration2 is added. Used

* when constructor declaration has no arguments. */
ConstructDecl

: mods:(mod:Modifier)* id:Ident
params:(param:FormalParameter)*[’,’]
throws:(throws:Throws)? body:ConstructBody

{ classname ConstructorDeclaration }
| mods:(mod:Modifier)* id:Ident

NOARGS throws:(throws:Throws)? body:ConstructBody
{ classname ConstructorDeclaration2 }

;

/* Body keyword introduced. Make optional with left brace.
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* Optional terminator added after constructor body. Note

* that terminator can use the word method or constructor. */
ConstructBody

: ( (BODY | ’{’) )? explicit:(call:ExplicitConstructCall)?
stmts:(stmt:BlockStmt)*
( ( CLOSE_METHOD | CLOSE_CONSTRUCTOR) )?

{ classname ConstructorBody }
;

/* Parens are removed from argument lists. Dot is optional.

* Semicolon is removed. ThisConstructorCall2,

* SuperConstructorCall2, and EnclSuperConstructorCall2

* added to be used when constructor calls have no arguments */
ExplicitConstructCall

: this_kw:THIS args:Args
{ classname ThisConstructorCall }

| this_kw:THIS NOARGS
{ classname ThisConstructorCall2 }

| super_kw:SUPER args:Args
{ classname SuperConstructorCall }

| super_kw:SUPER NOARGS
{ classname SuperConstructorCall2 }

| expr:NameOrPrimary ’.’? super_kw:SUPER args:Args
{ classname EnclSuperConstructorCall }

| expr:NameOrPrimary ’.’? super_kw:SUPER NOARGS
{ classname EnclSuperConstructorCall2 }

;

/* blocks and statements */

/* Braces no longer surround stmts list */
Block : stmts:(stmt:BlockStmt)* { classname BlockBody }

;

/* Semicolon removed from BlockLocalVarDecl */
BlockStmt

: decl:LocalVarDecl
{ classname BlockLocalVarDecl}

| decl:ClassDecl
{ classname BlockInnerClassDecl }

| decl:InterfaceDecl
{ classname BlockInnerInterfaceDecl }

| stmt:Stmt
{ classname BlockStatement }
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;

LocalVarDecl
: final:(FINAL)? decl:VariableDecl

{ classname LocalVarDeclaration }
;

/* Body keyword added to BracedStatement. Made optional with

* left brace. IfThenStatement, IfThenElseStatement,

* WhileStatement, and ForStatement have terminators.

* IfThenStatement and IfThenElseStatement have added Then

* keyword. Parens surrounding expr in IfThenStatement, expr

* in IfTheElseStatement, expr in SwitchBlock, expr in

* WhileStatement, expr in DoWhileStatement, init in

* ForStatement, and expr in SynchronizedStatement are

* removed. Recursive reference to BlockStmt in

* LabelledStatement replaced by Block */
Stmt

: semi:’;’
{ classname EmptyStatement }

| (BODY | ’{’) block:Block
{ classname BracedStatement }

| label:Ident ’:’ stmt:Block
{ classname LabelledStatement }

| expr:StatementExpr
{ classname ExpressionStatement }

| if_kw:IF expr:Expr THEN stmt:Block CLOSE_IF
{ classname IfThenStatement
prec LOWER_THAN_ELSE }

| if_kw:IF expr:Expr THEN tStmt:Block else_kw:ELSE
fStmt:Block CLOSE_IF

{ classname IfThenElseStatement }
| switch_kw:SWITCH expr:Expr block:SwitchBlock

{ classname SwitchStatement }
| while_kw:WHILE expr:Expr DO stmt:Block CLOSE_WHILE

{ classname WhileStatement }
| do_kw:DO stmt:Block while_kw:WHILE expr:Expr

{ classname DoWhileStatement }
| for_kw:FOR init:(init:ForInit)?

expr:(expr:Expr)? update:ForUpdate
stmt:Block CLOSE_FOR

{ classname ForStatement }
| break_kw:BREAK label:(label:Ident)?

