Eye Tracking in Computing Education

Teresa Busjahn
Freie Universitat Berlin

busjahn@inf.fu-berlin.de

Simon
University of Newcastle

simon@newcastle.edu.au

Roman Bednarik
University of Eastern Finland

roman.bednarik@uef.fi

Galina Shchekotova
JetBrains

Carsten Schulte
Freie Universitat Berlin
schulte@inf.fu-berlin.de

Andrew Begel
Microsoft Research
abegel@microsoft.com

Paul Orlov
University of Eastern Finland

paul.a.orlov@gmail.com

Bonita Sharif
Youngstown State University

bsharif@ysu.edu

Michael Hansen
Indiana University

mihansen@indiana.edu

Petri Ihantola
Aalto University

petri.ihantola@aalto.fi

Maria Antropova
JetBrains

gshchekotova@gmail.com maria.antropova@gmail.com

ABSTRACT

The methodology of eye tracking has been gradually mak-
ing its way into various fields of science, assisted by the
diminishing cost of the associated technology. In an inter-
national collaboration to open up the prospect of eye move-
ment research for programming educators, we present a case
study on program comprehension and preliminary analyses
together with some useful tools.

The main contributions of this paper are (1) an introduc-
tion to eye tracking to study programmers; (2) an approach
that can help elucidate how novices learn to read and un-
derstand programs and to identify improvements to teaching
and tools; (3) a consideration of data analysis methods and
challenges, along with tools to address them; and (4) some
larger computing education questions that can be addressed
(or revisited) in the context of eye tracking.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms

Experimentation, Human Factors, Measurement

Keywords

CS Ed Research; Code reading; Computing education; Em-
pirical research; Eye tracking; Gaze analysis; Program com-
prehension; Programming education; Teaching programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER’14, August 11-13, 2014, Glasgow, Scotland, UK.

Copyright 2014 ACM 978-1-4503-2755-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632320.2632344.

1. INTRODUCTION

This paper introduces eye tracking as an instrument for
computer science education research. The approach builds
on the outcomes of the 1st International Workshop on Eye
Movements in Programming Education: Analyzing the Ex-
pert’s Gaze [4], held in conjunction with the 13th Koli Call-
ing International Conference in Computing Education Re-
search [15]. The workshop brought together educators and
practitioners to analyze how eye tracking and the rich data
it affords could benefit programming education.

The observation of eye movements adds an objective source
of information about programmer behavior to the collec-
tion of research methods in computing education which can
be used to facilitate the teaching and learning of program-
ming. Alternative approaches for gaining insights about
learners’ programming processes include analyzing the con-
secutive versions of assignments submitted for automated
assessment [1], instrumenting student programming envi-
ronments to record snapshots from compilation [18], and
recording keyboard events in text editors [11]. All of these
methods complement one another; augmenting them with
eye tracking would provide a comprehensive view of the pro-
cess of learning programming. While our focus in this paper
is on programming education, eye tracking is a valuable in-
strument for other areas of computing education as well, e.g.
understanding graphical data models [17].

This paper is organized as follows, the next section gives
an overview of eye tracking technology, and presents previ-
ous work. In section 3, we describe our case study and the
eye movement coding scheme. Finally, to address challenges
we discovered in our study, we offer a set of ideas and tools
to advance eye tracking in computing education. We con-
clude with an outline of ways in which eye tracking can help
answer crucial questions in computing education.

2. GAZE IN COMPUTING
2.1 A Brief Introduction to Eye Tracking

Eye trackers are used to capture a user’s eye movements
when he looks at a stimulus while working on a task. In

computing education, a programmer would be given a pro-
gramming task to solve while looking at relevant source code.
There are two important types of eye movements: the fiza-
tion, which is the settling of the eye gaze on an object of in-
terest for a minimum period of time, and the saccade, which
is a quick movement of the eyes from one location to another.
Both fixations and saccades are voluntary, and indicate the
location of the subject’s attention. A scan path is a directed
path formed by saccades between fixations. Processing of vi-
sual information occurs only during fixations [14], i.e., as a
programmer looks at programming constructs in code, vari-
ous mental processes are triggered to solve the task at hand.

Eye tracking is a source of rich and valuable information
which cannot be obtained by other methods. Conventional
measures retrospectively record the accuracy of the subject’s
response and the time taken to obtain that response. For
example, a programming educator will ask students to re-
port their answers after debugging or tracing a program in
a lab. This method records only the final outcome after the
specific task has ended, neglecting information that might
help understand how and why a student chose a particular
(correct or incorrect) answer. Additionally, these measures
raise a potential threat to the validity of the task, namely
the difference between student responses upon completion
of a task and the reality the student experienced while per-
forming that task. In other words, a student may misreport
an experience at the end of a long task, or may forget to
report it altogether.

Researchers can address this issue by asking programmers
to record their observations while working towards their an-
swers. However, this has the risk of interrupting their work
on the main task at hand. This same drawback exists even
if explicit methods such as think-aloud are used, since they
still distract the programmers from their core task. More-
over, subjects must be constantly reminded to verbalize their
thoughts, since they do not often do so while they program
in their natural setting. Even expert programmers find it
difficult to state out loud exactly how they read a program.
Many unconscious decisions go unreported, for example, en-
countering logical dead ends while reading a program.

