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Abstract

We present the results of a detailed study of the Virtual In-
terface (VI) paradigm as a communication foundation for a
distributed computing environment. Using Active Messages
and the Split-C global memory model, we analyze the in-
herent costs of using VI primitives to implement these high-
level communication abstractions. We demonstrate a mini-
mum mapping cost (i.e. the host processing required to map
one abstraction to a lower abstraction) of 5.4 µsec for both
Active Messages and Split-C using 4-way 550 MHz Pen-
tium III SMPs and the Myrinet network. We break down
this cost to use of individual VI primitives in supporting flow
control, buffer management and event processing and iden-
tify the completion queue as the source of the highest over-
head. Bulk transfer performance plateaus at 44 Mbytes/sec
for both implementations due to the addition of fragmenta-
tion requirements. Based on this analysis, we present the
implications for the VI successor, Infiniband.

Index Terms: Active messages, cluster-based net-
working, Infiniband, network abstractions, network I/O,
VI Architecture

1 Introduction

In order to enable the widespread deployment of high
performance, scalable systems, there has been a con-
certed effort to develop a standardized cluster commu-
nication architecture for system area networks (SAN).
This effort yielded the Virtual Interface (VI) Architec-
ture [10] in 1998, and is now focused on the emerging
Infiniband architecture [1] which also seeks to encom-

pass network based I/O. The VI Architecture defines a
methodology for user-level communication based on di-
rect memory access (DMA) descriptor processing. At
its core is a set of design principles for how to imple-
ment user-level communication in a manner that vir-
tualizes resources among an arbitrary number of pro-
cesses. It outlines both a hardware architecture for
the network interface controller (NIC) and a software
interface upon which communication abstractions are
implemented. Infiniband incorporates much of the VI
Architecture, with some modifications in terminology
and behavior, and represents the intellectual merger of
many industry efforts in high performance networked
I/O. While it does introduce some new concepts and
components, its core is strongly based on the VI Archi-
tecture primitives. Thus, it is important to evaluate the
effectiveness of the core VI Architecture mode of oper-
ation in support of established communication APIs.

The VI Architecture exports two fundamental com-
munication operations. One is a matched send-receive
model, in which the receiver allocates and registers
buffers in anticipation of incoming messages. The other
is a Remote Direct Memory Access model, where the
sender delivers or reads data directly to a specified re-
gion in the target’s address space. Several studies and
VI Architecture implementors [7, 8, 16, 17, 25, 38] doc-
ument the performance achieved on the VI primitives.
With experience and engineering effort, this aspect is
improving.

In this paper, we focus on the cost of mapping use-
ful communications abstractions to the VI primitives.
We seek to answer the question of how effectively these
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primitives support common usage models.
We consider two distinct models that have been

implemented effectively on numerous substrates: ac-
tive messages and a simple global memory model.
The active messages [37] paradigm is centered around
lightweight RPC. Communication transactions are
based on two-phase request and reply messaging primi-
tives that invoke user level handlers within the receiving
application. To explore the global memory model, we
use the Split-C parallel language [22]. Here the funda-
mental primitives are simple memory transactions: syn-
chronous read and write and asynchronous get, put and
store. By mapping these two models to the VI Archi-
tecture we can evaluate the relative costs of implement-
ing communication abstractions over the VI primitives.
We show the inherent costs of using the VI Architecture
(regardless of the speed of the VI interface), the costs
that are common to all communication abstractions and
those that are unique to particular approaches.

In the next section, we present related work upon
which this study builds. Section 3 explains the funda-
mentals of the VI Architecture and its baseline perfor-
mance. In Section 4, we review the Active Messages
and Split-C architectures and, in sections 5 and 6, dis-
cuss their implementations on top of the VI Architec-
ture. Section 7 presents our performance measurements
of these two high-level communication layers. In Sec-
tion 8, we discuss the key lessons we learned and the
implications for Infiniband.

2 Related Work

Initial studies of native VI primitives [8, 16, 38] have
focused on low-level details and the performance of
the transport itself. In addition, M-VIA [29] and SC-
Net [30] demonstrate the ability to layer VI primitives
over arbitrary hardware.

High-performance sorting applications (e.g. Mill-
Sort [7] and a terabyte sort [17]) were implemented
over the VI Architecture to demonstrate the feasibility
of the descriptor queue based primitives. In addition,
web traffic workload analysis [20] suggested zero-copy
VI primitives could assist in reducing server load. How-
ever, none of these studies analyze the costs associated

in the realization of these protocols or applications upon
the VI primitives.

There has been extensive work in examining proto-
col layer costs over other user-level communication ab-
stractions for high-performance systems [9, 21, 23, 39],
and from these we draw much of our methodology. Ad-
ditionally, we draw upon the lessons of related high-
performance network architectures [15, 31, 32] and the
benchmark techniques developed by Culler et. al. in
[13, 14] to analyze our implementations.

Specific to the VI Architecture, Speight et. al. [34]
conducted a benchmark study of two commercial VI
implementations and compared the results to TCP/IP
on gigabit ethernet. Madu et. al [25] demonstrated
the feasibility of layering the distributed component ob-
ject model (DCOM) protocol (essentially an extension
of RPC) over VI primitives. The results indicated that
software overheads were several times the underlying
transport. In an effort to mitigate this, Forin et. al. [18]
discussed a series of optimizations to the DCOM proto-
col to minimize the overhead. However, in that study,
the costs associated with implementing the DCOM ab-
straction at user level dwarfed the impact of mapping
to the VI architecture per se. Our work extends this by
using a much lighter-weight starting point to isolate the
characteristics of VI-based communication that result in
an unavoidable cost.

