
An Assessment of a Speech-Based Programming Environment

Andrew Begel∗

Microsoft Research
One Microsoft Way

Redmond, WA 98052
andrew.begel@microsoft.com

Susan L. Graham
University of California, Berkeley

776 Soda Hall #1776
Berkeley, CA 94720-1776
graham@cs.berkeley.edu

Abstract

Programmers who suffer from repetitive stress injuries
find it difficult to program by typing. Speech interfaces can
reduce the amount of typing, but existing programming-by-
voice tools make it awkward for programmers to enter and
edit program text. We used a human-centric approach to
address these problems. We first studied how programmers
verbalize code, and found that spoken programs contain
lexical, syntactic and semantic ambiguities that do not ap-
pear in written programs. Using the results from this study,
we designed Spoken Java, a syntactically similar, yet se-
mantically identical variant of Java that is easier to speak.
We built an Eclipse IDE plugin called SPEED (for SPEech
EDitor) to support the combination of Spoken Java and an
associated command language. In this paper, we report the
results of the first study ever of any working programming-
by-voice system. Our evaluation with expert Java develop-
ers showed that most developers had little trouble learning
to use the system via spoken commands, but were reluctant
to speak literal code out loud. As expected, programmers
found programming by voice to be slower than typing.

1. Introduction

Interaction with software development environments can
be frustrating for the growing numbers of developers who
suffer from repetitive strain injuries (RSI) and other disabil-
ities that make typing difficult or impossible. Speech in-
terfaces can be used to help developers reduce their depen-
dence on typing, reducing the onset of RSI among computer
users, and increasing access for those who already have mo-
tor disabilities. Speech-based programming also may pro-
vide insight into better forms of high-level interaction.

Our early work in this area studied programmers to find

∗This work was done while the first author was at the University of
California, Berkeley.

Figure 1. A screenshot of SPEED. The user has just
spoken a constructor declaration for the LinkedList class.
SPEED presents a pull-down menu for the user to choose
the correct interpretation.

out how they might speak Java code in a programming situ-
ation [3]. We found significant differences between written
and spoken code mainly in areas of lexical, syntactic, se-
mantic, and prosodic ambiguities that appeared in speech.
We used these results to design Spoken Java, a new input
form that balances the programmer’s desire to speak Java
naturally with the ability of our system to understand it.
Spoken Java looks very much like Java, but consists only of
the natural language words in the Java language, making all
punctuation optional. Due to its human-centric design, Spo-
ken Java can appear quite ambiguous from the computer’s
point of view. We have addressed that problem by apply-
ing program analysis to both the code already written and
the code being spoken [1, 2]. We use the additional contex-
tual information provided by the code to filter out incorrect
and inappropriate interpretations, leaving the human pro-
grammer to intervene only when the computer cannot fully
disambiguate a particular utterance.



In this paper, we report on a study to understand the cog-
nitive effects of spoken programming in an editor we de-
signed, called SPEED, or SPEech Editor [1]. SPEED is
our speech-enabled Java program editor embedded in the
Eclipse IDE [6] (see Figure 1). We asked several experi-
enced professional Java programmers to use SPEED to cre-
ate and edit a small Java program. We ran two versions
of the same study, one with a commercial machine-based
speech recognizer, and one with a human simulating the
machine-based speech recognizer. We found that the pro-
grammers were able to learn very quickly to write and edit
code using SPEED. We anticipated that programmers would
often dictate literal code, but found that they preferred de-
scribing the code using code templates. The programmers
were reluctant to speak code out loud. We expected that pro-
grammers would find speaking code to be slower than typ-
ing; this hypothesis was confirmed. Finally, programmers
all felt they could use SPEED to program in their daily work
if circumstances prevented them from using their hands.

The rest of the paper goes into more detail. In section 2,
we present our usability study, its results, and implications
for further design of programming-by-voice environments.
We then survey the related work in this field and conclude.

2. Usability Study

We conducted a study to learn how expert Java program-
mers write and edit code using SPEED. The purpose of the
study was to help us to understand how developers mix Spo-
ken Java with commands, as well as to show us the kinds of
commands the programmers use. In addition, we wanted
to classify the mistakes that programmers and our system
made that affect non-contiguous code entry and edits.

