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Abstract. Programming a computer is a complex, cognitively rich process. This
paper examines ways in which human cognition is reflected in the text of com-
puter programs. We concentrate on naming: the assignment of identifying labels
to programmatic constructs. Naming is arbitrary, yet programmers do not select
names arbitrarily. Rather, programmers choose and use names in regular, system-
atic ways that reflect deep cognitive and linguistic influences. This, in turn, allows
names to carry semantic cues that aid in program understanding and support the
larger software development process.

1 Introduction

Programming languages are designed to be precise, mathematical, unambiguous, and
interpretable by machines. Natural languages, on the other hand, evolved over long pe-
riods of time to be interpreted by humans using a rich suite of cognitive processes. It
would be wrong, however, to dismiss programming languages as wholly unnatural. Pro-
grams are written by humans and do not proceed directly from keyboard to compiler;
throughout development, humans read and modify the code that they and others have
produced. Code that cannot be understood by a human is of little value, and human pro-
grammers are well aware that the code artifacts they produce must be readable as well
as runnable. Thus, human cognition is reflected in the text of computer programs. To
the extent that source code is expressed textually, code reflects linguistic cognition espe-
cially strongly. The purpose of this paper is to examine the impact of human cognition,
and especially human language, on the text that forms computer software.

Among the many facets of software construction, this paper closely examines nam-
ing: the act of assigning identifying labels to programmatic constructs. This intensive
use of invented words is a major deviation from natural language dialog, in which par-
ticipants share a large, mutually understood, but relatively fixed lexicon. To a compiler,
the choice of names is devoid of semantic meaning. Compilers have no understanding of
natural language, so “blue” and “Sgu9Asd1M” are equally opaque, arbitrary sequences
of letters. Provided that the programmer uses consistent spelling and capitalization, any
name is as good as any other. Yet precisely because names are arbitrary, programmers
have great freedom to select names that promote code understanding. We will examine
several ways in which this is done, relating standard programming practice to modern
theories of human language and cognition.4

4 For a much more in-depth treatise on identifiers, see “The New C Standard” [14].



Our scope is narrow. We focus primarily on just four languages: C, C++, C# and
Java, justified by the fact that these four languages are currently the dominant tools
for large-scale industrial software development; any insight we gain, then, will have
broad potential applicability. We use a variety of methodologies, such as morphological
analysis, discourse analysis, grammar-based deconstruction of names, and metaphor-
based deconstruction of names to discover the rationale behind programmers’ choices
for identifiers.

The remainder of this paper is organized as follows. Section 2 describes factors
influencing the selection of individual names, and the way in which each name encodes
useful information about its programmatic role. In Section 3 we show that names exhibit
regularities derived from the grammars of natural languages, allowing them to combine
together to form larger pseudo-grammatical phrases that convey additional meaning
about the code. Section 4 explores two fundamental programming metaphors that aid
understanding of code without direct linguistic interpretation. In Section 5 we review
the phenomenon of overloading, a somewhat controversial programming feature that
relates to polysemy and metaphorical extension of word meaning. Lastly, Section 6
reviews our findings and suggests directions for future study.

2 “Meaningful” Names

One of the most basic guidelines for writing good code is to use “meaningful” names.
Humans create code and humans read code, and the names that programmers select re-
flect human cognitive structure. Naming engenders a strong reaction in software prac-
titioners who advocate a particular naming scheme to ensure programs are understand-
able both with and without documentation [1, 4, 6, 22]. Jones asserts that memorability,
confusability, and usability are three cognitively-based metrics by which to judge choice
of names in a program [14].

In this section, we examine ways in which programmers select names that embed
cognitively salient information. This practice provides other human beings with a rich
source of hints about the behavior and intent of code.

