
Spoken Language Support for Software Development

Andrew Begel
Computer Science Division, EECS
University of California, Berkeley

Berkeley, CA 94720-1776
abegel@cs.berkeley.edu

Abstract

Software development environments have changed little
since their origins as low-level text editors. Programmers
with repetitive strain injuries and other motor disabilities
can find these environments difficult or impossible to use
due to their emphasis on typing. Our research adapts voice
recognition to the software development process, both to
mitigate this difficulty and to provide insight into natural
forms of high-level interaction. Our contribution is to use
program analysis to interpret speech as code, thereby en-
abling the creation of a program editor that supports voice-
based programming. We have created Spoken Java, a vari-
ant of Java which is easier to verbalize than its traditional
typewritten form, and an associated spoken command lan-
guage to manipulate code. We are conducting user studies
to understand the cognitive effects of spoken programming,
as well as to inform the design of the language and editor.

1 Introduction

Software development environments can create frustrat-
ing barriers for the growing numbers of developers that suf-
fer from repetitive strain injuries and related disabilities that
make typing difficult or impossible. Our research helps to
lower these barriers by enabling developers to reduce their
dependence on typing using voice recognition (VR). Speech
interfaces may help to reduce the onset of RSI among com-
puter users, and at the same time increase access for those
already having motor disabilities. In addition, they may pro-
vide insight into better forms of high-level interaction.

The initial challenges to support voice-based program-
ming are two-fold – enabling input that is natural to speak,
yet understandable by the system, and making it possible for
VR tools to process it well. The main artifact of our work
will be realized as a software development system that can
understand spoken program dictation, composition, naviga-
tion and browsing, and editing.

2 Programming By Voice

Programming languages have historically been commu-
nicated in written form; verbalization of code is highly ad-
hoc and is not used in any formal way. Through experimen-
tation, we have found that for the most part, there does exist
a vernacular for speaking programs. We also found some
uses of prosody to indicate punctuation, and observed that
programmers tended to identify patterns and describe them,
rather than using only their instantiations. Other experi-
ments we have conducted regarding existing VR command
languages show that searching and navigating by voice re-
quires too much input, is too slow, and incurs more cogni-
tive load than using the keyboard or mouse [3]. This implies
that a complete solution to programming-by-voice must in-
clude efficient navigation and editing mechanisms.

Guided by our results, and by studies on the use of
speech, such as Shneiderman’s and Karats’ work [6, 10],
we have designed a first version of Spoken Java. Spoken
Java is a syntactic variant of standard Java language which
is more naturally verbalized by human developers. It is se-
mantically identical to Java; the only difference is in its ap-
pearance on the screen and its manner of entry.

The novel form of input in this project presents techni-
cal challenges for language design. Spoken input contains
many lexical ambiguities, such as homophones, misrecog-
nized, unpronounceable, and concatenated words. When
the input is natural language, it can be disambiguated by a
hidden Markov model provided by the VR vendor. How-
ever, when the input is a computer program, natural lan-
guage disambiguation rules do not apply. Not only do these
ambiguities affect the voice-based programmer’s ability to
introduce code, they also affect the ability of the program-
mer to use similar sounding words in different contexts. We
have created new technology to address these problems.

A user begins by speaking some code into the editor.
Once it has been processed by the VR, it is analyzed by
our Harmonia analysis framework [4]. Harmonia can iden-
tify ambiguous lexemes in spoken input [2], and incorpo-

Proceedings of the 2004 IEEE Symposium on Visual Languages and Human Centric Computing (VLHCC’04) 
0-7803-8696-5/04 $ 20.00 IEEE 



rate these lexical ambiguities into a set of ambiguous parse
trees which contain all structurally legal interpretations of
the input. A disambiguation phase is then used to filter out
the semantically illegal programs. When semantic disam-
biguation results in multiple legal options, our environment
defers to the user to choose the appropriate interpretation.

The speech editor is being embedded in the Eclipse IDE.
The programmer will edit fragments of Java code by first
having them translated into Spoken Java, editing them by
voice, retranslating the results back into Java, and reinsert-
ing the code into the program. In addition to composing
and editing code, the programmer may perform high-level
program manipulations. For example, he may invoke a pro-
gram refactoring or search for a particular structural or se-
mantic entity in the code base by saying “Find all references
to the MyList dot getElement method and replace them with
StandardList dot getElementAt”. To support this combina-
tion of commands and code, we developed Blender, a lexer
and parser generator that can merge descriptions of formally
specified languages into a tool that seamlessly recognizes
the combination.