The study was conducted in two distinct sessions. The
sessions were the same except for voice recognition tech-
nology. In the first, we used Dragon NaturallySpeaking.
In the second, we used a non-programmer human to type
in what the programmer said. The first session represents
what can be done with state-of-the-art voice recognition
tools with minimal training. The second session illustrates
how SPEED could be used when the voice recognition ac-
curacy is as close to perfect as it can get.

2.1. Participants and Task

The participants in the study were expert Java program-
mers familiar with Eclipse, with an average of twelve years
of experience, drawn from the software development indus-
try. Most of them had never used speech recognition soft-
ware before; those who had used it abandoned it quickly
because of poor accuracy. None of the participants had mo-
tor disabilities which would make typing difficult. The first
session had three people; the second session had two.

We gave programmers 20 minutes to create a linked list
class with an append method that takes two linked lists and
merges them. Linked lists usually contain two fields, one
pointing at the element, and another pointing at the rest of
the list. The constructor builds a linked list node. In cod-
ing this simple data structure, any observed difficulties were
likely to reflect the programmers’ efforts to learn and use
SPEED rather than their efforts to create the program itself.

2.2. Experimental Setup

SPEED was deployed on a Pentium 4 3.2 GHz computer
with 2 GB of RAM. Programmers used a Plantronics DSP-
300 microphone. Screen captures of the sessions were taken
with Camtasia Studio 3, while the developers’ voices were
captured on a second computer.

The first session’s software developers had a 15-minute
Dragon NaturallySpeaking 8 voice training process and a
15-minute SPEED training session before they began their
tasks. Developers were given a paper crib sheet with com-
monly used commands printed in a big font. The second
session skipped the voice recognizer training process.

During the second session, a human volunteer was re-
cruited to be a voice recognizer. He was set up behind the
study participant, facing the opposite direction. His display
was connected to the study computer by VNC [9], allowing
both him and the study participant to see what was happen-
ing on the screen at the same time.

The human voice recognizer was trained for 45 minutes
in order to practice interpreting Spoken Java commands,
and to learn when to just type in what the user spoke.
To assist in translation, the human was also given a crib
sheet indicating the mapping between command phrases
and keystrokes used to activate those commands. Punctu-
ation and other non-words were entered in an arbitrary way
by the human as he saw fit. Depending on the brand of
voice recognizer, a software client may receive a punctua-
tion mark or the spelled out punctuation. So, this setup is
similar to the kind of text that the voice recognizers return.

2.3. Evaluation Metrics

The users’ programming sessions were analyzed on a
number of metrics shown in Table 1 and Figure 2. Met-
rics were coded by one viewer watching the screen cap-
ture while listening to the audio recording of participants
performing the tasks. Each participant’s record was played
back three times to confirm the measurements.

2.4. Hypotheses

We hypothesized that SPEED users would follow a typ-
ical programming pattern: they would navigate through the

2



U1 U2 U3 U4 U5
Machine VR Human VR

All Utterances 131 125 275 102 105
Commands 73 105 206 68 70
Dictated Phrases 58 20 69 34 35
Correctly Recognized 66 97 164 81 92
Recognition Error Rate 50% 22% 40% 21% 12%
VR Extra Words 6 0 3 0 0
Mistakes Wrong Words 8 3 34 1 3

Did Not Hear 13 15 42 1 0
SPEED Bug 5 0 2 2 4
Mistakes Design Flaw 1 2 0 2 0

Crash 4 6 5 2 4
User Did Not Know 2 0 2 5 2
Mistakes Wrong 2 2 3 0 3

Ungrammatical 2 2 11 1 0

Table 1. Data recorded from SPEED User Study from all
participants. The first section displays aggregate statistics,
while the second classifies errors as they were made during
the session.

document to a desired insertion point, activate Spoken Java,
and add new code or edit existing code. A few of the editing
commands would be used in the majority of situations, so
we anticipated that learning the commands would take only
a few repetitions. Based on our earlier user studies, we an-
ticipated that speaking the Spoken Java language would be
intuitive and natural for programmers without any training.
Our GOMS analysis predicts that programmers should work
more slowly when programming by voice than by keyboard
due to the slow speed of speech recognition compared to
typing. Finally, based on the results of Christian et. al. [4],
we thought that programmers would sometimes forget what
they were doing because of anticipated cognitive interfer-
ence between speaking and thinking about code.