2.1 Morphological and Metaphorical Regularities

Programmatic representation and manipulation of information is rather abstract. One
routinely speaks of the “virtual world” that exists “inside” a computer as distinguished
form the “real” world. We know that humans make pervasive use of metaphor to struc-
ture their understanding of the world, especially (though not exclusively) those facets
of the world that are removed from immediate, bodily experience [18]. Metaphors can
be useful for presenting domain tasks and for reifying abstractions into concrete terms,
making them more accessible to people trying to comprehend programs [3]. They are
central to naming program entities in a piece of software [8] as many studies on pro-
gram comprehension have verified [2,25,28]. Names can also be classified into groups,
called concept keywords, and associated with programming metaphors used during the
design of data abstractions [24].



As an illustrative example, consider the collection of functions listed in Figure 1.
These functions are part of the GNOME project, a collection of software tools for build-
ing desktop applications in the UNIX environment [9]. These functions are all written
in C. For brevity, we show only the names of the functions, and elide their parame-
ters, result types, and implementations. This short list of function names reveals certain
regularities in their morphological structure and their use of metaphors.

gnome_druid_get_type gnome_druid_set_buttons_sensitive

gnome_druid_new gnome_druid_set_show_finish

gnome_druid_append_page gnome_druid_set_page

gnome_druid_prepend_page gnome_druid_set_show_help

gnome_druid_insert_page

Fig. 1. GNOME Druid Functions

The most obvious patterns are morphological. Each name contains several words
(morphemes) separated by underscores. Although programmers have great freedom to
choose names, technical considerations make it useful to disallow spaces and most
punctuation marks. Underscores are allowed, however, and are often used by C pro-
grammers to delimit multiple morphemes in a single name. A second lexical conven-
tion, also popular in C, is to name functions, fields, and variables using only lower case
letters. Distinct lexical conventions govern other kinds of names. Morphemes concate-
nated together (with no delimiting underscores) are commonly used for C#, C++ and
Java names. Capitalizing each morpheme in the name (called Camel Case) is used for
C++, C# and Java type names (e.g. GnomeDruidPage, GtkContainerClass5), and
additionally for C++ and C# method names. Concatenating the morphemes together
with underscores and fully capitalizing each word is commonly found in C and C++
macro names (GNOME_DRUID_CLASS, GNOME_IS_DRUID). It is also useful to be aware
that Java lexical conventions differ slightly from C: Java uses embedded capital letters
in field and method names (indexOf) instead of the underscores one would expect in
C (index_of). Type names remain distinctive by their use of an initial capital letter
(Vector). C++ is lexically transitional: some programmers prefer underscores while
others favor embedded capitals.

Leading or trailing underscores mark internal names not intended for general use,
and can be combined with other lexical conventions: _GnomeDruid is an internal type
name; __GNOME_DRUID_H__ is an internal macro. The distinctions drawn by these con-
ventions coincide with profound differences in how these names are used in code.

Observe that all nine names above begin with gnome_druid. This lexical conven-
tion has a deeper metaphorical basis. When distinct pieces of code are combined, prob-
lems can arise if different programmers used the same names for unrelated things. Mod-
ern language facilities such as packages, modules, or namespaces help to encapsulate
code and avoid these problematic “name collisions.” The C language has no such facili-

5 “GTK+” is the name of another software system upon which GNOME is layered. Thus, Gtk
acts here as a single word.



ties, so instead we see programmers creating encapsulated namespaces through naming
conventions. The preponderance of names defined by the GNOME software begin with
gnome (or Gnome for types, or GNOME for macros), in effect creating a metaphorical
container. The functions in Figure 1 all apply to a specific GNOME facility: druids.
Thus, their names begin with gnome_druid or GnomeDruid or GNOME_DRUID, creat-
ing a namespace within a namespace; a box within a box.

