Industrial Program Comprehension Challenge 2011:
Archaeology and Anthropology of Embedded Control Systems

Andrew Begel
Microsoft Research
Redmond, WA, USA
Email: andrew.begel@microsoft.com

Abstract—The Industrial Program Comprehension Chal-
lenge is a two-year-old track of the International Conference
on Program Comprehension that provides a venue for re-
searchers and industrial practitioners to communicate about
new research directions that can help address real world
problems. This year, 2011, a scenario-based challenge was
created to inspire researchers to apply the best “archaelogical”
techniques for understanding the complexity of industrial soft-
ware, and foster appreciation for the delicate ‘“anthropological”
scenario which drives the behavior of the software engineers,
management, and customers. Participants had two months to
work on the challenge and submit writeups of their solutions.
The best submissions were presented and discussed at the
conference. This new challenge format gives researchers the
opportunity to present their novel techniques, tools and ideas
to the community.

I. INTRODUCTION

ICPC’s Industrial Program Comprehension Challenge is
an opportunity for researchers to gain insight into real world
problems faced by engineers in the software industry and
develop new ideas for their program comprehension re-
search. This year’s industrial challenge explored the domain
of embedded software programs in a realistic social context.

Outside of modeling and code generation, embedded soft-
ware is rarely encountered in software engineering research,
yet, given sheer numbers, it is possibly the most prevalent
kind of software running in the world today. Developed over
the last half-century, much of it is legacy code whose original
authors and documentation have long since disappeared.
When bugs arise in code that cannot easily be abandoned
or rewritten, new software developers must understand the
design intent of the original algorithms, how these designs
were translated into code, the normal, correct behavior of the
software in the context of its surrounding hardware, how to
reproduce the bug and localize it in the software, and fix it,
respecting the impact that changes in the code will have for
the system as a whole.

The subject of this year’s challenge was a realistic control
algorithm for an artificial robotic leg which exhibited three
erroneous behaviors that customers objected to, the worst
of which was to blow up the robot leg. The research
community was invited to develop and demonstrate pro-
gram understanding and visualization tools that could help
developers fix these bugs, explain how the use of these

Jochen Quante
Robert Bosch GmbH, Corporate Research
Stuttgart, Germany
Email: jochen.quante @de.bosch.com

tools might fit into the software process lifecycle, and help
corporations responsible for the buggy software to mollify
their customers.

II. THE CHALLENGE SCENARIO

There is a (ficticious) company that has been writing
embedded control system software for over 60 years. Some
controller products that are still sold by the company and
contain fairly ancient software code, have recently become
popular as controllers for robotic legs. Three (fictitious)
companies who sell robot legs based on controllers have
reported problems they believe are caused by bugs in the
controller software, the worst of which causes any robot
leg that experiences the bug to explode into many shrapnel-
like pieces. Assuming the role of the software engineer
assigned to look into these very high priority bugs, challenge
participants were charged with the challenge of finding the
cause of the bugs, fixing them, and explaining the fixes to
several important stakeholders: the engineer’s manager, the
customer support engineer, the customer’s robot leg project
leader, and the CEO of the customer’s company.

Along with the software code, researchers were provided
with customer configuration files, (realistically) minimal
software documentation, bug reports describing the cus-
tomers’ robot leg commands and the problem behaviors that
ensued, and log files of test runs that illustrate incorrect and
correct controller behavior.

This challenge required quite a bit of progam understand-
ing, primarily due to the obsfucation of control flow in the
software code caused by its designed reliance on a clock-
based timestep, and by its manual low-level implementation
from a specification that itself was manually developed from
a high-level abstract model of a controller algorithm.

Researchers were also asked to find or create a software
tool or method that could be used to help an engineer
visualize or understand the program, its algorithm, its run-
time behavior, and/or the bugs. The use of tool had to be
documented and submitted by the researcher.

The final challenge for researchers was to address the
software’s stakeholders and expose them to the issues faced
by company representatives when they must grapple with
the sometimes unpleasant, real-world consequences of sup-
porting buggy software.