Much of the critical information that is lost with tradi-
tional methods of measurement and assessment can be re-
covered using an eye tracker. There is nothing the program-
mer needs to wear in order for their eye movements to be
recorded. Modern state-of-the-art eye trackers consist of
a small hardware device that is placed near the program-
mer’s monitor and can silently and unobtrusively document
eye movements while the programmers looks at the screen.
The additional data provides insights into the programmer’s
thought processes, and achieves a finer granularity of data
capture across space (across the program) and time (as the
task progresses) because tacit knowledge and understanding
is made more explicit.

Furthermore, eye tracking makes it possible to take ad-
vantages of verbal accounts without the drawback of im-
posing additional cognitive load and interfering with the
comprehension process at hand. Combining retrospective
think-aloud with eye tracking, study participants initially
work purely on their task (e.g. understanding source code).
Once the task is complete, they are prompted to verbalize
their thoughts, watching their recorded eye movements to
aid their recollection [24, 13]. This technique makes comple-
mentary use of think-aloud and eye tracking and has been

found to induce higher quality comments about cognitive
processes. We strongly believe that eye tracking synergizes
with other methods of assessing comprehension, and used
together provides additional insights.

2.2 Previous Work on Eye Tracking in
Computer Programming

Eye tracking has been studied in non-computer fields such
as chess, reading, piloting [12], mammography [21], and
surgery [25]. Here, we present an overview of work that
has used eye tracking in programming research.

Crosby and Stelovsky [9] were pioneers of using eye track-
ing to study programmers. They found that programmers
employed several distinct types of scan path patterns while
they read an algorithm written in Pascal.

Uwano et al. [24] studied eye gaze patterns while five
programmers detected code defects. They identified a pat-
tern called scan, in which programmers appear to form an
overview of the code. Approximately 70% of source code
lines were viewed in the first 30% of the time spent reading
the code. Sharif et al. [20] replicated this experiment with a
larger sample of 15 programmers and found similar results.
Programmers who spent less time to initially scan the code
tended to take more time to find defects.

Fan [10] analyzed the eye gaze of programmers to learn
about program comprehension processes used for beacons
and comments in different tasks. Code scanning sequences
were directly affected by comments, enabling programmers
to chunk larger code blocks. Fan concluded that eye gaze
data is very useful in documenting and analyzing the pro-
gram comprehension processes.

Busjahn et al. [7] used eye tracking to compare natural
language text reading and code reading. They found a sig-
nificant increase in both fixation duration and number of
backward movements when subjects read source code, indi-
cating the different demands of these two text types and the
reading patterns that they induce.

Bednarik [3] studied the differences between novices and
experts during debugging using source code and graphical
representations. He found that repetitive eye patterns were
associated with less expertise; novices used both representa-
tions with a lot of context switching.

Turner et al. [23] conducted a preliminary study on 38
students to assess how the choice of programming language
affected how programmers solve tasks. Looking at simple
C++ and Python programs, they found a significant dif-
ference between the two languages for the fixation rate on
buggy lines of code.

There have been a few studies using eye tracking to study
programming, but none comprehensively analyze the rela-
tionship between raw eye movements and comprehension. It
is extremely difficult to translate a person’s eye movements
into insights about his or her mental state while reading and
understanding program [6]. We are confident that there will
be more of these studies because of the diminishing cost of
eye tracking. One of our goals is to raise awareness of the
opportunities and challenges afforded by this technology in
computing education research.

3. CASE STUDY

We conducted a case study to determine whether the use
of eye tracking in computing education was feasible, could
provide rich data for analysis, and could lead to novel teach-

ing ideas. For details beyond those in this paper, please read
our technical workshop report [4].

3.1 Experimental Setup

The eye movement data analyzed for the workshop came
from a study with professional software developers reading
and understanding short Java programs. We recorded them
in an office at the programmers’ company with an SMI RED-
m 120 Hz eye tracker using the OGAMA tracking software.’

The recording sessions started with natural language texts
followed by comprehension questions to familiarize the sub-
jects with the instrument and the tasks. The subjects then
moved on to examine Java code. After being informed that
the code did not contain bugs, they were asked to read it,
comprehend it, and answer a question to test their compre-
hension. The code segments were short enough to fit on a
single screen without scrolling, to simplify the connection
between gaze location on the screen and in the code.

The program read by the subjects (shown in Figure 1)
calculated the area of a rectangle. Subject 1 was told to
expect to answer a question about the return value of the
rect2.area() method, while Subject 2 was told to expect a
multiple-choice question about the algorithm in the code.

Each trace was given to the workshop participants as an
AVI video showing the subject’s current fixation location as
a large red circle on top of the source code that the subject
saw.? The prior five fixations were marked by blue circles
whose size indicated the duration of the fixation. Blue lines
joining the circles represented the saccades. The eye move-
ments were quite rapid (and usually are), so the researchers
could slow down the video to see all the gaze locations.