2.5. Results and Discussion

Speed and Accuracy: The programmers in the first ses-
sion had a decidedly different experience than those in the
second session. Stymied by the slow speed and poor accu-
racy of the voice recognition software, they were able to ac-
complish only a portion of the code creation task in the time
allotted. They created a class, some fields and a construc-
tor, but were not able to fill in the code for the constructor or
create any methods. Using the human voice recognizer, the
second group were able to complete far more of the task.
They were able to complete two classes (a list node and a
list class), each with several fields, a constructor to initialize
the fields and the beginnings of an append method.

The accuracy of the machine voice recognizer after lim-
ited training was abysmal. At times, the recognizer would
just not hear anything the programmers said. Other times, it
would recognize a series of commands perfectly. Dictation
was mostly unusable. Breathing was often interpreted as
a single syllable word, so programmers learned to prevent

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

User 1 User 2 User 3 User 4 User 5

Users

P
e
rc

e
n

ta
g

e
 o

f 
T
o

ta
l

Editing Navigation
Inserting Code Templates Starting Dictation
Fix Errors Other

Figure 2. Distribution of Spoken Java commands spoken
for various purposes.

that by muting the microphone. Often, words were recog-
nized poorly, coming close to what the user wanted, but not
close enough. For example, “linked” came out as “links.”
Most programmers said Scratch That to undo the utter-
ance and tried again. The second group experienced almost
error-free recognition, contributing significantly to a reduc-
tion in the number of commands uttered to fix mistakes.

Recognition delay was about the same for both groups,
between 0.5 and 0.75 seconds. We imagine that while faster
computers will reduce recognition processing time further,
the human reaction time will remain the same. A major
component of the software speed problem was Camtasia
Studio. When it was recording, the software slowed down
by at least three times. One participant who got to use
SPEED for a short time without screen capture reported that
the speed was perfectly fine.

Due to the speed and accuracy problems, participants in
the first session adopted a stop-and-go pattern of speaking
and waiting for the results. Their mistrust of the voice rec-
ognizer caused them to program very slowly and increased
their frustration with SPEED. The second group were able
to speak at a normal pace, and often paused in the middle
of commands as they were uttered, something a machine
speech recognizer would have never recognized correctly.

Spoken Java Commands: All users learned the SPEED
commands fairly quickly, requiring only one or two repe-
titions of each command to use it without looking at their
crib sheet. Command error rates caused by user error were
fairly low for all participants. Users made an average of 6
mistakes where they did not know what to say or how to say
it. The first group had recognition error rates between 22%
and 50%, which made the system unusable. The second
group enjoyed 12% to 21% errors. Since the errors made
by these users were often their own, rather than caused by
misrecognition, they were more acceptable to the users.

3



In the first session, programmers tended to speak in short
bursts due to recognizer malfunction. When the wrong
word appeared in dictation, programmers had to spend time
to correct it. This effect was not seen in our spoken pro-
grams study [3] because participants were talking into a tape
recorder, and could not see the results of the transcription.

Figure 2 gives a breakdown of the distribution of Spoken
Java commands used for different purposes. The majority
of commands spoken were for editing and code template
insertion. Editing commands were mainly used in place of
string editing facilities that are usually performed by repet-
itive single keypresses, such as deleting a character from a
word, inserting spaces between words, or changing the cap-
italization of a word. As predicted by a GOMS analysis [1],
spoken commands that cause only a few letters to change on
the screen cannot compete with typing for efficiency. Code
template insertion was thus seen as providing a lot of text
for very few words. The small percentage of code tem-
plate commands that were seen achieved the largest payoff
for the programmer, and are almost directly correlated with
the number of program structures created by the study par-
ticipants. Code dictation was almost always used to edit
the name of a field, method or type name. Filling in code
templates was a simple process that involved navigating to
the next slot, saying Edit This, dictating the new name,
and then saying Done. Since most new names were sin-
gle words, SPEED was able to automatically translate what
users said from Spoken Java to Java without any need for
interaction. Multi-word identifiers were concatenated auto-
matically, using our speech-aware programming language
analyses, enabling developers to skip tedious editing com-
mands for spacing and capitalization. Our system does not
perform capitalization of the first letter of a word automati-
cally (encoding a style convention in Java that class names
start with a capital letter), requiring users to speak Cap
That on many identifiers.