Other efforts to layer protocols over VI primitives
include the Message Passing Interface [5, 2] and TCP
sockets [33, 35, 11], but no detailed analysis of the map-
ping costs has been presented. Banikazemi et. al. de-
tailed VI implementation design tradeoffs and analyzed
low-level costs for the IBM SP [4, 3]. However, this
analysis did not include hardware doorbell support and
many of the architectural tradeoffs were based on opti-
mizing NIC performance. Using the hardware support
of the Myrinet LANai 7, our study investigates the host
processing cost orthogonal to NIC computational load.

Liu et. al. [24] describes a software-based fault in-
jection mechanism for networked systems that was built
on top of a commercial VI implementation. While this
work investigated fault-tolerance of the architecture, its
contribution is largely separate from this effort.
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3 VI Architecture / Infiniband

In this section, we outline the VI Architecture and its
basic descriptor queue messaging primitives that are
carried forward to Infiniband. A baseline performance
summary is included for reference in the rest of the pa-
per.

3.1 VI Overview

The Virtual Interface is an abstraction for a pro-
tected, direct channel to the network interface controller
(NIC). Communication is achieved through memory-to-
memory transfers between a pair of connected virtual
interfaces (VIs). Key concepts used in the VI architec-
ture include:

• Registered Memory – A portion of a user’s vir-
tual address space that has been pinned into phys-
ical memory and made known to a VI NIC. Regis-
tered memory functions as the principal communi-
cations buffer for network operations. Associated
with each region is a Memory Handle (a unique
identifier) which is used in conjunction with a user
virtual address to access a buffer.

• Descriptor – A data object recognized by the VI
NIC that describes a network transfer request to be
performed. Descriptors reside in registered mem-
ory and provide control information and a list of
pointers to data buffers.

• Work Queue – A FIFO list of Descriptors to be
processed by a VI NIC.

• Doorbell – A mechanism for a user process to no-
tify the VI NIC that outstanding descriptors have
been posted to an associated work queue. Each
doorbell is a protected resource, typically mapped
into a user’s address space, which is unique to a
particular VI/user pair.

Each VI consists of a send and a receive work queue,
their associated doorbell resources, and the user’s reg-
istered memory regions. Connections between VIs are
explicitly one-to-one.

There are two classes of message transactions: send-
receive and remote DMA (RDMA). To initiate a net-
work data transfer, the user process constructs a de-
scriptor and posts it into an appropriate work queue

by placing a token in the queue’s associated doorbell.
In the send-receive paradigm, the target pre-posts re-
ceive descriptors into the receive work queue in order
to identify memory regions where incoming data will
be placed. The source posts a send descriptor that iden-
tifies memory regions of data to send. Each send oper-
ation consumes a receive descriptor on the target. The
receiver must keep pre-posted descriptors on the receive
queue to ensure incoming messages are not dropped. In
this scheme, each application manages its own buffer
space and neither has explicit information about the
peer’s registered buffers.

In contrast, with RDMA messages the initiator iden-
tifies both the source and destination buffers. Data
can be directly written to or read from a remote ad-
dress space without involving the target process. To
conduct an RDMA operation only the sender need
prepare and queue a descriptor. However, both pro-
cesses must exchange information regarding their regis-
tered buffers using some out-of-band mechanism (either
send-receive or another network). One exception to the
one-sided nature of RDMA operations is that a small (4
byte) message, can be piggybacked on an RDMA write
operation. This data word is delivered to the target in
a special field of a receive descriptor. Thus, this form
of RDMA write with an immediate value consumes a
descriptor on the target, while standard RDMA writes
do not.

Completions on an individual VI are monitored ei-
ther through polling or by waiting on a signal from an
individual VI. However, in most parallel computing en-
vironments, each process communicates with several
others using distinct VIs. Managing a group of VIs is
simplified through the use of a completion queue. Com-
pletions of any of the associated VIs are posted to the
completion queue and detected through polling or sig-
nals.

For the interested reader, additional details on the VI
architecture are available in [8, 16, 10].

3.2 Infiniband

To better understand the implications of the VI archi-
tecture for Infiniband, we present a brief overview of
the Infiniband network architecture [36]. Infiniband is

3



the logical merger of several industry efforts (i.e., Next
Generation I/O and Future I/O) in network based I/O
architectures. Here, the I/O devices are effectively sep-
arated from the host CPU(s) by a switched network fab-
ric (Figure 1). The host channel adapter (HCA) con-
nects directly to the memory controller and is the inter-
face to the network. The target channel adapter (TCA)
is the network interface for the individual I/O devices
(e.g. disks and WAN adapters). The TCA is similar
to the HCA, but can be simplified according to the re-
quirements of the attached device(s). To provide differ-
entiated service and robust network management, data
traffic is multiplexed onto multiple independent streams
called Virtual Lanes (VLs). Infiniband supports 16 VLs
– 15 for data and one for management functions.

CPU CPU CPU CPU

Mem Cntlr

HCA

Switched Network

TCA TCA TCA

WAN
Disk Disk

Host

Host

Host

Host

Host

Figure 1: Infiniband network architecture.

The fundamental transport interface supported by the
HCA/TCA is the work queue pair (QP) which is equiv-
alent to and exports the same messaging primitives (i.e.
descriptor based send-receive, RDMA) as VIs. Data
exchange between QPs is still sourced/sinked to reg-
istered memory regions established by the application.
However, Infiniband provides message-level flow con-
trol schemes based on receive credits and NAK’s.