{ classname BreakStatement }



211

| continue_kw:CONTINUE label:(label:Ident)?
{ classname ContinueStatement }

| return_kw:RETURN expr:(expr:Expr)?
{ classname ReturnStatement }

| throw_kw:THROW expr:Expr
{ classname ThrowStatement }

| synchronized_kw:SYNCHRONIZED expr:Expr block:Block
{ classname SynchronizedStatement }

| try_kw:TRY block:Block body:TryBody
{ classname TryStatement }

| assert_kw:ASSERT expr1:Expr expr2:(’:’ expr:Expr)?
{ classname AssertStatement }

;

/* Assignment has new optional keyword Set */
StatementExpr

: SETVAR? expr:AssignmentExpr
{ classname AssignmentStatement }

| expr:PreIncDecExpr
{ classname PreIncDecStatement }

| expr:PostIncDecExpr
{ classname PostIncDecStatement }

| expr:MethodCall
{ classname MethodCallStatement }

| expr:InstanceCreate
{ classname InstanceCreateStatement }

;

/* Braces around SwitchBody are removed */
SwitchBlock

: groups:(group:SwitchBlockGroup)*
labels:(label:SwitchLabel)*

{ classname SwitchBody }
;

SwitchBlockGroup
: labels:(label:SwitchLabel)+ stmts:(stmt:BlockStmt)+

{ classname SwitchGroup }
;

/* Colons removed. */
SwitchLabel

: case_kw:CASE expr:Expr
{ classname CaseLabel }
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| default_kw:DEFAULT
{ classname DefaultLabel }

;

/* Comma separators removed from exprs list */
ForInit

: exprs:(expr:StatementExpr)+
{ classname ForInitExprs }

| decl:LocalVarDecl
{ classname ForInitExpr }

;

/* Comma separators removed from exprs list */
ForUpdate

: exprs:(expr:StatementExpr)*
{ classname ForUpdateExprs }

;

TryBody
: catches:(catch:Catch)+

{ classname CatchClauses }
| catches:(catch:Catch)* finally:Finally

{ classname CatchFinallyClauses }
;

/* Parens surrounding param are removed. */
Catch

: catch_kw:CATCH param:FormalParameter block:Block
{ classname CatchClause }

;

Finally
: finally_kw:FINALLY block:Block

{ classname FinallyClause }
;

/* types */

PrimType: JBOOLEAN { classname BooleanType }
| JBYTE { classname ByteType }
| JCHAR { classname JCharacterType }
| JSHORT { classname ShortType }
| JINT { classname IntegerType }
| JFLOAT { classname FloatType }
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| JLONG { classname LongType }
| JDOUBLE { classname DoubleType }
;

Type
: name:TypeName

{ classname SimpleType }
| name:TypeName dims:(dim:Dim)+

{ classname ArrayType }
;

TypeName
: type:PrimType { classname PrimitiveType }
| name:Name { classname DefinedType }
;

ResultType
: type:Type { classname ExplicitResultType }
| VOID { classname VoidResultType }
;

/* names */

/* Dot is optional */
Name

: id:Ident { classname SimpleName }
| name:Name ’.’? id:Ident { classname QualifiedName }
;

/* Identifiers may be composed of several words strung together.

* SingleName is translated to Java by concatenating each

* identifier with no spaces in between. */
Ident

: ids:(id:IDENTIFIER)+ { classname SingleName }
;

/* expressions */

NameOrPrimary
: name:Name { classname NameExpression }
| expr:Primary { classname PrimaryExpression }
;

Primary
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: expr:OtherPrimary
{ classname OtherPrimaryExpression }

| new_kw:NEW type:TypeName dExprs:(dExpr:DimExpr)+
dims:(dim:Dim)*

{ classname NewArrayExpression }
| new_kw:NEW type:TypeName dims:(dim:Dim)+ init:ArrayInit

{ classname NewArrayExpressionInit }
;