Participants had suggestions for better commands. A
Jump To command could let the user speak code from the
screen and have the SPEED cursor jump there. This is very
similar to Select and Say from Dragon NaturallySpeaking.
Several wished that the code templates could take a param-
eter with the name of the item being created, for example,
insert field element instead of insert field.
Our code templates only worked on blank lines. One user
wanted the commands to insert templates in a stylistically
appropriate location (for example, putting fields at the top
of a class) even if spoken in the wrong context.

A few asked to customize the command names used to
insert code templates. However, one participant explicitly
said there should be no customization in order to make it
easier for all users of a speech programming tool to learn
the same language, as well as to make it easy to move from
one speech-based programming environment to the next.

Speaking Code: Participants were apprehensive about
speaking the natural language words in the program when
dictating code, but not when saying identifier names. In
fact, most dictation utterances were for identifiers. One
called the idea of dictating code “strange.” Four preferred to
describe the code instead of dictating it. This is unexpected,
but fascinating. One felt that describing the code was a
higher level form of programming, apparently concluding
that if higher-level programming was a good idea, then de-
scribing code must be as well. This result concurs with our
own GOMS analysis [1], as well as with Snell’s findings
that code template insertion is a useful feature for program-
mers to most easily enter large amounts of code [11].

Two participants felt that tandem use of keyboard and
voice would potentially be more efficient than either alone.
Without specialized navigation commands, voice is ineffi-
cient at moving the cursor to a particular location on screen,
especially inside pure text regions, but a keyboard and
mouse make this simple. For code entry, voice could be
more economical through code templates. Code templates
are available by keyboard in Eclipse, but participants had
trouble remembering the proper keywords to activate them.
They thought the voice commands were easier to remember.

One user wanted integration of voice with Eclipse’s code
completion feature. When the user enters a method param-
eter’s type, a list of all types could be shown in a popup
menu. As the user speaks the words composing the type
name, the menu would be filtered to show only matches.
Once only one remained, the user could select it.

Subjective Evaluation: When asked whether they
would consider using voice recognition for programming,
most were apprehensive, pointing out problems with noise
pollution, cognitive interference (speaking interferes with
thinking), and wasting the use of their hands while speak-
ing. One would only use voice recognition if everyone else
were to do so. Another might use it at home if he worked
alone, where he would not bother anyone else.

The participants concluded that none of them would use
this programming environment for daily coding, especially
with the poor accuracy provided by the machine voice rec-
ognizer. However, they all would consider using the soft-
ware if they got RSI, worked from home, or were in a hands-
free environment, such as while pacing around the room, or
sitting with the keyboard unavailable. In spite of their reluc-
tance to use this software, all programmers noted that since
coding was not the primary part of their daily work, using
a voice-based programming environment would not have a
significant effect on their efficiency as a programmer.

3. Future Work

The user study showed that machine-based voice recog-
nition performance after 15 minutes of training is inade-

4



quate. Programmers would have to train for many hours
before recognition accuracy would improve enough to be
usable. Obviously, continuing to use a human voice recog-
nizer is not a viable solution. In an attempt to improve the
accuracy, we retrained the recognizer on a Spoken Java cor-
pus. Unfortunately, this introduced spelling errors in recog-
nized words and did not improve recognition of commands.

Our study looked primarily at writing new code. Editing
commands were used only to fix mistakes and edit identifier
names. Large-scale code maintenance, and even small code
motion operations, need to be speech-enabled and evalu-
ated as well. Operations that invoke IDE commands are of-
ten speech-enabled (all voice recognizers can speech-enable
menu items and GUI buttons), but the more common oper-
ations should be evaluated through a user study.