3.3 Performance Baseline

For our first study, we developed implementations of
the VI Architecture for the Myrinet [6] SAN using the
LANai 4 and LANai 7 interfaces. These interfaces

RTT/2 (µsec) Throughput (Mbytes/s)

Myricom LANai 4 VI 33.1 62.8
Myricom LANai 7 VI 30.2 68.3
Giganet cLan [34] 24 70
Compaq ServerNet II [19] 7.4 180

Table 1: Performance base of our VI implementa-
tion and comparison commercial implementations.
ServerNet II numbers are based on simulations.

host an on-board general purpose processor, on-board
SRAM (1-2Mbytes) and a set of DMA engines (net-
work send and receive and host-NIC DMA). The LANai
7 interface includes an extra host-DMA engine and
hardware-based doorbell support. The VI software base
includes a kernel driver, a Virtual Interface Provider
user Library (VIPL), and firmware for the NIC that em-
ulates a VI-compliant device. On the LANai 4, the
firmware emulates doorbells, and requires the host to
wait for a previous token to be processed. The hardware
doorbell of the LANai 7 eliminates this synchronization
requirement. Supported messaging operations include
send-receive and RDMA write with Myrinet hardware-
based delivery guarantees.

Table 1 presents a performance summary of these im-
plementations1 in comparison with commercially avail-
able direct hardware implementations. Half round-trip-
time (RTT/2) measures the application-to-application
latency for a single minimum message. Throughput is
the maximum achievable bandwidth of the implemen-
tation for a given I/O architecture. The performance
of this emulation is less than commercial vendors im-
plementing native VI hardware (e.g. Giganet cLAN).
However, the features of the LANai interface provide
adequate performance characteristics with the added
benefits of a flexible, instrumentable system. Moreover,
our goal is to analyze the cost of mapping common
communication down to the Host-NIC boundary, not
analyze interface implementation optimizations. The
LANai 7 interface has sufficent hardware support to
provide an interface that can be reasonably expected to

1LANai 4 performance was measured using 2-Way 400 MHz
Pentium-II SMPs with a 33 MHz, 32-bit PCI bus. LANai 7 perfor-
mance was measured on 4-way, 550 MHz Pentium-III Xeon SMPs
with a 33 MHz, 64-bit PCI bus.

4



mirror a native implementation. The combination of the
LANai 4 and LANai 7 in this paper permits an investi-
gation of how useful certain hardware features of a de-
vice are.

4 Active Messages and Split-C

In this section, we briefly discuss the Active Messages
and Split-C communication models that we have im-
plemented over the VI Architecture as the basis for our
study. The emphasis here is the semantic gap between
these models and the descriptor queue model of the VI
Architecture.

4.1 Active Messages

Active Messages (AM) is a simple, extensible paradigm
for message-based communication in parallel and dis-
tributed computing systems [40, 12]. While conceptu-
ally close to VI, AM exposes none of the detailed de-
scriptor processing and memory registration to the de-
veloper. Moreover, it establishes a higher level disci-
pline for message reception and handling with the im-
plementation responsible for achieving the necessary
buffer management, flow control and event processing.

The Active Message mechanism may be viewed as
essentially a lightweight remote procedure call. Each
message contains the name of a user-level handler to
invoke on a target node and a data payload to pass in as
arguments. The handler function serves the high-level
purpose of extracting the message from the network and
either integrating the data into the computation or send-
ing a response message. Under AM, a process may is-
sue a series of messages into the network and continue
its computation while the messages propagate. This dif-
fers from other communication schemes that use block-
ing protocols or special send/receive buffers. To prevent
network congestion and ensure adequate performance,
message handlers must be able to execute quickly and
asynchronously. As an additional requirement to pre-
vent deadlock, a handler that generates a reply mes-
sage must not be prevented from receiving incoming
messages, regardless of the state of the outgoing chan-
nel. From a programmer’s perspective, AM handlers

are similar to interrupt service routines used in OS ker-
nels and device drivers.

Active Messages has been implemented on a vir-
tual network scheme which supports protected multi-
programming communication [26]. The architecture
consists of two principal components: endpoints and
bundles. The AM endpoint is the abstraction for a pro-
cess’ connection to the network. A collection of end-
points among separate processes is connected to form
a protected virtual network. Endpoints implement a
two-phase request/reply [27] scheme in which a request
message is paired with a subsequent reply message. The
endpoint logically includes of a pair of buffer pools
(send and receive), a virtual-memory segment, a trans-
lation table, a handler table and a protection tag, but
the internal structure is opaque to the application. End-
points also use a credit based flow-control scheme for
requests to prevent network congestion and buffer over-
flow.

To provide flexibility for different applications, three
different message sizes are supported: shorts (< 32
bytes), mediums (< 4 Kbytes) and bulk transfers (<
network MTU). To initiate a message transfer, a process
calls AM Request() or AM Reply() to insert a mes-
sage into an endpoint send pool for delivery to a re-
mote receive pool. For short messages, the arguments
in the data payload are passed directly to the func-
tion. Medium messages include a pointer to a buffer
containing data in addition to the regular arguments.
Bulk transfers deliver the data payload to a sender-
specified offset in the endpoint’s virtual-memory seg-
ment and then invoke the handler with the specified ar-
guments. To hide network addressing details, remote
end-points are referenced through an integer index into
the translation table that contains the network address
of all endpoints in the virtual network. Endpoint ad-
dresses are inserted into this table through separate calls
to AM Map(). A process can create several endpoints,
each of which represents a connection to a separate vir-
tual network.

The AM bundle abstraction permits user-level
polling of an arbitrary collection of endpoints. The bun-
dle abstraction groups together related endpoints and
services them as a single unit. Polling of the bundle
is done explicitly through a call to AM Poll() and im-
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plicitly whenever a process issues a request or reply.
Next, we talk about our other high-level communica-

tion abstraction, Split-C.