/* Dot is optional */
OtherPrimary

: lit:IntLiteral
{ classname IntConstant }

| lit:LongIntLiteral
{ classname LongIntConstant }

| lit:StringLiteral
{ classname StringConstant }

| lit:CharacterLiteral
{ classname CharacterConstant }

| lit:FloatLiteral
{ classname FloatConstant }

| lit:DoubleLiteral
{ classname DoubleConstant }

| lit:TRUE_TOKEN
{ classname TrueConstant }

| lit:FALSE_TOKEN
{ classname FalseConstant }

| lit:NULL_TOKEN
{ classname NullConstant }

| this_kw:THIS
{ classname ThisExpression }

| lparen:’(’ expr:Expr rparen:’)’
{ classname ParenExpression }

| expr:InstanceCreate
{ classname InstanceCreateExpression }

| expr:FieldAccess
{ classname FieldAccessExpression }

| expr:MethodCall
{ classname MethodCallExpression }

| expr:ArrayAccess
{ classname ArrayAccessExpression }

| name:Name ’.’? this_kw:THIS
{ classname ClassAccessExpression }

| type:ResultType ’.’? class_kw:CLASS
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{ classname ClassObjectExpression }
;

/* Comma separators removed from exprs list */
Args

: exprs:(expr:Expr)+ { classname Arguments }
;

/* Parens removed from args list. Optional anonymous class

* definition uses ClassBody2 instead of ClassBody. ClassBody

* admits empty classes, ClassBody2 does not. NewExpression2

* and EnclNewExpression2 added to support constructor calls

* with no arguments. */
InstanceCreate

: new_kw:NEW name:Name args:Args
body:(body:ClassBody2)?

{ classname NewExpression }
| new_kw:NEW name:Name NOARGS

body:(body:ClassBody2)?
{ classname NewExpression2 }

| expr:NameOrPrimary ’.’ new_kw:NEW id:Ident
args:Args body:(body:ClassBody2)?

{ classname EnclNewExpression }
| expr:NameOrPrimary ’.’ new_kw:NEW id:Ident

NOARGS body:(body:ClassBody2)?
{ classname EnclNewExpression2 }

;

/* Three ways to say left bracket are supported. Right bracket

* no longer allowed. */
DimExpr

: lbracket:(’[’ | OFARRAY | SUB) expr:Expr
{ classname DimExpression }

;

Dim
: lbracket:’[’ rbracket:’]’

{ classname Dimensions }
;

/* Dot is optional */
FieldAccess

: object:Object ’.’? field:Ident
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{ classname ObjectFieldAccess }
;

/* Parens no longer surround args list. Dot is optional.

* ThisMethodCall2 and OtherMethodCall2 are added to support

* method calls with no arguments. */
MethodCall

: name:Name args:Args
{ classname ThisMethodCall }

| name:Name NOARGS
{ classname ThisMethodCall2 }

| object:Object ’.’? name:Ident args:Args
{ classname OtherMethodCall }

| object:Object ’.’? name:Ident NOARGS
{ classname OtherMethodCall2 }

;

/* Dot is optional */
Object

: expr:Primary
{ classname PrimaryObject }

| super_kw:SUPER
{ classname SuperObject }

| name:Name ’.’? super_kw:SUPER
{ classname EnclosingSuperObject }

;

/* Sub keyword added as alternative to left bracket. Right

* bracket is no longer allowed. NameArrayAccessExpr2 and

* PrimaryArrayAccessExpr2 added to support alternate phrasing

* for array references. */
ArrayAccess

: array:Name lbracket:(’[’ | SUB) index:Expr
{ classname NameArrayAccessExpr }

| index:Expr ELEMENT OFARRAY array:Name
{ classname NameArrayAccessExpr2 }

| array:OtherPrimary lbracket:(’[’ | SUB) index:Expr
{ classname PrimaryArrayAccessExpr }

| index:Expr ELEMENT OFARRAY array:OtherPrimary
{ classname PrimaryArrayAccessExpr2 }

;