The two traces are very different. One might consider
subject 1’s gaze to be erratic. Viewed in real time, it flashes
wildly about the code, generally spending very little time on
any one point. However, when taken in total, there is a clear
pattern of subject 1’s eye returning to certain focal points.
These points are pertinent to the question the subject was
told to expect, but the fixations are so brief as to leave
the analyst wondering whether if it was at all possible to
gain any comprehension of the code. For example, in one
10 second span, the gaze shifts more than a dozen times
between every method on the screen, typically spending less
than a second on each point of interest.

By contrast, Subject 2 reads the code slowly and method-
ically, yet takes about 40% less time overall than Subject 1.
We see evidence of linear scanning patterns, and very long
gaze fixations on areas of interest. Whereas Subject 1 spent
10 seconds looking at every method on the screen, Subject
2 spent 10 seconds looking at a single variable declaration.
In addition, after 1 second glances at the methods height ()
and width(), there was a steady 4 second gaze on area(),
followed by another 8 seconds on the declaration of rect?2.
Our impression was that Subject 2 deliberately read through
the code, understanding it the first time it was viewed.

3.2 The Workshop

We designed the Eye Movements in Programming work-
shop to bring together a number of researchers to consider
various approaches of inferring cognitive processes from eye

"ttp://www.ogama.net

2These videos are available at http://www.mi.fu-berlin.
de/en/inf/groups/ag-ddi/Gaze_Workshop/koli_ws_
material.

1 public class Rectangle {

private int x1 , y1,x2 ,y2;

»inty2) {

11 public int width () { return this.x2 - this.x1 ; }

13 public int height () { return this.y2 - this.y1 ; }

15 public double area () { return this.width () * this.height () ; }

17 public static void main (String [] args) {

18 Rectangle rect1 = new Rectangle (0,0, 10,10);
19 System.out.println (rectl.area ());

20 Rectangle rect2 = new Rectangle (5,5,10,10);
21 System.out.println (rect2.area ()) ;

22 }

23}

Figure 1: Source code used for the workshop — over-
laid with eye movements

movements during source code reading. Prior to the work-
shop, the participants were given access to the two gaze
traces described above. The workshop organizers developed
a coding scheme for the gaze traces based specifically on the
two eye gaze trace videos and the specific Java program, in
order to broaden our knowledge of program comprehension
strategies. We made a fundamental decision to distinguish
between objective and subjective behaviors. At the most ba-
sic level, analysts using the scheme would objectively code
the part of the program on which the programmer’s gaze is
resting. At the next level, they would use subjective codes
to describe their inferences of the patterns of eye movement
and the strategies being employed by the programmer to
comprehend the code.

Each workshop participant individually analyzed the eye
movement records (without any audio) and coded it us-
ing the ELAN video annotation software.®> They each then
wrote a position paper to describe the traces, to reflect on
the validity and utility of our coding scheme, and to discuss
possible applications of eye movement research for computer
science education. At the full day workshop, participants
explored their findings with one another, using their discus-
sions to refine the coding scheme and plan further research.

3.3 Coding Scheme

The coding scheme used in the case study captures the
objective eye tracking data as well as the coder’s inferences
about the programmer’s comprehension of the source code.
We present the coding scheme here to illustrate the possible
outcomes of employing eye tracking in computing; it is not

3http://tla.mpi.nl/tools/tla-tools/elan

http://www.ogama.net
http://www.mi.fu-berlin.de/en/inf/groups/ag-ddi/Gaze_Workshop/koli_ws_material
http://www.mi.fu-berlin.de/en/inf/groups/ag-ddi/Gaze_Workshop/koli_ws_material
http://www.mi.fu-berlin.de/en/inf/groups/ag-ddi/Gaze_Workshop/koli_ws_material
http://tla.mpi.nl/tools/tla-tools/elan

directly generalizable and should not be taken as a central
contribution by itself.

We revised the coding scheme according to suggestions
given by the participants in their position papers, and fur-
ther refined it during the workshop (see report [4]). The
scheme consists of a number of ‘tiers’, each of which can be
coded with a choice of values. The tiers are summarized
below.

Line: indicates the line of code the participant’s gaze is on.
Block: indicates the block of code that the line is in. In a
typical short code segment, the blocks might be the class At-
tributes, the Constructor, the Main method, or any other
method.

SubBlock: some blocks have identifiable sub-blocks in which
a reader’s gaze might rest. For example, a method may
contain sub-blocks of Signature, Body, Method Call, and
Return. While the latter two statements are part of the
method body, we code them separately because their im-
portance makes them likely to be the focus of the reader’s
concentration.

Signature: when the gaze rests on the signature sub-block,
this tier further indicates whether it dwells on the method
Name, its Return Type, or its Formal Parameter List.
Method Call: when the gaze rests on a method call, this
tier is used to indicate whether it focuses on the method’s
Name or its Actual Parameter List.

These first five tiers refer to the gaze location at a single
point in time. They can be coded objectively and automat-
ically based simply on the eye gaze location on the screen.