4.2 Split-C Global Memory

Split-C is a single program multiple data (SPMD) par-
allel extension of C [22]. Each process in a Split-C pro-
gram lives in its own local address space and can refer to
data in another process through a global pointer, a com-
bination of a process id and a local address. The follow-
ing operations can be performed on a global pointer:

• Synchronous reads and writes.
• Asynchronous (split-phase) reads and writes (get

and put), with completion detection.
• Stores which are asynchronous writes whose com-

pletion can only be detected in the process that is
the target of the store.

These operations can be performed on the basic C
primitive types (char through double), or as bulk op-
erations of arbitrary size.

The Split-C compiler is based on a modified version
of the gcc C compiler that calls specific functions for
each of the Split-C memory-memory operations out-
lined above (read, write, get, put and store). These oper-
ations are implemented in a library that provides other
Split-C functions (e.g. barrier synchronization, reduc-
tions, etc.) and deals with the startup and shutdown of
the Split-C program. In the rest of this paper we only
discuss the implementation of the memory-memory op-
erations: read, write, get, put, and store. Split-C ex-
poses only the ability to transfer data between arbitrary
regions of partitioned global address space in a non-
blocking fashion and to detect completion.

AM and Split-C provide significantly higher-level
communication abstractions than the VI Architecture,
one defining messaging discipline and one global mem-
ory transfers. The next sections detail how this semantic
gap is bridged and the costs of doing so.

5 AM over VIA

In this section we discuss the internals of our Active
Messages over VIA (AMVIA) implementation. The de-

sign of AMVIA underwent three major iterations in or-
der to explore major avenues of the mapping. What is
presented here is the final architecture (AMVIAv3) and
how it differs from the older versions. Later, in Sec-
tion 8, we highlight important design tradeoffs between
the three.

5.1 Components

AMVIA preserves all the API and messaging seman-
tics of Active Messages. Low-level details such as op-
erating system and network hardware calls are replaced
with VI Architecture primitive functions. Facilitating
the mapping from AM abstractions to VI abstractions
is a meta-structure called the MAP object, a name de-
rived from the AM method AM Map(). The MAP ob-
ject is essentially a logical channel between two AM
endpoints in the virtual network. Each MAP contains a
VI, registered send and receive regions for descriptors
and data, and a request credit counter initialized to an
implementation parameter, k. The buffers are sized to
support 2*k sends and 2*k + 1 receives (the need for the
extra receive is discussed later). A collection of MAP
objects in a user process forms an AM endpoint. Each
MAP object in an endpoint is connected to a peer MAP
object in every remote endpoint of the virtual network.

The VI completion queue mechanism is used to deal
with multiple endpoints and a bundle of endpoints.
When a bundle is allocated, two completion queues are
created: one for monitoring sends and the other for re-
ceives. VIs are attached to these completion queues
when they are created as part of a MAP. The use of
two completion queues permits assigning preferential
service priority to receive operations.

5.2 Operations

With the exception of wait semaphores, AMVIA im-
plements all of the AM messaging primitives. Prior
to conducting communication, AM bundles, endpoints
and endpoint handlers are allocated as in past imple-
mentations of AM. When establishing the virtual net-
work topology, each call to AM Map() instantiates a
new MAP object including the VI, sufficient registered
memory space for the MAP buffers, a set of pre-posted
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receive descriptors and a small set of state variables.
The VI is then connected with its peer endpoint VI on
the remote node. The VI connection scheme uses a dis-
criminator value to match connections requests between
two VIs.

Sending operations in AMVIA use two separate
mechanisms: one for short and medium messages and
the other for bulk transfers. For a short or medium re-
quest, the function attempts to obtain a free send de-
scriptor and a request credit. If either of the two are not
available, the function polls, handling incoming traffic
until it can proceed. The data payload is then copied
into the appropriate message buffer and the send de-
scriptor posted to the send queue.

For a bulk transfer, two separate VI messages are
used: an RDMA write followed by a matched send-
receive. The RDMA write operation delivers the data
directly from the application’s address space to the des-
ignated offset in the target VM segment. A send-receive
message is used for notification and to deliver argu-
ments for the message handler. Achieving zero-copy on
the sender is achieved by dynamically registering the
necessary address space. A cache of registered regions
is maintained so that additional transfers from the same
memory page(s) do not cause another expensive regis-
tration operation (a similar technique was used in [35]).

Replies operate similar to requests, except they do
not wait for a request credit. The availability of a buffer
slot in which to receive the reply is implicitly contained
with the related request.

The sequence of operations that take place in an
AMVIA receive are roughly the same for all message
types and sizes. All messages are processed by invok-
ing the designated message handler with the data argu-
ments. Short messages pass their arguments directly to
the handler, and have no data payload. Medium mes-
sages, however, carry a data payload, but instead of
copying the message into a buffer in the message han-
dler, it is simply passed a pointer to the medium mes-
sage. Thus, incoming medium messages are able to ex-
ploit the zero-copy semantics intended by the VI archi-
tecture. Bulk receives use RDMA write, so they may
exploit zero-copy semantics as well.

Once the message handler returns, the associated re-
ceive descriptor is cleared and re-posted to the VI’s re-

ceive queue. The fact that the receive descriptor is not
recycled until after the handler completes requires the
receive queue to contain one extra element. This en-
sures that a reply sent by a request handler does not
create a new request for which there is no available
buffer. Recycling the receive descriptor before invoking
the handler would require extra data copies that would
degrade performance.

