From Program Comprehension to People Comprehension

Andrew Begel
Microsoft Research
Redmond, WA, USA
Email: andrew.begel @microsoft.com

Abstract—Large-scale software engineering requires many
teams to collaborate together to create software products.
The problems these teams suffer trying to coordinate their
joint work can be addressed through tools inspired by social
networking. Social networking tools help people to more easily
discover and more efficiently maintain relationships than is
feasible using one-to-one or face-to-face interactions. Applying
these ideas to the software domain requires new kinds and
combinations of software program and process analyses that
overcome intrinsic limitations in the accuracy of the underlying
data sources and the ambiguity inherent in human relation-
ships.

Keywords-software process, human aspects

I. INTRODUCTION

Building large software products is a difficult endeavor
for software companies, both from a software engineering
perspective and from a human resources perspective. Many
software teams, each consisting of tens to hundreds of
engineers, must collaborate together to produce the software
components that make up the products that they ship.
Some teams, especially inexperienced ones, are resistant to
structured processes, and collaborate with others in an ad
hoc manner. This often leads to miscommunication, misun-
derstandings, non-transparent decision making, and mistrust,
resulting in dysfunctional inter-team relationships [1], [2].
These kinds of coordination problems are known to be
critical factors leading to software project failures [3].

A lack of information about other teams’ work can
interfere with each team’s ability to assess and mitigate
the risk of depending on others. Much of the information
engineers seek concerns their shared work artifacts, such as
features, interfaces, schedules, bugs, and documentation [4].
These artifacts are usually accessible, since they are often
stored in server-based software repositories, however, these
kinds of repositories were designed more for efficient storage
than for enabling engineers to easily locate and extract data
meaningful to their inter-team coordination tasks [S]. An
entire body of research hosted at the Conference on Mining
Software Repositories has explored how to discover and
extract meaningful information from software repositories
and help engineers with the difficult task of making sense
of the data.

We conducted a survey in the summer of 2009 at Mi-
crosoft to learn how Microsoft engineers (i.e., developers,

testers, program managers, and architects) rank their most
difficult-to-answer information needs around inter-team co-
ordination. The results revealed several needs that were so
important to the respondents that if a tool were available to
solve these needs, it would have a significant positive impact
on their daily work [6]. The needs they chose are reflected in
the following three real scenarios that we heard in speaking
with software team engineers and managers at Microsoft.

1) A change in someone else’s code has broken mine.
Who wrote this code? Is there a bug in his code, or is
it in mine? Why did he choose to write the code that
way? Is there a specification for it? Who wrote the
specification? What requirements was the developer
considering when he worked on the code? Is there a
test case that could catch the problem I have? Has
anyone filed a bug report about the problem? Is it
already fixed for a future release? If the developer and
his team are unaware of the problem, what evidence
can I show to convince them to make a change that
will help me out?

2) My team needs to prioritize its bug list for the next
release in six weeks. The team has 22 developers, 20
testers, and 15 program managers who have worked
together on this project for the past three years.
While much of what we have done is recorded in
our software repositories, several important decisions
and events were never written down. We depend on
3 other team’s libraries to build our product — two of
our program managers liaise with those teams to keep
us up to date on their progress. However, other than a
team on the same floor that sends their own program
manager to attend our weekly status meetings, we do
not know which other teams depend on our software.
How do we take into account our own needs and
goals, the expectations we have of our dependencies,
the needs of our known customers, and the needs of
our unknown customers, to choose the bugs that we
should definitely fix?

3) Our team’s testers each have expertise in a particular
area. We would like them to be notified whenever there
is a change to the software that they would be most
suited to test. The problem is that our team has 300
testers, the software has 50 million lines of code, and



neither the testers nor the code have been classified by
topic area. Ultimately, when we get this notification
problem solved for our own team, we would like to
extend the notifications to a sample of the 10,000 users
of our product who participate regularly on our public
discussion forum and have access to download and
try out weekly builds of our software. Accuracy in for
both sets of people is paramount because my team’s
testing resources and my users’ attention spans are
limited, and we do not want them to waste their time
trying our software if there are no changes that they
would find interesting.

Without software support, these scenarios often are ad-
dressed simply through direct communication between the
people involved. It is hard, however, to scale this method
to large deeply-interconnected software projects. We must
augment the human element with analytic help people
discover, learn, analyze, communicate, and collaborate with
their dependencies, without requiring the team members to
adopt extra processes or do extra work.