Nested containers are a pervasive programming metaphor, which we revisit in Sec-
tion 4. A second metaphor is expressed by the four function names that end with “page.”
A GNOME druid is a set of dialog boxes that guide the user through a linear sequence
of steps. (The name “druid” is a humorous play on “wizard,” Microsoft’s name for
a similar sequence-of-steps interaction popularized by Microsoft Windows.) A page,
here, corresponds to a single step in the sequence. A druid contains an ordered, linear
collection of pages. We have provisions for adding a page at the start of the sequence
(prepend), the end (append), somewhere in the middle (insert), and for selecting
which page is currently visible (set). The a metaphorical model, then, is a sheaf of
paper folded open to reveal one page. The programmer adds and removes druid pages
in the target domain just as one would add or remove real pages in the source domain.
It is instructive that the programmer chose to call these “pages” and not “steps.” The
druid does not encapsulate a sequence of steps; it encapsulates the presentation of a
sequence of steps to the user. Visual display is critical, and a page metaphor captures
that more acutely; the fact that druid pages are rectangular, often with black text on a
white background, only further enforces the mapping.

The GNOME druid is one small example of a programmatic abstraction with meta-
phorical correspondences, but it is by no means unique. Douce presents a long list of
other metaphors found in computer programs [8].

2.2 Conflicting Pressures Impacting Name Length

If names are informative, then longer names, with more embedded subwords, should
be more informative. Yet there are practical limits to the lengths of names, just as there
are practical limits to the lengths of words in natural languages. Compilers for early
programming languages such as FORTRAN limited names to six to eight characters,
starting a long tradition of abbreviation in naming. Longer names may be more in-
formative, but they are also more cumbersome to type and to read. Furthermore, long
names quickly run up against finite display width:

distance_between_abscissae = first_abscissa - second_abscissa;

distance_between_ordinates = first_ordinate - second_ordinate;

cartesian_distance = square_root(

distance_between_abscissae * distance_between_abscissae

+ distance_between_ordinates * distance_between_ordinates

);

Terse and abbreviated names, not even containing complete words, can enhance
readability at the expense of role expressiveness [12] and require domain knowledge to
decipher:



dx = x1 - x2;

dy = y1 - y2;

dist = sqrt(dx * dx + dy * dy);

Linguists have long observed that the character length of English words varies in
inverse proportion to their frequency in written text [23, 34]. There are good reasons to
believe that this tendency may be magnified in source code. First, names are concatena-
tions of words, and therefore grow longer more rapidly than isolated words. Second, as
seen above, typographic limitations make long names unwieldy in larger expressions.
Third, programmers can sometimes leverage existing mathematical conventions that at-
tach significant meaning to small names: consider x, y, z as spatial coordinates, or i, j, k
as indices, or n as a counted number of items. Fourth, overuse of abbreviations can lead
to a preponderance of unique symbols programmers must decipher [17], which may or
may not lead to inhibited understanding [26, 27, 31]. Lastly, programmatic names vary
in their semantic roles and visibility to other code; the need to be informative may be
lessened for names that have narrow scope, or that are used in restricted ways.

How, then, do identifier names appear in the wild? We have collected statistical data
concerning the lengths of names in a large body of Java, C, and C++ code. Our Java code
represents the complete source to the standard Java v1.3 class libraries: 572,842 lines
of Java code containing 83,750 defined names [30]. More than half of these (48,332)
declare local variables or formal parameters. Local names have the narrowest scope, as
each name exists only within the body of a single method. These names average only
4.7 characters with 1.3 embedded subwords (measured by the number of capitalized
subwords), suggesting that the combination of heavy use and narrow scope incline pro-
grammers to be terse. The second largest semantic category consists of 17,575 public
methods. These names average 12.1 characters with 2.4 embedded subwords. Public
methods are fewer in number and sparser in use, but are visible throughout the entire
program; this may justify their being given longer, more informative names.

Similar trends appear in C code. We have measured name lengths in the source code
for Gnumeric, an open source spreadsheet application [10]. This corpus is 116,820 lines
long with 22,740 declared names. As before, the most common names are local vari-
ables (9,872) and formal parameters (8,352), each with an average length of 4.7 charac-
ters and 1.2 embedded subwords (measured by the number of underscore delimiters in
each identifier). We find it noteworthy that these metrics so closely match those for the
Java corpus, since these two bodies of code have different authors, different purposes,
and are written in different languages. Names with broader scope are both longer and
less common: the 2,283 functions with file scope average 18.9 characters and 3.3 words,
and the 1,358 functions with global scope average 20.5 characters and 3.6 words. Earlier
we observed that C programmers use common prefixes to create artificial namespaces;
manual inspection of Gnumeric’s longest function names suggests that this practice may
account for the greater average length of C function names compared to Java methods.