Invoking handlers and recycling descriptors is ac-
complished by the AM Poll() operation. This method
checks the receive completion queues in the bundle for
incoming messages. For each received request, the rou-
tine places the message onto a queue, while replies in-
voke the designated handler directly. Requests are pro-
cessed from the queue only when a boolean argument
to the poll routine is true. This demultiplexing of in-
coming requests and replies and conditional execution
of requests is necessary for two reasons. First, it pro-
vides the means to disable processing of incoming re-
quests that might result in deadlock and, second, it en-
sures that request handlers are executed atomically. The
other purpose of the polling routine is to recycle send
descriptors. The head of the send completion queue is
checked once per call to AM Poll() and the completed
send descriptor marked available for reuse.

The architecture described incorporates lessons that
we learned from our earlier attempts at AMVIA. The
first version (AMVIAv1) used three VIs per MAP, each
with its own credit counter. This permitted a larger
credit allocation for smaller messages while bounding
the total buffer space required. One side effect was that
reply messages had to be of the same size as the asso-
ciated request. Also, this version did not make use of
RDMA writes for large transfers.

The second version (AMVIAv2) used a single VI
per MAP, but was based completely on RDMA write
transfers. Immediate values were included with each
RDMA write in order to notify the target of a pending
message. Flow control was achieved through a flexi-
ble buffer management scheme managed by the sender.
The intent here, as before, was to allow more small mes-
sages to fill the network pipe. However, the complexity
of the scheme, along with other factors, resulted in an
unstable implementation. As such, we do not present
any performance results for AMVIAv2 in this paper, but
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rather use it as a point of design comparison. The final
version (AMVIAv3) removed the complexity of its pre-
decessors and, perhaps not surprisingly, demonstrated
the best performance. Later, in Section 7.1, we com-
pare the performance of AMVIAv1 to AMVIAv3.

6 Split-C over VIA

As with AMVIA, the implementation of Split-C over
the VI Architecture (Split-C/VI) must also address con-
nection establishment, request/reply messaging (for get
and put), flow control and buffer management, but does
so in the context of global memory operations. Our im-
plementation assumes a VIA implementation that pro-
vides “Reliable Delivery”, i.e., messages and RDMA
operations are delivered exactly once, in send order. We
could not use the RDMA read or write operations di-
rectly to implement the Split-C get, put or store primi-
tives since:

• The RDMA read operation is an optional feature
according to the specification (and is in fact not
available in our VI implementation).

• The actual completion of the RDMA write opera-
tion cannot be directly detected with “Reliable De-
livery”. A workaround involves sending a request
after the write. Completion of the write is guar-
anteed when the reply to this request is received.
This scheme is used by AMVIAv3, and the result-
ing performance is no better than implementing
put using regular messages (see Section 7). We did
not have available an implementation of the VI Ar-
chitecture providing “Reliable Reception”, which
does allow detection of the completion of RDMA
writes.

We therefore implement get, put and store using a
credit-based, request/reply messaging protocol similar
to AMVIA. The send and receive overhead is smaller
for Split-C because no error checking is necessary; only
the compiler builds messages, and the dispatch of AM
requests and replies through indirect function calls is
not required.

Split-C/VI uses one VI per connection to another
Split-C/VI process and a simpler message layout than

AMVIA. The smaller message size (24 bytes less than
AMVIA) reduces the number of cache misses when
reading and writing messages (all messages are ini-
tially un-cached as their memory is also accessed by
the NIC).

For bulk puts and gets, we can take advantage of
the VI Architecture’s support of segmented messages
to avoid copying the data to be sent into the message —
this was not possible for AM because the semantics of
AM allows the data sent in a message to be modified as
soon as it has been sent. However, when we receive a
message in Split-C/VI, we must copy the data from the
message to its destination address. In AMVIA, we were
able to just pass a pointer to the data to the message’s
handler.

Stores do not need to be acknowledged in Split-C.
Thus, except for flow-control purposes, we can omit the
reply for stores. After we have received n stores we
send a special store-acknowledge reply that acknowl-
edges the last n stores, thus a store only pays 1/n of the
usual reply cost. Obviously, n must be smaller than the
number of credits otherwise the system will deadlock;
we pick n to be equal to a quarter of that number.

The version of Split-C/VI with the LANai 4 has sev-
eral differences from the LANai 7: it uses two VIs, one
for get, put and store of primitive types, and another for
bulk get, put and store. The VI for operations on prim-
itive types has more credits than the single VI in our
latest implementation.2 The bulk operations do not use
segmented messages and thus incur an extra copy when
bulk data is sent.

7 Performance Analysis

Guided by past experiments of network communica-
tion architectures, we ran several benchmarking suites
to identify fundamental characteristics of Active Mes-
sages and Split-C over VI Architecture primitives.

2To avoid artificial differences between Split-C and AM over
VIA, we use the same number of credits (8) as AMVIAv3 and the
same maximum message size (4K). This artificially increases the
overhead of stores as we acknowledge every other store — a pro-
duction version of Split-C/VI would increase the number of credits
and the maximum message size, but would not affect our analysis.
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7.1 Active Messages

Our first set of measurements test the AM over VI im-
plementations and isolate LogP [13] model parameters
using the methodology in [14]. These benchmarks il-
lustrate fundamental parameters of high-performance
network architectures. Measured parameters include
latency, host send and receive overhead, and the gap,
which indicates the minimum time between successive
messages being sent into the network fabric. We per-
formed LogP benchmarks for AMVIA systems with our
old hardware setup (Dual PII-400, LANai 4 Myrinet
NIC, VIA2) and with our new hardware setup (Quad
PIII-550 Xeon, LANai 7 Myrinet NIC, VIA2). Our re-
sults are presented in Table 2.