/* Cast operations have been rephrased. */
UnaryNoPMExpr
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: expr:NameOrPrimary
{ classname NameOrPrimaryExpression }

| ’!’ expr:Expr
{ classname LogicalCompExpression }

| ’˜’ expr:Expr
{ classname BitwiseCompExpression }

| expr:PostIncDecExpr
{ classname PostIncDecExpression }

| JCAST expr:Expr TO name:PrimType dims:(dim:Dim)*
{ classname PrimTypeCastExpression

prec CAST }
| JCAST expr:UnaryNoPMExpr TO name:Name dims:(dim:Dim)*

{ classname DefinedTypeCastExpression
prec CAST }

;

/* ’x’ (times) is distinguished from ’*’ (star) in

* MultiplicationExpression. Optional Set keyword added to

* AssignmentExpression */
Expr

: expr:UnaryNoPMExpr
{ classname ExpressionNoPlusMinus }

| expr:PlusMinusExpr
{ classname PlusMinusExpression }

| left:Expr ’x’ right:Expr
{ classname MultiplicationExpression }

| left:Expr ’/’ right:Expr
{ classname DivisionExpression }

| left:Expr ’%’ right:Expr
{ classname RemainderExpression }

| left:Expr ’+’ right:Expr
{ classname AdditionExpression }

| left:Expr ’-’ right:Expr
{ classname SubtractionExpression }

| left:Expr ’<<’ right:Expr
{ classname LeftShiftExpression }

| left:Expr ’>>’ right:Expr
{ classname RightSignShiftExpression }

| left:Expr ’>>>’ right:Expr
{ classname RightLogicShiftExpression }

| left:Expr ’<’ right:Expr
{ classname LessThanExpression }

| left:Expr ’>’ right:Expr
{ classname GreaterThanExpression }
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| left:Expr ’>=’ right:Expr
{ classname GreaterEqualExpression }

| left:Expr ’<=’ right:Expr
{ classname LessEqualExpression }

| left:Expr ’==’ right:Expr
{ classname EqualExpression }

| left:Expr ’!=’ right:Expr
{ classname NotEqualExpression }

| left:Expr ’&’ right:Expr
{ classname AndExpression }

| left:Expr ’ˆ’ right:Expr
{ classname ExclusiveOrExpression }

| left:Expr ’|’ right:Expr
{ classname InclusiveOrExpression }

| left:Expr ’&&’ right:Expr
{ classname ConditionalAndExpression }

| left:Expr ’||’ right:Expr
{ classname ConditionalOrExpression }

| expr:Expr instanceof_kw:INSTANCEOF type:Type
{ classname InstanceOfExpression }

| expr:Expr ’?’ tExpr:Expr ’:’ fExpr:Expr
{ classname ConditionalExpression }

| SETVAR? expr:AssignmentExpr
{ classname AssignmentExpression }

;

PlusMinusExpr
: UPLUS expr:Expr

{ classname UnaryPlusExpression
prec UPLUS }

| UMINUS expr:Expr
{ classname UnaryMinusExpression

prec UMINUS }
| expr:PreIncDecExpr

{ classname IncDecPlusMinusExpression }
;

PreIncDecExpr
: ’++’ expr:Expr { classname PreIncExpression }
| ’--’ expr:Expr { classname PreDecExpression }
;

PostIncDecExpr
: expr:UnaryNoPMExpr ’++’
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{ classname PostIncExpression
prec POSTINCR }

| expr:UnaryNoPMExpr ’--’
{ classname PostDecExpression

prec POSTDECR }
;