Lastly, analyzed the source code of Windows 2003 Server, which is written in C
and C++. This corpus is around 45 million lines of code and contains 7,137,095 names.
The names are almost evenly divided between global (3,690,597) and local (3,446,498).
Local names average 7.6 characters and 1.8 embedded subwords (measured by the num-
ber of underscores or inter-capitalized subwords). Global names average 17.2 charac-



ters and 4.9 subwords, a significant increase. Public functions (as opposed to types) are
slightly smaller, at 15.8 characters and 3.8 subwords on average, but there are many
fewer of these than type symbols (858,421). This shows that on average, most types in
Windows 2003 Server have one more subword than functions.

While these statistics are interesting, we must not read too much into them. Stan-
dard deviations are quite high; accordingly, we refrain from reporting on the remaining
semantic categories or drawing detailed conclusions pending a more nuanced statistical
analysis. A thorough treatment correlating name lengths, frequencies, visibilities, and
semantic roles is beyond the scope of our present study. However, our crude preliminary
analysis does suggest that there may be strong underlying principles that warrant closer
examination.

3 Grammatical Sensibility in Name Use

Programmer-defined names do not exist in isolation. They interact with language spe-
cific punctuation and keywords to build expressions, statements, and other composite
constructs. However, as we examine larger code fragments, we find evidence of natural
language grammar throughout program text. Caprile and Tonella were able to analyze
function identifiers by breaking them into individually meaningful words, classifying
them into seven lexical categories, and further describing them by a sixteen-production
grammar [5].

In this section, we consider ways in which names can create larger pseudo-gramma-
tical utterances that further leverage natural language understanding to aid in code com-
prehension.

3.1 Names as Phrase Fragments

For purposes of this paper, we accept as given a metaphorical assumption that DATA
ARE THINGS.6 This mapping is reflected in Figure 2, which lists the constituent fields
that make up a GNOME dock. Of nine fields, eight are nouns or noun phrases. The
programmer has even made appropriate use of English plurals for precisely those fields
whose data are lists rather than single items. The one unusual field is floating_-
items_allowed, an indicative phrase with an omitted “are” verb. This field holds a
single true/false value. A human reading this code can immediately conclude that the
field’s value is true when “floating items are allowed” is a truthful statement about
the dock. Thus, we have a specialized TRUE/FALSE DATA ARE FACTUAL ASSERTIONS
mapping, which can override the more generic DATA ARE THINGS. As a practical mat-
ter, one is usually interested in the present state of an object, so these phrases are usually
in the present tense. One does occasionally encounter past or future tense, though, when
there is reason to inquire about past or future states.

We now turn our attention to a Java class, java.util.Vector. This class has three
fields (capacityIncrement, elementCount and elementData), none of which are
true/false. DATA ARE THINGS correctly predicts that all should be given noun phrase

6 Text in SMALL CAPS should be read as metaphors.



container bottom_bands floating_children

client_area right_bands client_rect

top_bands left_bands floating_items_allowed

Fig. 2. Constituent fields of a GNOME dock

names. The methods of Vector, though, are more complex. Their names use a suite of
schemes that reflect differing frames of understanding about the behavior and purpose
of methods:

– METHODS ARE ACTIONS that actively change the state of the program. Methods
obeying this model either return no value at all, or else return a value that pro-
vides only incidental information about the effect of the actions. Names for such
methods are verb phrases in the imperative mood: add, addAll, addElement,
clear, copyInto, ensureCapacity, insertElementAt, remove, removeAll,
removeAllElements, removeElement, removeElementAt, removeRange, re-
tainAll, set, setElementAt, setSize, trimToSize.