The next tier of the coding scheme, Pattern, identifies
particular combinations of the observed fixations. For ex-
ample, in the pattern we call Flicking, the gaze flicks back
and forth between two (or possibly more) identified gaze
points. Specific instances of this pattern may flick between
the actual and formal parameter lists of a method call and its
declaration, between the use and declaration of a variable, or
between different locations where a variable is used. Other
patterns include Linear Scan, in which the gaze moves lin-
early through some part of the code; Jump Control, in which
gaze follows the code in execution order; and Thrashing, in
which the gaze leaps about all over the code with no dis-
cernible intent. To date, we have identified 11 patterns.
While patterns are observable in the eye gaze trace, coders
must make a subjective decision about the number of fixa-
tions to combine into a single pattern; thus, these patterns
cannot be automatically identified without human interven-
tion.

The final tier of the coding scheme, Strategy, relies on
interpretation by the coder. The analyst uses these codes
to determine the cognitive actions taken by a programmer
comprehending the program. Some strategies tend to be as-
sociated with particular patterns, but there is no one-to-one
relation between them. For example, the Design at Once
strategy is often associated with a linear pattern and sug-
gests the programmer is reading sequentially through part,
or all of the code, to acquire an overall understanding. In-
traprocedural and Interprocedural Control Flow follow
the expected control flow of the program, which implies that
the programmers is simulating program execution. Test
Hypothesis involves repetition of a gaze pattern, suggest-
ing increased concentration is needed to better understand a
particular detail of the program. Trial and Error is essen-
tially a Linear Scan pattern with faster reading, irregular

jumps, and repetition. This code is used when the program-
mer is searching for some part of the code that will lead
to an initial understanding. So far, we have identified 14
distinct strategies.

3.4 Interpretation of Results

Our analyses of the two traces proved extremely inter-
esting. Subject 1, whose gaze we described as erratic, cor-
rectly answered the study question. Subject 2, whose gaze
seemed to be more methodical, chose the wrong answer to
a multiple-choice question about the code. Since both of
these subjects were expert programmers, we think it is un-
likely that the differences in the accuracy of their answers
are directly related to the differences in their gaze patterns.
Indeed, we would hope that Subject 2’s wrong answer indi-
cated a simple slip, rather than a failure to comprehend the
code. Perhaps Subject 1 got his answer correct because his
task was more specific than Subject 2’s task. Subject 2 had
to memorize more of the code and remember four specific
variables (x1, x2, y1, and y2) in order to choose the cor-
rect answer. Nevertheless, it is clear that different experts
can display entirely different gaze patterns while reading the
same code for comprehension. This diversity was apparent
in the traces, even though the program was very short, sim-
ple, and bug-free.

3.5 Lessons Learned

As we expected, we had to revise and refine the coding
scheme during the course of the case study. Participants
found using ELAN to code the low-level categories (e.g.
Block) to be time-consuming and inconsistent, and wished
for a tool to automate this step.

The distinction between patterns as objective, observable
behavior and strategies as the associated cognitive processes
was valuable. However, the coding process is necessarily
subjective and the coders could not be definitive about the
readers’ cognitive processes. Perhaps at this early stage of
the research, it would be beneficial to complement the eye
movement analysis with other methods, such as retrospec-
tive think-alouds.

Our aim is to correlate the subjects’ cognitive strategies
with observable patterns, so that we might use the pattern
to identify the strategy being applied. This would make
strategy coding less subjective, but is going to require a
great deal more analytical work before it becomes feasible.

One threat to the validity of our coding scheme is that
we based it on just two expert gaze traces of one program.
However, we believe that our collaborative experiment has
helped us establish a foundation that supports additional
data analysis and the elaboration and development of more
sophisticated analysis methods and materials. Future stud-
ies that vary programs, problem domains, and test subjects
will enable the research community to refine and improve
our expanded understanding of the cognitive processes in-
volved in program comprehension.

4. DATA ANALYSIS - CHALLENGES AND
SOLUTIONS

In this section, we discuss the challenges raised in the
case study and explain how we addressed them. We present
several tools to support interpretation of eye movement data
and of records annotated with the coding scheme. Even

though the interpretation of eye gaze data is not entirely
straightforward, our workshop made it clear to us that the
main challenges are already well understood.

Eye tracking videos are useful for spot-checking specific
points in an experiment (e.g., did the subject look in re-
gion X at time T'), but it is not easy to get a big picture
sense of the subject’s behavior or to compare it with other
subjects’ behaviors. Static visualizations like heatmaps and
fixation scatter plots can provide such global pictures, but
these fail to capture the dynamics and nuances of subject be-
havior. Accurate eye tracking data interpretation requires
additional tools and methods to combine the various views
that arise during the analysis.

4.1 Visualizing Annotated Gaze Records

Here we present several tools to help interpret data anno-
tated with ELAN-assigned codes. First, we present an eye
movement flow chart in Figure 2, made using the D3.js li-
brary. This flow chart represents a graphical Markov chain
of the elements in the coding scheme. Flow charts can help
analysts find and understand eye gaze patterns, and can also
be used in exploratory analysis.