/* Alternate phrasing for AssignmentExpr added. */
AssignmentExpr

: lhs:LeftHand (TO | ’=’) expr:Expr
{ classname AssignExpr }

| lhs:LeftHand ’+=’ expr:Expr
{ classname PlusAssignExpr }

| lhs:LeftHand ’-=’ expr:Expr
{ classname MinusAssignExpr }

| lhs:LeftHand ’*=’ expr:Expr
{ classname TimesAssignExpr }

| lhs:LeftHand ’/=’ expr:Expr
{ classname DivAssignExpr }

| lhs:LeftHand ’%=’ expr:Expr
{ classname RemAssignExpr }

| lhs:LeftHand ’&=’ expr:Expr
{ classname AndAssignExpr }

| lhs:LeftHand ’ˆ=’ expr:Expr
{ classname XorAssignExpr }

| lhs:LeftHand ’|=’ expr:Expr
{ classname OrAssignExpr }

| lhs:LeftHand ’<<=’ expr:Expr
{ classname LeftShiftAssignExpr }

| lhs:LeftHand ’>>=’ expr:Expr
{ classname RightSignShiftAssignExpr }

| lhs:LeftHand ’>>>=’ expr:Expr
{ classname RightLogicShiftAssignExpr }

;

LeftHand
: name:Name { classname LeftHandSideObject }
| expr:FieldAccess { classname LeftHandSideField }
| expr:ArrayAccess { classname LeftHandSideArray }
;

%%
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Appendix C

XGLR Parser Algorithm

In this appendix, we present the XGLR parsing algorithm in its entirety, with support for

ambiguous input streams and embedded languages. For an explanation of this algorithm and to see

how it differs from GLR parsing, see Chapter 5.

XGLR-PARSE()
init active-parsers list to parse state 0
init parsers-ready-to-act list to empty
init parsers-at-end list to empty
init lookahead-to-parse-state map to empty
init lookahead-to-shiftable-parse-states map to empty
while active-parsers list 6= ∅

PARSE-NEXT-SYMBOL(false)
copy parsers-at-end list to active-parsers list
clear parsers-at-end list
PARSE-NEXT-SYMBOL(true)
accept

PARSE-NEXT-SYMBOL(bool finish-up?)
SETUP-LEXER-STATES()
SETUP-LOOKAHEADS()
if not finish-up?

FILTER-FINISHED-PARSERS()
if active-parsers list is empty? return

init shiftable-parse-states list to empty
copy active-parsers list to parsers-ready-to-act list
while parsers-ready-to-act list 6= ∅

remove parse state p from list
DO-ACTIONS(p)
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SHIFT-A-SYMBOL()

SETUP-LEXER-STATES()
for each pair of parse states p, q ∈ active-parsers list

if lexer state of lexp = lexer state of lexq

set lexp to copy lexq

for each parse state p ∈ active-parsers list
let langs = lexer-langs[p]
if |langs| > 1

let each of q1 .. qn = copy parse state p
for each parse state qi ∈ q1 .. qn

if langsi 6= lexer language of lexp

set lex state of lexqi
to init-state[langsi]

add qi to active-parsers list
else if langs0 6= lexer language of lexp

set lexer state of lexp to init-state[langs0]

SETUP-LOOKAHEADS()
for each parse state

p ∈ active-parsers list
set lookaheadp to first token lexed by lexp

add <offset of lookaheadp×lookaheadp> to offset-to-lookaheads map
if lookaheadp is ambiguous

let each of q1 .. qn = copy parse state p
for each parse state q ∈ q1 .. qn

for each alternative a from lookaheadp

set lookaheadq to a
add lookaheadq to equivalence class for a

add q to active-parsers list
for each parse state p ∈ active-parsers list

add <lookaheadp×p> to lookahead-to-parse-state map

FILTER-FINISHED-PARSERS()
for each parse state p ∈ active-parsers list

if lookaheadp = end of input?
remove p from active-parsers list
add p to parsers-at-end list

DO-ACTIONS(parse state p)
look up actions[p×lookaheadp]
for each action
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if action is SHIFT to state x
add <p, x> to shiftable-parse-states
add <lookaheadp×p> to lookahead-to-shiftable-parse-states map

if action is REDUCE by rule y
if rule y is accepting reduction

if lookaheadp is end of input
return

if no parsers ready to act or shift or at end of input
invoke error recovery

return
DO-REDUCTIONS(p, rule y)
if no parsers ready to act or shift

invoke error recovery and return
if action is ERROR and no parsers

ready to act or shift or at end of input
invoke error recovery and return

DO-REDUCTIONS(parse state p, rule y)
for each equivalent parse state p− below RHS(rule y ) on a stack for parse state p

let q = GOTO state for actions[p−×LHS(rule y)]
if parse state q ∈ lookahead-to-parse-state[lookaheadp] and lookaheadq