We will give the user on-screen assistance to alleviate the
difficulty in knowing what speech vocabulary and grammar
are available. Since the user will be able to create and select
transformations and other higher-level mechanisms, knowl-
edge of language syntax does not suffice to know the vocab-
ulary. Our interface will make visible the spoken phrases
used to generate code as that code is reviewed, thereby re-
inforcing the available vocabulary. When the user needs to
specify a location on the screen, we will use a novel context-
sensitive mouse grid to numerically identify locations in the
program where a particular action or statement is valid.

Evaluation will take the form of user studies of program-
mers composing and editing code. We will iterate the design
of the interface, command language, Spoken Java, and the
development environment’s capabilities in response to these
studies. We consider our work to be beneficial if our met-
rics show that users can perform better on our system than
the current state-of-the-art.

3 Related Work

Efforts to apply speech-to-text conversion for program-
ming tasks such as authoring, navigation, and modifica-
tion using conventional natural language processing tools
have had limited success. The tools provided by two
commercial products, IBM’s ViaVoice and Scansoft’s Nat-
urally Speaking, are only designed to work for natural
languages. Merely speech-enabling text editors, as has
been done by IBM, Scansoft, Jeff Gray at U. of Alabama
(SpeechClipse) [9], and by contributors to public domain
software [8], is not enough to support software develop-
ment tasks. Some researchers have attempted to adapt

VR for programming [5], but their work suffers from awk-
ward, over-stylized code entry, and the inability to exploit
the structure and semantics of the program. A few re-
searchers [1, 7] have applied programming language anal-
ysis technology to understand the program code being spo-
ken, but all have their limitations. More recent work [11]
has shown that keyword-triggered code template expansion
can ease some of this awkwardness. We are using this tech-
nique in our work.

4 Conclusion

Software developers with motor impairments will always
have a difficult time adapting to software tools that empha-
size the keyboard. Our work helps mitigate this problem
by enabling programmers to utilize VR in the development
process. Our user studies will help inform the design of
Spoken Java and its associated spoken command language.
Applying traditional compiler program analyses to spoken
input enables us to create a program editor that is better
suited than the state of the art to enable motor-impaired soft-
ware engineers to compete effectively in the workforce.

References

[1] S. C. Arnold, L. Mark, and J. Goldthwaite. Programming
by Voice, VocalProgramming. In ASSETS, pages 149–155.
ACM, 2000.

[2] A. Begel and S. L. Graham. Language analysis and tools for
ambiguous input streams. In LDTA, 2004.

[3] A. Begel and Z. Kariv. SpeedNav: Document Navigation by
Voice. http://www.cs.berkeley.edu/ abegel/speednav9.pdf.

[4] M. Boshernitsan. Harmonia: A flexible framework for
constructing interactive language-based programming tools.
Technical Report UCB/CSD-01-1149, EECS – U. of Cali-
fornia, Berkeley, 2001.

[5] A. Desilets. VoiceGrip 3.
http://ai.iit.nrc.ca/il public/VoiceCode.

[6] C. A. Halverson et al. The beauty of errors: Patterns of
error correction in desktop speech systems. In Proceedings
of INTERACT’99, Speech, pages 133–140, 1999.

[7] D. Price et al. NaturalJava: A natural language interface
for programming in Java. In Proceedings of IUI, Short Pa-
per/Poster/Demonstration, pages 207–211, 2000.

[8] T. V. Raman. Emacspeak – direct speech access. In ASSETS,
pages 32–36, 1996.

[9] S. Shaik et al. SpeechClipse: an Eclipse speech plug-in.
In Proceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, pages 84–88. ACM Press, 2003.

[10] B. Shneiderman. The limits of speech recognition. Commu-
nications of the ACM, 43(9):63–65, Sept. 2000.

[11] L. Snell. An investigation into programming by voice and
development of a toolkit for writing voice-controlled appli-
cations. M.eng. report, Imperial College of Science, Tech-
nology and Medicine, London, June 2000.

Proceedings of the 2004 IEEE Symposium on Visual Languages and Human Centric Computing (VLHCC’04) 
0-7803-8696-5/04 $ 20.00 IEEE 