– METHODS ARE MATHEMATICAL FUNCTIONS that passively compute a result but
do not alter the state of the program. Methods obeying this model must return some
useful piece of data of interest to the caller. Such a method is identified with the
value it produces, and therefore its name obeys the data naming principles given
earlier:

• TRUE/FALSE DATA ARE FACTUAL ASSERTIONS, so true/false returning meth-
ods have verb phrase names in the indicative mood: contains, containsAll,
equals, isEmpty.

• DATA ARE THINGS, so methods returning values other than true/false have
singular or plural noun phrase names: capacity, clone, elementAt, ele-
ments, firstElement, hashCode, indexOf, lastElement, lastIndexOf,
size, subList.

These conventions correctly describe thirty nine out of forty two methods in Vec-
tor. The exceptions are toArray, toString, and get, whose actual behaviors would
properly place them in the category of non-true/false mathematical functions. toArray
and toString each return an object equivalent to the original Vector but converted
into a new form; their names are consistent with a specialized Java naming scheme
used exclusively for conversion methods.

The get method is the strongest anomaly, as its behavior is to return a value but its
imperative name suggests action. Furthermore, get is functionally identical to elemen-
tAt, which does have the expected noun phrase name. Yet another naming convention
is at play here. It is common to offer matched pairs of set/get methods to manipu-
late an object’s attributes. When the object has several attributes, method names are
extended to identify the attribute they manipulate, such as setColor/getColor, set-
Name/getName, and so on. Symmetric naming is informative: it reveals that the attribute
exists and that the paired methods relate to that attribute in very specific way. However,



it also violates the DATA ARE THINGS principle by assigning imperative names to value-
providing get methods. Programmers sometimes resolve this conflict inconsistently:
Vector has set/get, but setSize/size instead of setSize/getSize.

3.2 Valence Cues

To characterize copyInto as a verb phrase is a bit generous, as it ends with a dangling
preposition. In natural language terms, this fragment has one open valence slot: one
additional item, specifically a noun, must be provided to complete the phrase. Java is
not a natural language, but the valence cue is valid nonetheless. The copyInto method
must be called with one additional argument: the array into which the vector’s com-
ponents are to be copied. Several other methods, such as indexOf and elementAt,
contain similar preposition-based hints. Open valence slots can stem from many parts
of speech: “all” is an adjective that requires a noun to modify, and removeAll expects
a corresponding argument; “contains” is a transitive verb, and the contains method
expects a single parameter that corresponds to the direct object in English speech.

Valence cues are not universal, and neither are they always in exact one-to-one cor-
respondence with method arity. One add method requires two parameters while another
requires just one, yet they share the same name. The subList method might instead
have been called subListFromTo, with two open prepositions to emphasize the two
required arguments. Clearly there is room for variation, and the programmer must bal-
ance the benefit of valence cues against other concerns for length and readability. The
design of the underlying programming language is significant as well. While the ma-
jority of programming languages treat method names as atomic, the object-oriented
language Smalltalk is a noteworthy exception. Smalltalk method names contain mul-
tiple words delimited by colons, with one argument after each segment. A Smalltalk
version of insertElement would likely be named “insert:at:”, and would be used
as:

roster insert: newHire at: position

Contrast with Java or C++ syntax:

roster.insertElement(newHire, position);

A Smalltalk method name is woven in among its arguments. This is not merely sug-
gested; it is required. A Smalltalk programmer must produce some name fragment to
appear before each and every argument. English words with open valence slots are an
obvious choice. Hence one finds Smalltalk method names like “inject:into:” or
“moveTower:from:to:using:” or the highly descriptive “scheduleArrivalOf:-
accordingTo:startingAt:” [11, 15, 19].

In object oriented languages, data are personified as active agents with internal state
(fields) and a set of exported behaviors (methods). To invoke a method, then, is to
direct a particular agent to perform a particular action or perform a particular cal-
culation with respect to itself. Methods with verb names have an open valence slot
for a subject; this slot is filled by the object whose method is being called. In the
“roster.insertElement(. . .)” example given above, insertElement reads as an



imperative command issued to roster. That the subject appears immediately before
its verb helps to create extended pseudo-grammatical utterances for English speaking
programmers, as in:

factual assertion: the roster contains the record roster.contains(record)

factual assertion: the roster is empty roster.isEmpty()

imperative command: roster, remove all junk roster.removeAll(junk);

imperative command: roster, set your size to five roster.setSize(5);

For noun-named methods, a reading in the possessive case comes equally easily,
provided that the reader has access to the English “’s” construction:

computed attribute: the roster’s first element roster.firstElement()

computed attribute: the roster’s capacity roster.capacity()

A possessive reading becomes less natural for more complex expressions; we revisit
this issue in greater depth in Section 4.