RTT/2 ∆ L Os Or g

AMVIAv1 (LANai 4) 53 +19.9 45 2.7 5.3 48.0
AMVIAv1 (LANai 7) 39.2 +9.0 33.2 3.2 2.8 34.7
AMVIAv3 (LANai 7) 35.6 +5.4 29.6 3.1 2.9 30.0

Table 2: LogP measurements for AMVIA. All times
are in µsec. ∆ refers to the increase in RTT/2 over
the native VI transport. Since the minimum AM
message size is 16 bytes, we compare with the
RTT/2 for a 16 byte VI message (32 µsec) rather
than the minimal message in Table 1.

Between the LANai 4 and the LANai 7 versions,
there is an improvement of 11-15 µsec in RTT/2, La-
tency and the gap. This is principally due to the hard-
ware doorbell assist features of the latter interface. The
increase in overhead for the LANai 7 results from a
slightly more complex access to this hardware assist.

The comparison between AMVIAv1 and AMVIAv3
on the LANai 7 is more interesting. There is a 4 µsec
improvement in RTT/2, latency and the gap. This is
attributed to the reduction in VI resource utilization in
how AM is implemented. The NIC polls each active
VI in a round-robin fashion for outstanding sends. In
AMVIAv1, the multiple VIs increase this polling over-
head, even though two of the VIs have no messages to
send. AMVIAv3 uses only one VI and has the smallest
VI polling overhead.

The main thrust of our evaluation is reflected in the
column labeled ∆ which shows the cost of an AM mes-

sage over and above the raw VI Architecture cost. Hard-
ware support for doorbells and minimizing the number
of VIs, at the cost of registered memory utilization, re-
duce the raw VI cost as well. However, it remains sub-
stantial at 5.4 µsec or 2970 host cycles. The mapping
cost is contained within the observed send and receive
overhead, indicating that the base descriptor process-
ing accounts for (Os+Or) - 5.4 = 0.6 µsec. We analyze
these costs in greater detail in Section 7.3.

7.2 Split-C

To compare the performance of the various Split-C im-
plementations, we run a set of microbenchmarks of the
Split-C’s memory-memory operations: read, write, get,
put, and store, for primitive C types. This is the method-
ology of [23] which compared Split-C implementations
on several different hardware platforms. The results for
both the current and old (LANai 4) implementation are
presented in Figure 2.
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Figure 2: Split-C over VI single-sender short mes-
sage times.

Between Split-C over the LANai 4 and Split-C over
the LANai 7 we see approximately 12µsec of improve-
ment (except for stores). The reasons are the same as
for AMVIA. The improvement for stores is lower be-
cause our implementation of Split-C over LANai 7 has
far fewer credits (8 instead of 64) for operations on
primitive types, so it must send far more replies to store
messages.

The comparison between Split-C and AMVIA re-
veals very similar performance despite significant dif-
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ferences in the mapping to VI primitives. The read
and write tests essentially, measure message round trip
time. These results are slightly faster than the respec-
tive AMVIA numbers (AMVIAv1 over LANai 4 and
AMVIAv3 over LANai 7). The time for repeated get
or put operations (which do not wait for completion)
reflect the gap. Again, the Split-C results are a slight
improvement over the respective AMVIA numbers. Fi-
nally, the store results show that we get a substantial
improvement when we do not have to acknowledge ev-
ery store operation.

As with AM, we see a substantial mapping cost re-
vealed in the synchronous operations, 5 µsec total (10
µsec / 2), and little impact on the asynchronous ones.

Category Operation % of overhead

Base VI 32.5%
VipSendDone 7.0%
VipPostSend 6.1%
VipRecvDone 7.4%
VipPostReceive 4.8%
Recycle send descriptor 1.7%
Recycle receive descriptor 2.0%
Build send descriptors 3.5%

Event Notification 44.2%
VipCQDone (Send) 22.1%
VipCQDone (Receive) 22.1%

Flow Control 14.4%
Send bookkeeping 5.7%
Process received message 8.7%

Semantics 8.9%
Read data from message 6.3%
Act on message 2.6%

Table 3: Breakdown of VI operations required in a
AMVIA short request-reply operation.

7.3 Detailed Breakdown of Map Cost

To better understand the causes of overhead witnessed
in the above analysis, we instrumented our AMVIA and
Split-C/VI implementations to report a breakdown of
host overhead for a request/reply operation. The results
are grouped into four categories: Base VI, Event No-
tification, Flow Control and Semantics. The Base VI
category reflects the overhead that occurs with raw VI
operations and includes fundamental descriptor manip-
ulation methods. The other groups are the additional
costs incurred by usable communication abstractions.

Category Operation % of overhead

Base VI 36.1%
VipSendDone 7.1%
VipPostSend 9.4%
VipRecvDone 8.0%
VipPostReceive 5.6%
Recycle send descriptor 1.8%
Recycle receive descriptor 1.8%
Build send descriptors 2.4&

Event Notification 46.9%
VipCQDone (Receive) 22.5%
VipCQDone (Send) 24.4%

Flow Control 11.6%
Send bookkeeping 4.9%
Push msg on req/rep queue 6.7%

Semantics 5.4%
Read data from message 3.6%
Act on message 1.8%

Table 4: Breakdown of VI operations required in a
Split-C get primitive operation. A get call involves
a request to be sent by the sender to the target
computer, and the matching response by the target
containing the data.