Height/|
Mainl
Y2 widthl[]

Main
Height
Main
|:|Area
HHeight

Constructor HeightD
H Width

WidthD

WidthD

Figure 2: Gaze transition flow chart for Subject 1

The curved lines in the chart represent transitions of the
subject’s eye gaze from a source (left) to a target (right).
The chart in Figure 2 shows two consecutive transitions.
The width of the curved lines indicates the fraction of times
(i.e., probability) the subject transitioned from the particu-
lar source to that particular target. For example, Subject 1
looked at Main and then Height about twice as often as he
did from Main to Area. However, after looking at Area, he
switched back to Main and Height roughly the same frac-
tion of times. We can use the flow charts to compare sub-
jects and easily see the differences in their transition prob-
abilities. Subject 1’s flow chart shows many narrow tran-
sitions between code locations, while Subject 2’s flow chart
(see report [4]) shows fewer, wider lines between consecutive
code locations reflecting his more methodical comprehension
style.

Second, we introduce VETtool* which can read a file of
ELAN annotations (i.e., the codes from the coding scheme)
and display them on a timeline based on the duration of the
associated fixations. After using ELAN to assign low-level
codes (e.g., Signature), VETool’s visualization can show
the areas of the program that were visited during the trial.

4VETool is GPLv2 software built on the Net-
Beans Platform with JavaFX. The source code
can be found at https://bitbucket.org/orlovpa/
visual-evaluation-tool-vetool.

Several codes can be presented together, allowing the analyst
to see the timeline of the areas of interest (AOIs) overlaid
with the patterns and strategies employed to understand
them.

Total time line (msec)
9,000
5,000
7,000
6.000 MBIV\/
5,000

4,000

2,000

1,000
bt .‘J il 51> U i i il 11141...1' Dnant el .\.4 ' S
0 10000 20000 30000 40000 50000 60000 70000 80000 90,000 100,000
Eye Movements Blocks SubBlocks Patterns
« Fixation Duration Attributes Height Body Flicking
Area ¥ Main Return Linear Scan
Constructor Width Signature

Figure 3: VETool displaying fixation durations (or-
ange) and Main codes (green) for Subject 1

VETool also enables analysts to correlate fixation counts
and durations with various low-level, pattern, or strategy
codes, helping determine whether the subject was just briefly
inspecting an area or examining it at length. Visualizing
these correlations make it easier to compare two subjects by
highlighting differences in their behavior. Figure 3 shows
subject 1 concentrating on Main overlaid with fixation dura-
tion.

4.2 Quantizing Fixations

Next, we describe two static visualizations that we devel-
oped for understanding program comprehension. The first
transforms fixations into coarse-grained areas of interest,
such as single code elements, lines of code or blocks. The
second plots the areas of interest (or metrics derived from
them) on a timeline.

The workshop participants found coding the gaze location
into code elements and blocks to be tedious and error-prone.
Automatically coding these tiers would address a primary
challenge of the eye tracking data analysis process [6]. So,
we created a tool to draw virtual rectangles around areas of
interest and assign each fixation to zero or more AOIs. Each
AOI rectangle is then associated with the source code on
the screen that represents each of the low-level codes in the
coding scheme (e.g., Block, Line, Method Call, etc.). For
simplicity, assume that the AOI rectangles for the Block,
SubBlock, Signature, and Method Call categories do not
overlap, making them mutually exclusive (this is not the
case for Pattern).

this.y2 =y2;

Figure 4: Sample assignment of a fixation to an AOI

To determine whether or not a fixation belongs to an AOI,
the tool draws a circle around the center of the fixation
point with radius R, and chooses the AOI rectangle with
the largest area of overlap (Figure 4). The choice of the
parameter R influences accuracy and depends on other pa-
rameters such as the size of the computer monitor and font
size used in the experiment.

Once fixations from the eye gaze record have been assigned
to AOIs (and thus the low-level codes in the coding scheme),

https://bitbucket.org/orlovpa/visual-evaluation-tool-vetool
https://bitbucket.org/orlovpa/visual-evaluation-tool-vetool

Fixations by Line (Subject 1, Rectangle)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (seconds)

Figure 5: Fixations for Subject 1 quantized by line

we plot them on a timeline. The timeline plot in Figure 5
shows Subject 1’s fixations, quantized by Line using R = 20
pixels. These plots provide a wealth of information about
a participant’s behavior at a glance, enabling analysts to
easily identify critical moments in the eye gaze record.

The AOI quantization tool is based on a graphical analy-
sis of the eye gaze pixel locations on the screen. Its ability
to track AOIs does not work so well on screens that contain
scrolling or changing content. Applying it to IDEs in which
the subject may scroll or type new code is simply infeasible
for non-trivial programs and tasks [6]. Fortunately, there
are IDE add-ons that can help, such as the iTrace plugin for
Eclipse.® iTrace provides the exact source code entity a pro-
grammer looks at. Linking the eye tracker output directly
to the IDE enables us to use the plugin to automatically
annotate the eye gaze information with the correct program
elements, solving the scrolling problem and the problem of
adding or editing code.