III. THE SOFTWARE

The challenge software is an embedded control system for
directing motors that move a robot leg. Typically, control
algorithms are first formulated and simulated in a graphical
modeling environment. They are then translated to a speci-
fication and implemented in a low-level systems language
(e.g., C or a restricted subset) that is compiled to run
on a controller chip. The resulting systems programs often
are hard to understand because the hand-written, imperative
software implementations tend to obscure the data-flow
nature of the original controller strategies.

The code in the challenge is completely artificial, but is
very similar in nature to embedded control software found in
all sorts of electro-mechanical devices in use today. Several
aspects of the controller algorithm in the challenge are
similar to those found in the automotive industry [1]:

Blackboard architecture: These systems typically use
a blackboard architecture. Inside each system module, in-
formation (“messages”) from other parts of the system are
directly read from global variables. Information intended for
other modules is written fo global variables. The access
rights to these variables may be restricted, but this is
specified and checked outside the code.

Time slices: Embedded controllers are often real-time
systems, which use time slices. Every function is repeatedly
invoked, e.g., every 5 or 10 milliseconds. Not only does
information flow to and from the other functions, but it
flows to and from the previous and next invocations of
the function. In the challenge code, this functionality is
simulated by a loop in the main function. However, it ignores
the complexity that arises when many other functions are
called in between and in different overlapping time slices.

High level of variability and configurability: Since the
same basic software code has to work for a variety of
customer environments and needs, it is designed to be highly
configurable. Global variables ending with “_PARAM” or
“_CURVE” are placed in the program to be adjusted by the
customer when the code runs as part of an actual controller.

Control systems: The functionality of controllers is
often based on data-flow algorithms and elements from
control theory. We have included some of these elements
in the challenge code, for example, low pass filters, ramps,
and timing components. The controller’s purpose usually is
to influence the controlled dynamic system in a way that
it reaches and stays in a desired (dynamically adjustable)
reference state — in this case, a particular position of the
robot leg.

The final components of the challenge code are some
required library functions, a test driver, and a robot leg
simulator for testing the control function in isolation.

IV. SUBMISSIONS

This report went to print before submissions were sent in
to the challenge organizers. Valid submissions had to have

three components, though partial solutions were accepted if
they used an interesting approach.

1) Identify the cause of each of three bugs found in the
controller code, as evidenced by logs of incorrect behavior
created by the robot leg simulator. Include diffs for the fixes
for each of the bugs and demonstrate, with new logs, that
the customers’ bugs have been fixed without having changed
the customers’ control instructions.

2) Build a new software tool, reuse a previously-built
tool, or find a software tool written by someone else that
can help a software engineer understand the code and its
behavior. It can take any form, including a program under-
standing tool, a program visualization tool or something else.
A report must be written (with screenshots) that documents
how the tool was used to comprehend the challenge program
and fix the bugs.

3) Compose four emails to various stakeholders that doc-
ument how the bug was found, understood, and fixed. Each
stakeholder represents a different audience that software
engineers in industry must communicate with about the soft-
ware development and maintenance process. These emails
have to contain a significant amount of technical detail,
presented appropriately for the audience — for example,
low-level programming and debugging details for the man-
ager and the customer’s project leader, and user-oriented,
behaviorally-focused explanations for the customer support
representative and the customer company’s CEO. Creativity
in the messages was encouraged to inspire challenge partic-
ipants to fully flesh out the scenario for themselves.

The authors of all acceptable solutions were invited to
present a poster of their solution at the ICPC conference,
and were able to personally demonstrate their solutions and
tools to all attendees at the Industrial Challenge session.

V. CONCLUSION

Industrial challenges like this one can be beneficial for
all participating parties. Researchers may promote their
solutions, discover new research topics to explore, and gain
an appreciate for the complexities of the social context in
which these problems arise. Practitioners may learn about
new techniques or tools that could be directly applicable to
problems they see in their own work. Finally, since a large
amount of legacy software using similar structures to the
challenge software runs in many contemporary embedded
systems, embedded control systems engineers would benefit
from improvements in the state-of-the-art for understanding
such code during their maintenance and reengineering ac-
tivities.

REFERENCES

[1] V. Schulte-Coerne, A. Thums, and J. Quante, “Challenges in
reengineering automotive software,” in Proc. of 13th Conf. on
Software Maintenance and Reengineering (CSMR), 2009, pp.
315-316.