∼= lookaheadp

and (lookaheadp is end of input or lexer state of lexq = lexer state of lexp)
if p− is not immediately below q on stack for parse state q

push q on stack p−

for each parse state r such that r ∈ active-parsers list and r /∈parsers-ready-to-act list
DO-LIMITED-REDUCTIONS(r)

else
create new parse state q with lookaheadp and copy of lexp

push q on stack p−

add q to active-parsers list
add q to parsers-ready-to-act list
add <lookaheadq×q> to lookahead-to-parse-state map

DO-LIMITED-REDUCTIONS(parse state r)
look up actions[r×lookaheadr]
for each REDUCE by rule y action

if rule y is not accepting reduction
DO-REDUCTIONS(r, rule y)

SHIFT-A-SYMBOL()
clear active-parsers list
for each <p, x> ∈ shiftable-parse-states
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if p is not an accepting parser
if parse state x ∈ active-parsers list

push x on stack p
else

create new parse state x with lookaheadp and copy of lexp

push x on stack p
add x to active-parsers list
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Appendix D

DeRemer and Pennello LALR(1)
Lookahead Set Generation Algorithm

The author researched algorithms for computing lookahead sets for LALR(1) grammars.

After the DeRemer and Pennello paper [19], there was a flurry of work by Park and Ives [72, 71,

73, 42, 43] to improve the algorithm’s running time. After an academic debate was carried out in

SIGPLAN Notices, the final word was given by Ives, in a letter to the editor in which he reconciled

the differences between his algorithm and Park’s and presented a final algorithm.

However, given that these works appeared in the early 1980’s, they used fairly different

terminology for parsing than today’s students learn in their compiler courses. Worse, today’s com-

piler courses teach nothing about any of the modern algorithms for generating LALR(1) parse ta-

bles, especially computing the lookahead sets. The Dragon book’s last revision [2] does not include

DeRemer and Pennello’s work, and no compiler book that we have found explains the algorithm at

all.

Why quibble with textbooks, if the algorithms are published in journals? Students wishing

to learn how they work can just look them up. Unfortunately, that is not the case. The Park/Ives

debate took place in SIGPLAN Notices which is an unrefereed publication. In fact, the last letter

Ives wrote refers to a journal submission to explain his algorithm fully, but the article seems not

to have appeared. Ives’s letter uses terminology that perhaps people in the parsing community

understood at the time, but which is completely undefined in the paper and cannot be found in any

contemporary references (including the Dragon book).

We decided to implement the DeRemer and Pennello algorithm after failing to completely

understand either the Park or the Ives algorithms. The improvements in running time achieved by

the Park and Ives algorithms are no longer as important as they were; instead, we value algorithm
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readability and reproducibility. Thus, we implemented the DeRemer and Pennello algorithm.

Unfortunately, DeRemer and Pennello’s paper does not explain any of the data structures

used within. Nor does it clearly indicate which elements of the graph are being operated upon

in each phase of the algorithm. In fact, after a lengthy discussion in the paper of the algorithm’s

correctness, the authors never write down the final version of the algorithm, leaving readers to derive

it on their own.

As a service to the community, we present a much more detailed version of the DeRemer

and Pennello algorithm that can be implemented fairly simply. The algorithm and its data structures

follow. Commentary on how each phase operates may be found in DeRemer and Pennello (their

explanation once you know what you are supposed to be calculating is, in fact, excellent). Read this

implementation with the paper in hand.