Event Notification groups those operations necessary to
monitor for message transaction events (i.e. comple-
tion). Flow Control are costs associated with managing
buffers and descriptors to prevent overruns on lossage.
Semantics are overheads specific to the higher abstrac-
tion. The results are presented in Tables 3 and 4 and
summarized in Figures 3 and 4.

The largest cost is event notification associated with
VipCQDone() for both send and receives. This method
executes a programmed I/O read operation to the NIC-
hosted completion queues, and if a completion has oc-
curred, a programmed I/O write to clear it. We elaborate
on the design decision to place the completion queues
on the NIC in the next section. This event notification
cost occurs in any real usage of the VI Architecture, but
is generally not present in the published raw VI perfor-
mance results because all that is required is completion
of a series of one-to-one messages.

The next two major cost components are the
flow control associated with the VipSendDone() and
VipRecvDone() methods. After an event notification,
the application uses these functions to retrieve the com-
pleted descriptor off the respective work queue. These
operations both involve un-cached reads to check de-
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Figure 3: AMVIA timing breakdown.
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Figure 4: Split-C/VI timing breakdown.

scriptor fields updated by the interface. The methods
VipPostSend() and VipPostRecv() do a programmed
I/O write to post the doorbell tokens. In the Flow Con-
trol category, there is a slight increase in the time to
process a message for AMVIA over Split-C due to the
greater generality of the abstraction.

Finally, we see that the cost of implementing AM se-
mantics (getting the packet, dispatching the handler) are
indeed 1.5x Split-C (getting the address, servicing the
read) but that this cost is dwarfed by the generic needs
of event notification, flow control and buffer manage-
ment.

7.4 Bulk Transfers

As a final measurement, we examine the bulk mes-
sage throughput attained by the VI implementation,

AMVIAv3 and Split-C/VI for various messages sizes
from 4 bytes to 32 kilobytes. The results are presented
in Figure 5.

Streaming Performance
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Figure 5: Bandwidth (in Mbytes/s) attained by VIA,
AMVIAv3 and Split-C for a bulk send operation.

The VI native test attains the highest throughput be-
cause it is a one-sided streaming benchmark – there
is no acknowledgment of messages from the receiver.
This represents the theoretical maximum bandwidth
achievable by this interface.

Below 4 Kbytes, the AM and Split-C implementa-
tions achieve nearly identical throughput because of
similarities in their underlying operations. In AM, send
requests must be acknowledged by a reply, and a copy
is performed on the sender for each message up to 4K
in size. In addition, Split-C requires a response from
the target in order to maintain Split-C put semantics in
which the sender is notified when the target has received
the message. Split-C must also perform a memory copy
on receipt, since the data will be delivered to an arbi-
trary location in the target’s address space.

To better understand the impact of this behavior on
bandwidth, we perform a timing breakdown for a 1
Kbyte message. The average difference in time per
message between AM or Split-C and the native VI
benchmark is 18 µsec. A breakdown of this difference
is in Table 5.

The short network receive component is the neces-
sary cost required for the interface to process a short
incoming message from the network. On the LANai-
based VI implementation, the interface requires a finite
amount of time to process a receive. During this time,
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Component Time (µsec)

Memory copy 4
Short network receive 14.5

TOTAL 18.5

Table 5: Breakdown of per-message time differ-
ence as observed in the bulk performance test.
Memory copy bandwidth was measured using the
Pentium cycle counters.

it is unable to process the next send transaction. In a
steady state, the benchmark is receiving one short mes-
sage for every message sent. To estimate this time, we
use the single-sided time of the VI-native benchmark
for a 32 byte message, 2.2 Mbytes/s. Assuming a re-
ceive occupies the same interface time as a send, this
yields a per-message time of 14.5 µsec. A dedicated
hardware interface that could alleviate this cost would
yield improved throughput.

Above 4 Kbytes, both implementations shift to send-
ing multiple messages, although for different reasons.
AMVIAv3 uses zero-copy RDMA write operations, but
must follow up the RDMA write with a send-receive
transaction in order to deliver the message meta-data.
Split-C sends multiple messages due to fragmentation
above 4 Kbytes. The effect of the transition produces
the knee in the curve at approximately 44 Mbytes/sec.

8 Discussion

The development and analysis of AMVIA and
Split-C/VI yield several insights. In this section, we
evaluate the design tradeoffs in AMVIA and Split-C/VI,
and show how these are impacted by subtle differences
in the underlying layers. We also present implications
for Infiniband.

8.1 Retrospective

The design iterations of both AMVIA and Split-C/VI
explored the mapping down to VI primitives from sev-
eral angles. The results of this effort yielded two invari-
ants.

The first invariant was the need for a flow-control

mechanism to prevent dropped VI messages (due to
buffer overruns and/or lack of available receive descrip-
tors). In AMVIAv1, AMVIAv3, and both versions
of Split-C/VI, the flow-control was based on a credit
scheme. AMVIAv2 used a specialized buffer allocation
system tailored for RDMA writes.

In both AMVIAv1 and the first Split-C/VI, the ob-
jective was to permit more small messages into the
network (approximately 64) with the belief that this
would improve small message performance. In reality,
the simple unified credit scheme with a credit alloca-
tion that balanced performance with required buffering
proved to work the best.3 It used fewer VI resources and
actually exhibited better small message performance as
evidenced by the LogP benchmark.