Participants’ reluctance to use code dictation services
needs further exploration. They claimed that they preferred
higher-level coding actions such as template instantiation.
Our spoken programs study [3] also showed this preference.
Programmers tended to abstract the code on the paper, es-
pecially when there were obvious patterns. There were no
obvious patterns to speak in the SPEED study, but program-
mers still wanted to use abstractions. However, code dicta-
tion would still seem necessary for code constructs that do
not have programmer-understood names and for complex
program constructs that programmers will only use once.

4. Related Work

Efforts to apply automatic speech recognition for pro-
gramming tasks using conventional natural language pro-
cessing tools have had limited success. Inside a text ed-
itor, vendor-supplied editing commands are oriented to-
wards word processing, supporting style changes and clip-
board access. Jeff Gray speech-enabled the Eclipse pro-
gramming environment [10], but not the editor. T.V. Raman
speech-enabled Emacs, making accessible all of the Meta-
X commands and E-Lisp functions [8]. Raman also enabled
Emacs to render its text and commands in spoken form.

Speech-enabling IDEs is only one step to making a us-
able programming environment. To author, edit and navi-
gate through code by voice, developers need to speak frag-
ments of program text mixed with navigation, editing, and
transformation commands. VoiceCode is a notable suc-
cess [5], using finite-state command grammars to provide
support for Python and C++. VoiceCode has not yet been
formally evaluated. NaturalJava [7] accepts natural lan-
guage descriptions of programs, where programmers de-
scribe the Java constructs they wish to create instead of
saying the code directly. NaturalJava only supports code
authoring, not editing or navigation. NaturalJava’s design
was evaluated through a Wizard of Oz study. Our study of
SPEED is the first and only study of voice-based program-

ming in a working programming-by-voice environment.

5. Conclusion

We created a program editor called SPEED that supports
programming by voice for code authoring, editing and nav-
igation, and evaluated it through a user study. We found
that programmers are able to learn to program verbally with
little practice, but have significant trouble when the speech
recognizer misinterprets what they say. Programmers pre-
fer high-level abstraction to code dictation, and perceive
speech-based programming to be less efficient than typing,
but efficient enough to perform their daily work.

Programming-by-voice can enable motor-impaired soft-
ware engineers to program, albeit at reduced efficiency
compared to an unimpaired programmer. With more study,
different user interface designs, and better analysis, soft-
ware developers will one day be able to use speech-based
programming to compete effectively in the workforce.

References

[1] A. Begel. Spoken Language Support for Software Develop-
ment. Ph.D. Dissertation, University of California, Berkeley,
2005. Report UCB-EECS-2006-8.

[2] A. Begel and S. L. Graham. Language analysis and tools for
ambiguous input streams. In LDTA, 2004.

[3] A. Begel and S. L. Graham. Spoken programs. In VL/HCC,
September 2005.

[4] K. Christian, B. Kules, B. Shneiderman, and A. M. Youssef.
A comparison of voice controlled and mouse controlled web
browsing. In ASSETS, pages 72–79, 2000.

[5] A. Desilets, D. C. Fox, and S. Norton. Voicecode: An inno-
vative speech interface for programming-by-voice. In Pro-
ceedings of ACM CHI 06 Conference on Human Factors in
Computing Systems, April 2006.

[6] Eclipse. http://www.eclipse.org.
[7] D. Price, E. Rillof, J. Zachary, and B. Harvey. Natural-

Java: A natural language interface for programming in Java.
In IUI, Short Paper/Poster/Demonstration, pages 207–211,
2000.

[8] T. V. Raman. Emacspeak – direct speech access. In ASSETS,
pages 32–36, 1996.

[9] RealVNC. VNC: Virtual Network Computing.
http://www.realvnc.com/.

[10] S. Shaik, R. Corvin, R. Sudarsan, F. Javed, Q. Ijaz, S. Roy-
choudhury, J. Gray, and B. R. Bryant. SpeechClipse: an
Eclipse speech plug-in. In Eclipse Technology eXchange
Workshop, pages 84–88. ACM Press, 2003.

[11] L. Snell. An investigation into programming by voice and
development of a toolkit for writing voice-controlled appli-
cations. M.Eng. Report, Imperial College of Science, Tech-
nology and Medicine, London, June 2000.

5