Automatic code labeling facilitates aggregation of the data,
which is valuable for group comparisons. In addition, if de-
fined formally enough, pattern codes can be automatically
derived from the low-level labels. For example, the Linear
Scan pattern is readily apparently on a timeline plot. In
Figure 5, we might say that Linear Scan describes the fix-
ations between 2 and 20 seconds. We caution that someone
should review the results because noise in the raw gaze data
might have resulted in an incorrect classification of an AOI
or low-level code, throwing off the pattern detector.

Finally, automatically labeling codes from our scheme of-
fers a foundation for comparing results from future studies of
eye tracking in computing education. We invite computing
education researchers to apply our coding scheme in their
own studies.

4.3 Strategies and Fixation Metrics

To aid in the identification and interpretation of Strategy
codes, we compute three fixation metrics over the course of
each trial: fixation count, mean fixation duration [19], and
fixation spatial density [8]. We calculate each using a moving
average of 4 second time windows, shifted by 1 second at a
time. Typically, a single 4 second time window will contain
about a dozen fixations.

The first metric is simply the total number of fixations
in a time window. The second is the average duration of
these fixations. The third metric divides the screen into
a grid, and calculates the proportion of cells in the grid

Shttp://www.csis.ysu.edu/ bsharif/iTrace

0.7 Rolling Metrics (Subject 1, Rectangle) 14 -3000 __
)
£
0.6 12 f2s00=
> P=1 2
G 05 10 20005
5 8 S E
S 0.4 < {1500
© 6 2 S
= o) =]
§_0.3 42 1000_§
[
0.2 2 500 g
[
05 o lo =
. N OoOmnonMOoOLNOWwOoLWOoLwWmOolwmOoLwmOoLwno
H A NNMMN T SFTIAN OO NMN0O0D 2

Time (sec)

Figure 6: Fixation metrics for Subject 1

that contain at least one fixation. We applied a 10-cell,
vertically-divided, rectangular grid to the source code editor,
so a spatial density of 1 means that each rectangle in the
grid was fixated upon at least once during the 4 second time
window.

Finally, we plot the metrics (after removing time windows
which contain no fixations) on a timeline. Figure 6 illus-
trates the three metrics computed from Subject 1’s trial.
Dips in the spatial density (shown on the red line) corre-
spond to time windows in which Subject 1 focused on just
one or two lines of code. Sometimes this corresponds with
an increase of the number of fixations (blue line), we found
to be useful to distinguish between Debugging and Test Hy-
pothesis Strategy codes.

Subject 1’s erratic gaze is revealed by the very low mean
fixation duration (green line), however, we see it increase
sharply just after 70 seconds into the trial when Subject
1 focuses his gaze on the final line of the program: Sys-
tem.out.println(rect2.area()); Recall that his task in
this trial was to obtain the value of rect2.area(). Given
the increased mean fixation duration, and the drop in fixa-
tion count and spatial density at approximately 65-75 sec-
onds, we hypothesize that Subject 1 is performing the neces-
sary mental calculation to compute the area of rect2. While
it may not be possible to pinpoint changes in strategy using
this kind of visualization, we can quickly identify interesting
time windows that we should investigate further.

S. PROSPECTS FOR PROGRAMMING
EDUCATION

Eye tracking offers opportunities for a great range of re-
search questions in the areas of programming education and
program comprehension. Possible research topics include

e the effects of text-based, graphical, or UML program
representations [26]; syntax and language features; pro-
gramming paradigms;

e the behaviors and strategies of a learner’s reading, un-
derstanding, writing and debugging tasks’

e challenges for learners, e.g., what makes tasks difficult
for them, what obstacles impair their understanding
and use of programming concepts;

e evaluation of tools for static and dynamic program vi-
sualization [5], as well as for IDEs [3]; and

e gaze-related concerns, e.g., exploring the possibility of
providing immediate feedback based on eye movements
in programming environments [2].

http://www.csis.ysu.edu/~bsharif/iTrace

These topics can lead to advances in teaching programming
in the following areas.

5.1 Decoding the Learner

Eye tracking allows us to retrace how the novice goes
about reading and understanding source code. We can ob-
tain information about difficulties, behavior and strategies,
and develop new tools to assess learners. In addition, we
can describe and evaluate an individual’s level of expertise
on the basis of aggregated empirical studies of eye tracking
that compare novice and expert programmers.

5.2 Advances in Teaching Material and Tools

The detailed data provided by eye trackers can also help
to advance learning tools, such as IDEs for learning pro-
gramming. Eye tracking is a well-established instrument
in usability testing with a large corpus of analyses, metrics
and examples of best practice. Applying eye tracking can
help developers increase tool usability and lower the bar-
riers to adoption. More sophisticated uses of eye tracking
could provide highly-contextualized feedback to the learner,
for example in an automated tutor. If an eye tracking metric
moves past a particular threshold, it could indicate that the
student is having difficulties with the material, and could
use a hint in order to make progress. Visual cueing could be
employed in an IDE, if students look too long at the wrong
section of code, or thrash their gaze over the entire program
without focusing on any particular part.

