
Pair Programming: What’s in it for Me?

Andrew Begel
Microsoft Research
One Microsoft Way

Redmond, WA 98052
andrew.begel@microsoft.com

Nachiappan Nagappan
Microsoft Research
One Microsoft Way

Redmond, WA 98052
nachin@microsoft.com

ABSTRACT
Pair programming is a practice in which two programmers work

collaboratively at one computer on the same design, algorithm, or

code. Prior research on pair programming has primarily focused

on its evaluation in academic settings. There has been limited

evidence on the use, problems and benefits, partner selection, and

the general perceptions towards pair programming in industrial

settings. In this paper we report on a longitudinal evaluation of

pair programming at Microsoft Corporation. We find from the

results of a survey sent to a randomly selected 10% of engineers at

Microsoft that 22% pair program or have pair programmed in the

past. Using qualitative analysis, we performed a large-scale card

sort to group the various benefits and problems of pair program-

ming. The biggest perceived benefits of pair programming were

the introduction of fewer bugs, spreading code understanding, and

producing overall higher quality code. The top problems were

cost-efficiency, (work time) scheduling problems, and personality

conflicts. Most engineers preferred a partner who had comple-

mentary skills to their own, who was flexible and had good com-

munication skills.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Programming

teams.

General Terms
Measurement, Human Factors.

Keywords

Pair Programming, Survey experiments, Developers, Empirical

studies.

1. INTRODUCTION
Pair Programming (PP) [19] is a software development practice

that is gaining significant popularity in academia [13, 14, 21]. Pair

programming refers to the practice whereby two programmers

work together at one computer, collaborating on the same algo-

rithm, code, or test. One member of the pair is the driver, who

actively types at the computer, or records a design or architecture.

The other plays the role of navigator. The navigator watches the

work of the driver, attentively identifying defects and making

suggestions. The two are also continuous brainstorming partners.

Pair programming is part of the Extreme Programming methodol-

ogy [3] that is gaining widespread use in industry. Most research

on pair programming has been focused in an academic environ-

ment. There have been limited studies about pair programming in

industry, and these only provide preliminary evidence of some

empirical results related to quality and productivity. As research-

ers, we would like to understand how pair programming metho-

dologies are used, what kinds of problems and benefits they are

perceived to have, the types of partners people would like to

work, and a general consensus on PP‟s usefulness in the software

engineering professional community. We believe strongly in using

quantitative and qualitative empirical methods to explore ques-

tions generated by these research topics. While there is much to be

learned from looking at the software created by developers and

from measuring developer productivity and software failure-

proneness, we can gain great insight by asking software develop-

ers directly about their current development practices, and about

their perceptions of the development processes that are spreading

through the software engineering community.

We conducted a web-based survey of Microsoft developers, tes-

ters, and managers who are directly involved in the development

of software. Our pair programming questionnaire was part of a

larger survey on Agile software development [4]. The survey

asked software engineers to respond to questions on perceived

problems and benefits of pair programming, the type of partner

they would like to work with, and their perceptions on whether

pair programming takes more time, produces higher quality code,

etc.

We find that 22% of participants have practiced pair program-

ming, but only 3.5% do it in their current project. Most practition-

ers are more experienced than the average Microsoft employee

practicing other Agile development methodologies. Around two-

thirds like pair programming and believe it is a workable practice,

but less than half would agree to that of their team‟s use of pair

programming. Three-eighths of the respondents believe that pair

programming takes more time than programming alone, but two-

thirds believe that the quality of the resulting software is better.

Summarizing what we discovered about the perceived benefits of

pair programming, two people working together on the same

problem derive process improvements that result in better soft-

ware. The problems perceived with pair programming are all

forms of anxiety: individual anxiety working closely with some-

one else and an organizational anxiety over allocation of funds to

pair programming. Many of the attributes of a good pair pro-

gramming partner are similar to that of a good spouse. The partner

should communicate well, complement the other‟s skills and per-

sonality, and in some areas be better than the other to stimulate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ESEM‟08, October 9-10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

learning experiences as well as help solve problems together. A

good pair programming team is fast, efficient, and effective be-

cause they have complementary skills, communicate well, are

sensitive to the other‟s needs and personality, and work without

antagonizing one another.