4 Containers and Paths

We now broaden our scope to issues of cognition beyond language comprehension.
While it is not our intent to undertake a general review of cognition in computing,
there is one pair of models that directly impact name use and require closer inspection:
OBJECTS AS CONTAINERS and POINTERS AS PATHS.

Until now, we have been describing objects predominantly using a container meta-
phor, such as when we speak of objects’ “constituent” fields, or “internal” state versus
“exported” behaviors. This model is consistent with real-world metaphors that treat
composite entities as containers that enclose their attributes. The metaphor carries over
to visual depictions of data structures, which typically show objects as rectangles par-
titioned into smaller boxes, one for each member field. Objects within objects are de-
picted as boxes within boxes.

However, objects need not only enclose one another in a strict containment hierar-
chy. One object may instead reference another indirectly, using what C calls a pointer
or what C# and Java call a reference.7 A pointer uniquely identifies a single piece of
data, but rather than holding the data itself, a pointer simply records where the data may
be found. In pictorial representations, pointers are presented as arrows from referrer to
referent. A C or C++ programmer must explicitly decide whether each part of a com-
plex data structure embeds another directly or instead uses indirect reference by way
of a pointer. Java programmers do not deal with this directly, as Java allows indirect
reference only; embedding is not provided for compound data types.

In C and C++, a dot (.) marks access to an embedded field of an object. If dock
is a GNOME dock, then “dock.container” accesses its embedded container field.
When fields are themselves composite, field access expressions can be extended as long

7 C++ offers both pointers and references. C++ references roughly combine C pointer semantics
with Java reference syntax, and may be seen as a transitional form.



as necessary to access deeply embedded subfields, as in dock.container.widget.-
requisition.width. Section 3.2 suggested that the English possessive “’s” construc-
tion can capture member access. While that is satisfactory for simple expressions like
roster.firstElement(), it is difficult to claim that “the dock’s container’s widget’s
requisition’s width” is an effective way to comprehend extended field access chains.
We believe that programmers do not consider such expressions in explicitly linguistic
terms. Rather, the operative model is of drilling down from outer containers into inner
ones: start at the dock; from there, go down into its container; from there, continue
down into its widget; from the widget, . . . .

This hypothesis gains credence when we consider pointer fields. Instead of a dot,
C and C++ represent pointer accesses using “->”, a textual approximation of an arrow.
The client_area field of a GNOME dock is a pointer, so in “dock.client_area-
>parent” we use “->” to cross that pointer and retrieve its parent subfield. Field
access expressions are driving directions: they describe a path from a starting point to a
final destination, with individual steps along the way listed in the order they will be tra-
versed. Programmers casually refer to “following” or “crossing” a pointer, reinforcing
a spatial metaphor in which pointers are paths or bridges between islands of data. One
can even refer to “falling off the end” of a data structure by traversing one pointer too
many.

4.1 Object Orientation, Anaphora, and the Role of Deixis

If we wish to use the lastElement method of a Java Vector named roster, we write
roster.lastElement(). However, within the code that implements lastElement,
it is no longer necessary to refer to roster by name. Within the body of lastEle-
ment, we can call size() or read elementData or access any other member fields and
methods without explicitly naming the containing object. Instead, the containing object
is implicitly assumed to be the same object that the lastElement method itself was
called upon.