5.3 New Perspectives for Teaching Code
Reading

Eye tracking studies can be used to shed light on how in-
dividuals conceptualize and discern the embedded process
of computational representations. A crucial challenge yet to
be solved is to explore the code reading characteristics of
individuals. First a normative or generalized pattern needs
to be established, e.g., a program flow gaze pattern for spe-
cific source code examples. After taking into account the
learner’s ability or level of understanding or the difficulty of
the task, individual deviations from this normative eye gaze
pattern can be used to reveal meaningful information about
the concrete learning process.

These normative eye gaze patterns can help identify differ-
ences in the strategies adopted by programmers with various
levels of expertise, domain knowledge, and skills. Given that
the ability to read and comprehend code seems to be linked
with the ability to write it, there is substantial evidence that
many programming novices have not yet acquired the ability
to effectively read programs [16]. As with natural language,
concrete code reading skills can explicitly be taught to learn-
ers, addressing purposes like debugging code or working out
why it is written that way. It is hard to do this now because
reading and debugging strategies are so ingrained that peo-
ple are not aware of them on a conscious level.

Eye tracking could be used to raise a novice’s awareness
of how they go about reading code. A novice could track
himself solving a task, and later understand how what he
was thinking corresponded with where he was looking. This
would build a novice’s self-awareness and facilitate the meta-
cognition that eventually teaches a beginner to read code
efficiently.

We can use eye gaze data to explore experts’ strategies and
develop teaching materials demonstrating their application.

Novices observing expert programmers’ eye movements on a
given task could get visual cues as to what is important [22].
This might lead to the creation of a tool for teaching read-
ing skills that shows the student where to look, an approach
that has proved successful in other domains [25]. If students
could be taught to consciously use code reading strategies
according to code size, program structure and other param-
eters, they could see how to make their own approach more
effective. After they have been taught these reading tech-
niques, teachers can use eye tracking to verify that students
are using them, enabling better assessment of teaching in-
terventions.

From our workshop examples, we saw that experts can
read the same code using very different strategies. There-
fore, the ones offered to learners should be those that were
used consistently by many expert programmers. Individual
students could then adopt a strategy that fits well with their
own personal approach.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented eye tracking as a method
to enrich computing education research. Tracking a person’s
gaze gives a record of their visual behavior on a super fine-
grained scale in both space and time. We can build on the
small, but growing, body of sound work on eye tracking in
the context of programming to enhance programming educa-
tion practice and research. Eye tracking has the potential to
open up new methods of understanding how people program
and learn to program, of corroborating existing empirical
research, and of tackling currently unsolved questions. Its
benefits will stretch across broad areas of research, such as
program reading and comprehension, and afford new teach-
ing material for aspects of professional expertise that have
not yet been analyzed.

Gaze analysis offers intriguing prospects for further study.
Eye tracking can record a person’s visual behavior during
reading, without interruption, adding to his cognitive load,
or requiring a subjective report. Thus, this research tool
provides a new quality and directness, along with a much
finer data granularity, to observe cognitive processing.

Gaze analysis can also serve as an additional source of
data to corroborate studies carried out with other research
methods. Such study replications will help to increase our
collective evidence and sharpen our theories. With more
and more of the challenges associated with eye tracking be-
ing solved, with eye trackers becoming more affordable, and
with relevant analytical tools becoming increasingly avail-
able, such studies might even become a standard in educa-
tional research.

Our Eye Movements in Programming workshop and this
paper are a first step towards making eye tracking more
accessible to computing educators. When a dozen experts
in computer science education and eye tracking can agree on
the potential of using eye movement data in programming
education, their position must surely have some merit.

7. ACKNOWLEDGMENTS

We would like to thank all workshop participants for their
great work.

8. REFERENCES
[1] A. Allevato and S. H. Edwards. Discovering patterns

10

11

13

]

]

in student activity on programming assignments. In
ASFEE Southeastern Section Annual Conference and
Meeting, 2010.

V. M. G. Barrios, C. Giitl, A. M. Preis, K. Andrews,
M. Pivec, F. Modritscher, and C. Trummer. Adele: A
framework for adaptive e-learning through eye
tracking. In Proc. of IKnow, volume 4, pages 1-8.
Citeseer, 2004.

R. Bednarik. Expertise-dependent visual attention
strategies develop over time during debugging with
multiple code representations. International J. of
Human-Computer Studies, 70(2):143-155, 2012.

R. Bednarik, T. Busjahn, and C. Schulte. Eye
movements in programming education: Analyzing the
expert’s gaze. Technical report, University of Eastern
Finland, Joensuu, Finland, 2014.

R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen.
Effects of experience on gaze behavior during program
animation. In Proc. of 17th Annual Workshop of the
Psychology of Programming Interest Group, pages
49-61, Sussex University, 2005.

R. Bednarik and M. Tukiainen. An eye-tracking
methodology for characterizing program
comprehension processes. In Proc. of the Symposium
on FEye Tracking Research € Applications, pages
125-132. ACM, 2006.