D.1 Data Structures

type reads-edge : {
state : parse-state
nt : nonterminal
next-edges : set<reads-edge>
depth-first-number : int
lowlink : int
in-edges : int
}

type includes-edge : {
state : parse-state
nt : nonterminal
next-edges : set<includes-edge>
depth-first-number : int
lowlink : int
in-edges : int
}

type goto-data : {
nt : nonterminal
state : parse-state
}

type shift-data : {
term : terminal
state : parse-state



226

}

type symbol : union<terminal, nonterminal>

type parse-rule : {
LHS : nonterminal
right-hand-side : sequence<symbol>
}

type parse-item : {
rule : parse-rule
dot : int
lookbacks : set<pair<parse-state, nonterminal>>

lookaheads : set<terminal>
}

type parse-state : {
goto-table : set<goto-data>

shift-table : set<shift-data>

accepting-state? : bool
read : map: nonterminal→ set<terminal>
follow : map: nonterminal→ set<terminal>
items : set<parse-item>

}

D.2 Global Variables

reads-edges-graph : set<reads-edge>
reads-roots : set<reads-edge>
reads-edges-stack : stack<reads-edge>
includes-edges-graph : set<includes-edge>
includes-roots : set<includes-edge>
includes-edges-stack : stack<reads-edge>
tarjan-num : int

D.3 Lookahead Set Computation Algorithm

compute-lookaheads()
reads-edges-graph← ∅
reads-roots← ∅
reads-edges-stack ← ∅
includes-edges-graph← ∅
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includes-roots← ∅
includes-edges-stack ← ∅
tarjan-num← 0
compute-reads()
compute-read()
compute-includes()
compute-follow()
compute-lookbacks()
compute-lookahead()

D.3.1 Compute Reads Set

compute-reads()
foreach state ∈ states

compute-reads-for-state(state)
// toplogically sort reads edges
foreach edge ∈ reads-edges-graph

if edge.in-edges = 0
reads-roots.insert(edge)

compute-reads-for-state(p : parse-state)
// reads(p : state, A : nonterminal) = (r : state, C : nonterminal)
// if p→ r via A ∧ r→ s via C ∧ C⇒∗ ε

foreach goto ∈ p.goto-table
goto-NT ← goto.nt
r ← goto.state
foreach goto-next ∈ r.goto-table

goto-next-NT ← goto-next.nt
if goto-next-NT .is-nullable?()

from-edge← get-reads-edge(p, goto-NT)
to-edge← get-reads-edge(r, goto-next-NT)
from-edge.next-edges.insert(to-edge)
to-edge.in-edges← to-edge.in-edges + 1

get-reads-edge(state : parse-state, nt : nonterminal)
look up reads-edge(state, nt) ∈ reads-edge-graph
if found

return reads-edge
else

return new reads-edge(state, nt)
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compute-read()
// F state = F’ state
foreach state ∈ states

foreach goto ∈ state.goto-table
goto-NT ← goto.nt
r ← goto.state
foreach shift ∈ r.shift-table

state.read[goto-NT] .insert(shift.term)
if r.accepting-state?

state.read[goto-NT] .insert(eofTerminal)
foreach edge ∈ reads-edge-graph

edge.depth-first-number ← 0
tarjan-num← 0
reads-edge-stack ← ∅
// make sure to do the roots of the graph first
foreach edge ∈ reads-edge-roots

if edge.depth-first-number = 0
tarjan-read(state, edge)

// just in case we missed any that are disconnected from the graph
foreach edge ∈ reads-edge-graph

if edge.depth-first-number = 0
tarjan-read(state, edge)

tarjan-read(state : parse-state, edge : reads-edge)
edge.depth-first-number ← ++tarjan-num
reads-edge-stack .push(edge)
lowlink ← |reads-edge-stack |
foreach next-edge ∈ edge.next-edges

if next-edge.depth-first-number = 0
tarjan-read(state, next-edge)

if lowlink ≥ next-edge.lowlink
lowlink ∈ next-edge.lowlink

edge.state.read[edge.nt] .insert(next-edge.state.read[next-edge.nt])
if lowlink = |reads-edge-stack |