Since the methods of single object tend to be tightly interdependent, this convention
is quite convenient and greatly improves code readability. It also creates an interesting
deictic shift: we are at a different place in the metaphorical data space. We are, in some
sense, “inside” the object. This new location gives us certain benefits and privileges. We
can access internal attributes of the object that are not visible to outsiders. And we can
use abbreviated names, such as size() instead of roster.size(), because the miss-
ing information is implicit in the surrounding context. Should we need to refer to the
object we are inside, C++, C# and Java each supply a “this” keyword for that purpose.
Smalltalk uses “self”. The author of Gnumeric uses “me”. (Gnumeric is written in C,
but with a strongly object oriented style.) Java also allows referencing the object’s su-
perclass through the keyword “super.” This is useful when the current class has hidden
access to the superclass’ fields or methods.

Within an object, the meaning of this is constant; it may not be altered through
execution of a program statement that may introduce the name of a new object. By
contrast, in natural languages, once the subject of a sentence has been introduced, sub-
sequent sentences often anaphorically refer to the subject using a pronoun, such as



“she” or “it” (e.g. “Nancy brought some chips to the party. She also brought a bot-
tle of soda.”). Detienne notes that anaphora is rare in programming languages [7],8 yet
anaphoric references to temporal conditions (e.g. “before the execution of this method”)
can be found in aspect-oriented programming [20]. Incorrectly applied, anaphora can
lead to ambiguity of reference, which is unacceptable in programming languages.

5 Polysemy, Homonymy, and Overloading

The last phenomenon we address is overloading: the policy of sharing one name among
several functions. C does not permit overloading, but C++, C# and Java do. The Java
Vector class uses overloading: it contains two add methods, two addAll methods,
two indexOf methods, two lastIndexOf methods, two remove methods, and two
toArray methods. In many cases, same-named methods accept different numbers of
arguments. A few overloaded methods have identical arity but differ in the expected
types of their arguments. These distinctions allow the compiler to select the appropriate
method, and any overloading that cannot be disambiguated in this manner is detected
and disallowed.

To see more aggressive use of overloading, we turn to KWord, an open source word
processor written in C++ [16]. The programmer has defined a KWString type to repre-
sent text sequences within a document. This type contains several overloaded methods,
including eight named insert. Every insert method expects two arguments. The first
argument is always the position within the KWString where the insertion should take
place. The second argument may be:

– a sequence of characters as represented by the underlying graphical toolkit
– a sequence of characters as represented by KWord
– a single character
– a picture
– a tab
– a placeholder for automatically generated text, such as the current date or page

number
– a footnote
– an anchor for a floating figure

The programmer could have given each method a distinct name: insertPicture,
insertTab, insertFootnote, and so on. The use of a single name creates a con-
ceptual grouping. These methods are all, in some sense, equivalent. Each one inserts a
document fragment at a given position; they differ only in what is being inserted. Using
the same name for all methods is just as sensible as the same English verb in “insert a
picture” and “insert an anchor”. For English, we could argue that there is only a single
“insert” verb, because “a picture” and “an anchor” are grammatically interchangeable.
In the KWord program, pictures and anchors are quite distinct, and insertion requires
slightly different code for each. But the general effect as seen by the caller is the same
in all cases, making it convenient to simply call insert and let the compiler determine
which method is intended. In effect, insert is polysemic.

8 Exceptions are found in command-line shells, where it is possible to refer to the result of the
last evaluated expression (e.g. $? in csh).



5.1 The Operator Overloading Debate

Operator overloading takes the view that mathematical operators are simply functions
with special names and syntax: “x + y” is no different from “sum(x, y)”. Certain
operators, like addition of two integers, are built in to any sensible language. But there
may be other forms of addition not anticipated by the language designers. Program-
mers may wish to define arithmetic on a data type, for example, a representation for
Hamilton’s quaternion algebra, where the intended behavior of “+” is obvious. We have
a metaphorical extension of addition into a novel realm. In languages that support op-
erator overloading, the programmer can extend the basic operators to support new data
types; defining addition of quaternions is similar to defining any other function [29].