T. Busjahn, C. Schulte, and A. Busjahn. Analysis of
code reading to gain more insight in program
comprehension. In Proc. of the 11th Koli Calling
International Conference on Computing Education
Research, pages 1-9, Koli, Finland, 2011. ACM.

L. Cowen, L. J. Ball, and J. Delin. An eye movement
analysis of web page usability. In People and
Computers XVI-Memorable Yet Invisible, pages
317-335. Springer, 2002.

M. E. Crosby and J. Stelovsky. How do we read
algorithms? A case study. Computer, 23(1):24-35,
1990.

Q. Fan. The effects of beacons, comments, and tasks
on program comprehension process in software
maintenance. PhD thesis, University of Maryland at
Baltimore County, Catonsville, MD, USA, 2010.

J. Helminen, P. Thantola, and V. Karavirta. Recording
and analyzing in-browser programming sessions. In
Proc. of the 13th Koli Calling International
Conference on Computing Education Research, pages
13-22, Koli, Finland, 2013. ACM.

V. A. Huemer, M. Hayashi, F. Renema, S. Elkins,

J. W. McCandless, and R. S. McCann. Characterizing
scan patterns in a spacecraft cockpit simulator:
Expert vs. novice performance. Proc. of the Human
Factors and Ergonomics Society Annual Meeting,
49(1):83-87, Sept. 2005.

A. Hyrskykari, S. Ovaska, P. Majaranta, K.-J. Riih4,
and M. Lehtinen. Gaze path stimulation in
retrospective think-aloud. J. of Eye Movement
Research, 2(4):1-18, 2008.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

(24]

(25]

[26]

M. Just and P. Carpenter. A theory of reading: From
eye fixations to comprehension. Psychological Review,
87:329-354, 1980.

M.-J. Laakso and Simon, editors. Proceedings of the
13th Koli Calling International Conference on
Computing Education Research, November 2013.

R. Lister, C. Fidge, and D. Teague. Further evidence
of a relationship between explaining, tracing and
writing skills in introductory programming. SIGCSE
Bulletin, 41(3):161-165, 20009.

J. C. Nordbotten and M. E. Crosby. The effect of
graphic style on data model interpretation.
Information Systems J., 9(2):139-155, 1999.

C. Piech, M. Sahami, D. Koller, S. Cooper, and

P. Blikstein. Modeling how students learn to program.
In Proc. of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages
153-160, NY, USA, 2012. ACM.

A. Poole and L. J. Ball. Eye tracking in
human-computer interaction and usability research:
Current status and future. In Prospects, Chapter in C.
Ghaoui (Ed.): Encyclopedia of Human-Computer
Interaction. Pennsylvania: Idea Group, Inc, 2005.

B. Sharif, M. Falcone, and J. Maletic. An eye-tracking
study on the role of scan time in finding source code
defects. In Proc. of the Symposium on Eye Tracking
Research € Applications, pages 381-384, Santa
Barbara, CA, 2012. ACM.

S. Sridharan, R. Bailey, A. McNamara, and

C. Grimm. Subtle gaze manipulation for improved
mammography training. In Proc. of the Symposium on
Eye Tracking Research € Applications, pages 75-82,
Santa Barbara, California, 2012. ACM.

R. Stein and S. E. Brennan. Another person’s eye gaze
as a cue in solving programming problems. In Proc. of
the 6th international conference on Multimodal
interfaces, pages 9-15, PA, USA, 2004. ACM.

R. Turner, M. Falcone, B. Sharif, and A. Lazar. An
eye-tracking study assessing the comprehension of
C++ and Python source code. In Proc. of the
Symposium on Eye Tracking Research € Applications,
pages 231-234, Safety Harbor, Florida, 2014. ACM.
H. Uwano, M. Nakamura, A. Monden, and K.-i.
Matsumoto. Analyzing individual performance of
source code review using reviewers’ eye movement. In
Proc. of the Symposium on Eye Tracking Research €
Applications, pages 133-140, San Diego, California,
2006. ACM.

S. J. Vine, R. S. Masters, J. S. McGrath, E. Bright,
and M. R. Wilson. Cheating experience: Guiding
novices to adopt the gaze strategies of experts
expedites the learning of technical laparoscopic skills.
Surgery, 152(1):32-40, July 2012.

S. Yusuf, H. Kagdi, and J. I. Maletic. Assessing the
comprehension of UML class diagrams via eye
tracking. In Proc. of the 15th IEEE International
Conference on Program Comprehension, pages
113-122, 2007.

	Introduction
	Gaze in computing
	A Brief Introduction to Eye Tracking
	Previous Work on Eye Tracking in Computer Programming

	Case study
	Experimental Setup
	The Workshop
	Coding Scheme
	Interpretation of Results
	Lessons Learned

	Data Analysis - Challenges And Solutions
	Visualizing Annotated Gaze Records
	Quantizing Fixations
	Strategies and Fixation Metrics

	Prospects for Programming Education
	Decoding the Learner
	Advances in Teaching Material and Tools
	New Perspectives for Teaching Code Reading

	Conclusions and Future Work
	Acknowledgements
	References