// found a cycle
next-edge← reads-edge-stack .pop()
while next-edge 6= edge

next-edge.lowlink ←∞
next-edge.state.read[next-edge.nt] .insert(edge.state.read[edge.nt])
next-edge← reads-edge-stack .pop()
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D.3.2 Compute Includes Set

compute-includes()
foreach state ∈ states

compute-includes-for-state(state)
// toplogically sort includes edges
foreach edge ∈ includes-edges-graph

if edge.in-edges = 0
includes-roots.insert(edge)

compute-includes-for-state(state : parse-state)
// includes(p : parse-state, A : nonterminal) = (p’ : parse-state, B : nonterminal)
// if B→ β A γ, γ ⇒∗ ε ∧ p’→ p via β

foreach goto ∈ state.goto-table
goto-NT ← goto.nt
p← state
foreach rule ∈ get-rules-for-nonterminal(goto-NT)

was-nullable-after-dot? ← false
dot ← 0
foreach symbol ∈ rule.right-hand-side

dot ← dot + 1
if is-nonterminal?(symbol)

if was-nullable-after-dot? ∨ is-nullable-after-dot?(rule, dot)
from-edge← get-includes-edge(p, symbol)
to-edge← get-includes-edge(state, goto-NT)
from-edge.next-edges.insert(to-edge)
to-edge.in-edges← to-edge.in-edges + 1
was-nullable-after-dot? ← true

p← p.getGoto(symbol)

get-includes-edge(state : parse-state, nt : nonterminal)
look up includes-edge(state, nt) ∈ includes-edge-graph
if found

return includes-edge
else

return new includes-edge(state, nt)

D.3.3 Compute Follow Set

compute-follow()
// F state = F’ state
foreach state ∈ states
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foreach goto ∈ state.goto-table
goto-NT ← goto.nt
r ← goto.state
state.follow[goto-NT .insert(state.read[goto-NT])

foreach edge ∈ includes-edge-graph
edge.depth-first-number ← 0

tarjan-num← 0
includes-edge-stack ← ∅
// make sure to do the roots of the graph first
foreach edge ∈ includes-edge-roots

if edge.depth-first-number = 0
tarjan-follow(state, edge)

// just in case we missed any that are disconnected from the graph
foreach edge ∈ includes-edge-graph

if edge.depth-first-number = 0
tarjan-follow(state, edge)

tarjan-follow(state : parse-state, edge : reads-edge)
edge.depth-first-number ← ++tarjan-num
includes-edge-stack .push(edge)
lowlink ← |includes-edge-stack |
foreach next-edge ∈ edge.next-edges

if next-edge.depth-first-number = 0
tarjan-follow(state, next-edge)

if lowlink ≥ next-edge.lowlink
lowlink ∈ next-edge.lowlink

edge.state.follow[edge.nt] .insert(next-edge.state.follow[next-edge.nt])
if lowlink = |includes-edge-stack |

// found a cycle
next-edge← includes-edge-stack .pop()
while next-edge 6= edge

next-edge.lowlink ←∞
next-edge.state.follow[next-edge.nt] .insert(edge.state.follow[edge.nt])
next-edge← includes-edge-stack .pop()

D.3.4 Compute Lookbacks and Lookaheads

compute-lookbacks()
foreach state ∈ states

foreach item ∈ state.item-set
next:
if item.is-dot-at-beginning?

next-state← state



231

rule← item.rule
if not is-epsilon?(rule)

foreach symbol ∈ rule.right-hand-side
next-state← next.get-state-after-goto(symbol)
if next-state.is-accepting-state?

continue next:
next-item← next .get-item-with-rule-and-dot-at-end(rule)
next-item.lookbacks.insert(pair<state, rule.LHS>)

compute-lookahead()
foreach state ∈ states

if state.is-accepting-state?
continue

foreach item ∈ state.item-set
if item.is-dot-at-end?

// only do lookaheads for reducing items
foreach lookback ∈ item.lookbacks

next-state← lookback.first
next-NT ← lookback.second
item.lookaheads.insert(next-state.follow[next-NT])