Operator overloading is controversial. Its supporters argue that overloaded operators
improve readability: “q + r * s” is much easier to scan than “sum(q, product(r,
s))” or the more object-centered “q.plus(r.times(s))”. Authors of numerical and
scientific code find operator overloading especially useful [33]. Skeptics counter that
an overloaded operator can perform arbitrary computation having no relationship to its
more basic form, and that in the presence of operator overloading, even the simplest
code fragments cannot be assumed to have any consistent meaning: “x + y” could
contain an entire word processor.

C has no overloading at all. C++ and C# offer overloading for names as well as for
operators. Overloadable operators in C++ and C# include the obvious arithmetic ones
(+, -, *, /) but several that are more obscure. We can define our own “[]” operators to
create objects that act like arrays. Overloading “->” (in C++) lets us create so-called
“smart pointers.” Even function invocation, the “()” operator, can be overloaded to
create data objects that may be called as though they were functions. Java allows method
name overloading only; operator overloading is not available.

In cognitive terms, we can deconstruct this debate into two distinct concerns. First,
there is the issue of the arbitrariness of overloaded operators’ behavior; the worry that
overloaded operators may diverge into homonyms with no rational polysemic connec-
tion to their primitive counterparts. While it is true that “x + y” could be hiding an
entire word processor, it is equally true that insert could remove data or that Vector
could represent the color blue. Skilled programmers use names in cognitively rational
ways, and we have every reason to believe that they can do the same for operators.
The second concern is that overloaded operators make it harder to infer the behavior
of code. This is a more difficult matter, as programmers read code in different ways
with different goals. When it is important to understand the precise, “literal” behavior
that the code will create when run, overloaded operators can be obfuscating. When the
intent is to understand code at a higher level of abstraction, operators that have been
extended in a metaphorically principled manner can be a boon.

5.2 Homonymic Extension of the Shift Operators

Surprisingly, the most widespread use of C++ operator overloading is homonymic. C++
defines two standard operators that manipulate the bit-level representation of numbers:
left shift (<<) and right shift (>>). The motivation for the built-in operators is clearly



based upon visual iconicity: << and >> resemble arrows pointing left and right, respec-
tively. These are binary operators: “x << 4” shifts the bits representing x left by four
positions.

The standard C++ library overloads the shift operators for a completely unrelated
purpose: file input and output. One writes “file << data” to store data into a file,
and “file >> data” to load data from a file. Programmers can add their own << and
>> operators and thereby extend file I/O with their own data types. This is a techni-
cally clever trick, but there is nothing that particularly justifies output as a polysemic
extension of shifting left, or input as a polysemic extension of shifting right. “file <<
data” simply looks like data flowing across an arrow into the file. The visual metaphor
is compelling enough to justify what would otherwise be derided as “arbitrary” over-
loading.

6 Conclusions and Future Work

Modern software is incredibly complex. The source to Microsoft Windows XP has 40
million lines of code [21]. The Linux 2.6 kernel weighs in at 6 million lines [32]. Man-
aging this kind of complexity requires that programmers draw deeply upon all their
cognitive abilities. We have discussed several ways in which programmers select and
use names in cognitively motivated ways. Lexical and morphological conventions con-
vey basic information about a name’s role, while metaphors encourage productive in-
ferences drawn from other domains of experience. The grammars of natural languages
shape name use in intricate ways, and polysemy appears as overloading with attendant
debates over literal versus metaphorically extended meaning. Throughout, we find that
programmers leverage fundamental aspects of cognition and natural language compre-
hension to make code easier to read and understand.

Practical considerations have motivated us to narrowly study the role of naming in
imperative languages. If we were to expand our scope, we might ask how increasingly
linguistically sophisticated programming languages have changed the cognitive burden
on programmers. Conversely, we might ask how language designers could better sup-
port programming as a cognitive, communicative task. Should programming languages
provide linguistic support for anthropomorphism, as indicated by Herbsleb’s study of
metaphors used to describe software behavior [13]?

Programming is a sophisticated intellectual process that combines aspects of natural
language with the regular structure of formal mathematical thought. The study of pro-
gramming truly has the potential to contribute valuable perspectives to current research
in linguistics and cognition.
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