The second invariant was the need to use the comple-
tion mechanisms of the VI library for incoming mes-
sages. According to VI semantics, a host process is no-
tified of an incoming message only when a descriptor
is consumed. Since all AM messages and Split-Creads
and writes require target notification on delivery of a
message, we found that using the VI Architecture’s
send-receive model provided the closest fit. RDMA
writes generate notification only on the delivery of a
4-byte immediate value. In both AM and Split-C, this
immediate is too small to include the necessary meta-
data for the protocol layers (we need at least 16 bytes).
We could not append the meta-data to the end of the
message, since this might interfere with application data
structures. For bulk transfers in AMVIA, we chose to
use an RDMA write for the data, but followed it with
a short VI message to carry the meta-data. Split-C/VI
uses a copy on the receiving end of the bulk transfer.

A key implication of the completion invariant is the
requirement to use a completion queue. Any applica-
tion, especially arbitrary communication protocols that
can expect to create several VI-based connections will
necessarily use the completion queue. Attempting to
individually poll or wait on many VIs is not efficient.
This differs from simple native VI benchmarks that use
only a few VIs and thus don’t need a completion queue.

As shown, the event notification has the highest over-
head cost, principally due to the multiple programmed

3We arbitrarily chose a credit allocation of 8 for the later imple-
mentations.
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I/O operations. In our VI implementation, we chose to
make the completion queues NIC-based because of the
size of the event token (4 bytes). Our experience shows
that a null DMA transaction requires 2-3 µsec with the
LANai hardware. Thus a host-based queue requiring a
NIC-host DMA was not a better alternative.

There is also a degree of duplication in operations
when using the completion queue. The VipCQDone()
method only notifies an application that an event has
occurred on a particular VI. The application must then
invoke the appropriate follow-on mechanism to actually
pop a descriptor off the queue and service the event.

8.2 Implications for Infiniband

The points discussed above have implications for In-
finiband and future high-performance network architec-
tures. We separate these into implementation and se-
mantics.

8.2.1 Implementation

The performance breakdowns presented illustrate the
cost associated with cache misses and I/O operations in
communication overhead on present hardware architec-
tures. Programmed I/O and un-cached memory trans-
actions are expensive relative to other software mech-
anisms. The Infiniband HCA concept may alleviate
some of this expense by interfacing directly with the
memory bus and avoiding complex I/O bus interac-
tions. Still, there is an issue of cache coherency be-
tween the HCA and the processors. Previous work with
coherent network interfaces [28] that enable I/O to be
cached illustrate performance gains by allowing direct
reads and writes of network interface registers/memory
to be cached. For operations such as completion queue
checking, allowing cached reads could significantly re-
duce overhead, especially in the case that the event
queue is empty. Alternatively, if the Infiniband mech-
anism uses DMA, the hardware engines must be able
to provide comparable performance to memory opera-
tions, even for small transfers.

The flow-control mechanisms of Infiniband offer
some promise to alleviate software based end-to-end
buffer management costs. The combination of cred-

its and receiver-not-ready NAK could eliminate the re-
quirement for flow-control at the upper layers. Addi-
tionally, Infiniband-compliant hardware would have the
ability to fragment large messages, thus preventing up-
per layers from having to adapt to network transmis-
sion units. We believe our implementations could ben-
efit from both these features, provided the cost of using
them did not adversely affect latency or gap.

The effect of the virtual lanes in Infiniband is some-
what less clear. While the independent channels could
prevent head of line blocking (e.g. between short and
medium messages), a limit of 15 lanes may not be able
to fulfill the service demands of all applications.

8.2.2 Semantics

Semantically, the descriptor-based queues of Infiniband
may still impose a cost to higher-level protocols be-
cause the host must format and decode the descriptors.
One aspect where this is especially true is in small mes-
sage performance. Descriptors that are as least as large
as a small message will impose overheads both to build
and manipulate. Although using the Immediate data se-
mantics of the VI Architecture could help, it is not clear
that restricting this to a 4 byte value is adequate. We
suggest that the immediate be able to support the preci-
sion of a pointer (typically 64 bits for future systems) in
order to point to protocol-level metadata.

Another semantic issue with Infiniband regards
memory registration. In the VI Architecture, regis-
tered memory is pinned by the user application. In one
sense, this retention of physical resource by the appli-
cations results in a “not-so-virtual” interface. The In-
finiband architecture retains this same semantic of pin-
ning physical memory. As yet, the impacts of this on
the large scale are unknown. Many hosts and processes
could potentially result in several VI’s, each requir-
ing adequate buffer space for transactions. The flow-
control and datagram features of Infiniband may allevi-
ate this somewhat, but memory scalability may still be
adversely impacted.
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9 Conclusion

The emergence of the VI Architecture and Infiniband
as SAN communication standards provides an exciting
opportunity for widespread development of distributed
systems. Indeed, the network-based I/O concept in In-
finiband represents a significant architectural revolution
for today’s systems. However, their establishment as
the de facto standard requires a deep understanding of
their performance and processing cost. In this paper we
have detailed the inherent cost of mapping the descrip-
tor queue based model of these standards to two well-
known communication models – Active Messages and
the global memory model used in Split-C. Using these
models, we analyze the necessary host processor time
required to map these abstractions to the VI primitives.
The results show a 5 µsec mapping cost on current hard-
ware, regardless of the higher-level abstraction. De-
tailed analysis of this cost shows that the event notifi-
cation mechanism of the VI completion queue to have
the highest overhead at 2 µsec. In addition, we demon-
strate the sensitivity of bulk message performance to
key hardware capabilities.

While 5 µsec may seem small, as processors move to
64-bit architectures with sub-nanosecond cycle times,
these costs will become less tolerable. As well, Pro-
grammed I/O and cache misses are unlikely to signif-
icantly improve in relation to processor performance.
The implications of this for Infiniband could possibly be
severe. Our discussion of these implications highlights
the areas that Infiniband improves over its predecessors
and where it can still make progress.
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