The rest of this paper is organized as follows. In Section 2, we

discuss our contributions, and in Section 3 review the related re-

search. Section 4 describes the survey methodology and illustrates

the quantitative results. In Section 5, we discuss the benefits and

problems of pair programming as perceived by engineers at Mi-

crosoft and the characteristics of a good pair programming partner

based on our qualitative data card sort. Finally, Section 6 con-

cludes with a review of our most important findings and their

implications for future research.

2. CONTRIBUTIONS
In this paper our main contributions are

1. Quantitative data on the adoption of pair programming

in a large software company.

2. The perceived benefits and problems of pair program-

ming.

3. The characteristics an engineer looks for in an ideal pair

programming partner and team.

4. The perception that pair programming produces higher

quality code at the expense of more time compared with

solo programming.

3. RELATED WORK
In our discussion of related work we classify the previous work in

this area broadly as academic and industrial case studies.

3.1 ACADEMIC CASE STUDIES
Researchers at the University of California, Santa Cruz (UCSC)

have reported positive results in studies involving pair program-

ming with students [5, 12]. Their studies indicate that pair pro-

gramming helped in increasing the retention rate of students who

might have otherwise dropped out of the introductory program-

ming course. They also indicate that pair programming students

produce better quality code and perform comparably on exams

with respect to solo programming students. Their research in pair-

ing protocol leads them to recommend pairing students with oth-

ers within the same section; pairing students with others with

similar skill level; and ensuring that there is a coding standard.

Additional research on a large sample of students (555 students)

indicates that pairing bolsters the course completion and pass rates

and leads to higher retention of students in a computer-related

major. Furthermore, students show a positive attitude towards pair

programming.

Similar research performed at North Carolina State University

[15, 16] indicates that pair programming helps retain more stu-

dents in the introductory computer science stream. Students in

paired labs have a more positive attitude toward working in colla-

borative environments, and students who pair program in intro-

ductory classes do not perform adversely in future classes when

they program individually.

Research results [8, 20] based on experiments held at the Univer-

sity of Utah in a senior-level software engineering course indicate

that pair programmers produce higher quality code in about half

the time when compared with solo programmers. But experiments

conducted at the Poznan University of Technology, Poland [17]

have obtained opposite results which indicate that pairs spend

almost twice as much total programmer effort as solo program-

mers.

Thomas et al. [16] at the University of Wales show that students

with least self-confidence enjoyed pair programming the most. In

addition, most students with a higher skill level preferred not to

pair with students of a lower skill level. The researchers discov-

ered some initial evidence that students produce their best work

when they are paired with a partner of equal skill and confidence

level. Similarly, Katira et al. [10] examined compatibility among

freshmen, advanced undergraduates, and graduate students. They

found that the students‟ perception of their partner‟s skill level

had a significant influence on compatibility. Graduate students

worked well with partners of similar actual skill level. Similarly,

first year undergraduates seem to work better with partners with

different Myers-Brigg [6] personality types.

3.2 INDUSTRIAL CASE STUDIES
Chong and Hurlbutt [7] conducted an ethnographic observation of

two teams of professional pair programmers over a period of four

months. They found that professional programmers played differ-

ent roles being engaged jointly in programmer activities than the

traditional driver/navigator pair discussed in literature [19]. They

identified expertise and keyboard control as important factors

influencing pair programming interactions. In another industrial

case study, Hulkko and Abrahamsson [9] observed mixed results

regarding the perceived benefits of pair programming. Using em-

pirical data from four projects written in C++ and Java ranging

from 3.7 KLOC (thousand lines of code) to 7.7 KLOC, they ob-

served a comparable defect density between solo and pair pro-

gramming on one of their projects, and in another, a significantly

lower defect density for the pair programmers. From the perspec-

tive of productivity (measured using KLOC per person hour), pair

programming productivity in two of the projects was better than

solo programming, but a third project was worse. All of these

results indicate that pair programming may not consistently pro-

vide benefits to code quality or superior productivity when com-

pared with solo programming.