II. BETTER WORKING THROUGH SOCIAL NETWORKING

We believe a promising approach to addressing coordi-
nation needs is to augment existing program analyses with
social networking. With the rise in popularity of Web 2.0-
based socially-oriented tools, engineers in industry expect
to collaborate with and learn about their colleagues using
weblogs, microblogs, wikis, newsfeeds, online profiles, and
social networking. Our new tool, Codebook, takes advantage
of this trend to build a social network that connects software
engineers via their shared work artifacts by mining the arti-
facts from software repositories (e.g. code, bugs, test cases,
specifications, documentation, builds, and discussions on
mailing lists or web sites) and analyzing them with a variety
of software program, process, quality, and organizational
network comprehension tools [6], [7]. Applications built on
the Codebook platform enable engineers to find and directly
act on information discovered about other teams and their
work.

Many of the analyses required to solve the questions asked
in these particular scenarios have been explored before in the
literature. However, we see two open challenges to putting
them together in the right way. First, we need to improve
our understanding of the human aspects of software devel-
opment in order to identify which problems actually need
solutions, and which problems, though juicy from a research
perspective, would unfortunately have little impact even if
solved perfectly [8]. To understand these problems, it helps
to have a concrete description of the social and software
processes around creating and maintaining large software
systems: fixing bugs, negotiating agreements with other
teams, deciding to take dependencies on others, managing
everyone’s expectations around shared work, communicating
and signaling between team members, and interacting with

people who play different engineering roles, have more or
less political power, and embrace different priorities.

The second challenge is that the data found in software
repositories is not always accurate [9]. Aranda’s study of
bugs in Microsoft Windows found that the people listed on
a bug report did not always play the role the bug report
indicated, and people who were critical to the bug being
fixed were sometimes not listed at all. Combining bug
reports with emails still resulted in misleading explanations
for how and why issues were handled. Many open questions
remain — is there a way to combine multiple lines of
evidence from several repositories in order to triangulate
the data and synthesize a more accurate story to explain
an event? Which repositories are more reliable than others?
Is it possible to put error bounds on the elements of an
explanatory story to know which parts to trust, and which
parts to discount?

III. CONCLUSION

Helping software engineers to work better together is
vitally important to helping resolve the software industry’s
perennial coordination crises. By leveraging our ability to
analyze and comprehend the relationship between engineers
and their work-related artifacts, we can build tools to help
engineers make sense of the information stored in their
repositories and enable them to more effectively collaborate
with their peers.

REFERENCES

[1] A. Begel, “Effecting change: Coordination in large-scale soft-
ware development,” in Proceedings of CHASE, May 2008.

[2] A. Begel and N. Nagappan, “Coordination in large-scale
software development: Helpful and unhelpful behaviors,” Mi-
crosoft Research, Tech. Rep. MSR-TR-2009-135, September
2009.

[3] J. D. Herbsleb, A. Mockus, and J. A. Roberts, “Collaboration
in software engineering projects: A theory of coordination,” in
Proceedings of ICIS, Milkwaukee, WI, 2006.

[4] A. Begel, N. Nagappan, C. Poile, and L. Layman, “Coordina-
tion in large-scale software teams,” in Proceedings of CHASE,
2009, pp. 1-7.

[5] R. Holmes and A. Begel, “Deep intellisense: a tool for re-
hydrating evaporated information,” in Proceedings of MSR,
Leipzig, Germany, 2008, pp. 23-26.

[6] A. Begel, Y.-P. Khoo, and T. Zimmermann, “Codebook: Dis-
covering and exploiting relationships in software repositories,”
in Proceedings of ICSE, Cape Town, South Africa, May 2010.

[7]1 A. Begel and R. DeLine, “Codebook: Social networking over
code,” in Proceedings of ICSE, NIER Track, Vancouver, BC,
Canada, May 20009.

[8] L.-T. Cheng, C. de Souza, Y. Dittrich, M. John, O. Hazzan,
F. Maurer, H. Sharp, J. Singer, S. E. Sim, J. Sillito, M.-A.
Storey, B. Tessem, and G. Venolia, Proceedings of the 2008
international workshop on Cooperative and human aspects of
software engineering. Leipzig, Germany: ACM, 2008.

[9] J. Aranda and G. Venolia, “The secret life of bugs: Going
past the errors and omissions in software repositories,” in
Proceedings of ICSE, Vancouver, BC, Canada, 2009.