In possibly one of the largest relevant studies [1], 295 software

professionals of varying expertise from Norway, Sweden and UK

participated in a controlled experiment on pair programming. The

participants were divided into 98 pairs and 99 individuals. They

performed several development and maintenance tasks on two

Java systems with differing degrees of complexity. The results of

this experiment do not support the hypothesis that pair program-

ming reduces the time required to complete tasks correctly, nor

does it increase the proportion of correct solutions. Conversely,

they found an 84% increase in effort expended to complete the

tasks correctly. Junior professional programmers enjoyed in-

creased correctness when developing complex systems, whereas

intermediate and senior professional programmers required less

time to perform maintenance tasks correctly on simple systems.

From the above studies we observe that pair programming appears

to be very different in academic than in industry. In academia,

pair programming is used for education and has positive effects on

student retention. In industry, there is little research on pair pro-

gramming, and what little there is shows conflicting results. Sur-

prisingly, we do not have a good qualitative assessment of how

professional programmers might explain these results. Our re-

search aims to address some of these questions.

4. SURVEY METHOD
Our research was conducted using an anonymous web-based sur-

vey offered over a period of two weeks in October 2006 within

Microsoft. As presented in our earlier paper [4], an invitation was

sent by email to 2,821 recipients, randomly selected from a much

larger pool of around 28,000 software developers, test developers,

and program managers. We extracted the 28,000 engineers‟ email

addresses into a spreadsheet, sorted them by job role, picked a

random 10% of each role, and invited them to participate in our

survey. The survey had several questions on the influence of pair

programming on quality, productivity, and learning. We also re-

quested free-form responses for the top benefits and problems of

pair programming and for the characteristics of an ideal pair pro-

gramming partner and team.

4.1 SURVEY DESIGN
Kitchenham and Pfleeger [18] discuss the design and construction

of personal opinion surveys using the following steps: searching

the relevant literature; construct an instrument; evaluate the in-

strument; document the instrument. In our survey, as suggested by

Kitchenham and Pfleeger, we use formal notations, limit our res-

pondents responses to numerical, Yes/No type, Likert-scale, and

short free form answers. Respondents were anonymous, but could

identify themselves (separate from their survey responses) to enter

a drawing for a $250 reward. We followed Kitchenham and

Pfleeger‟s advice on the need to understand whether the respon-

dents had enough knowledge to answer the questions in an appro-

priate manner. For this, we restricted the people invited to partici-

pate in the survey to people in technical roles (no sales or market-

ing employees). Second, even if people had never pair pro-

grammed, they could skip the survey and still be included in the

drawing, ensuring that no one felt compelled to take the survey for

the chance to win the gift.

We received 491 responses, of which 4 were invalid (two dupli-

cates and two empty surveys), for an overall response rate of 17%.

Response rate for developers was 18%, testers were 18%, and

managers were 10%. The survey asked about the respondents‟

experiences and perceptions on Agile software development and

pair programming. The Agile software developments results were

discussed in an earlier paper [4] – this paper focuses on pair pro-

gramming.

All of the free response answers were printed out on more than a

thousand note cards. We sorted them to categorize the responses

by thematic similarity (as illustrated in LaToza et al.‟s study [11]).

The themes that emerged during the sort were not chosen before-

hand. Figure 1 shows the card sort with themes in colored cards.

Respondents reported 435 benefits of pair programming and 350

problems. They also reported 447 attributes of a good pair pro-

gramming partner, and 369 attributes of a good pair programming

team.

Figure 1: Card sort

4.2 DEMOGRAPHICS
Among our overall sample of 487 respondents, 106 respondents

have pair programmed in the past or are currently using pair pro-

gramming (21.7 % of the overall respondents). This is the sample

population we use for the analysis in this paper. 17 of these 106

respondents are using pair programming in their current develop-

ment project. Of the 106 respondents, 68% are involved in devel-

opment, 21% in testing, 8% in program management, and the

remainder in documentation, research, etc. 81.1% of these respon-

dents are individual contributors, 14.1% are managers and 4.8%

are managers of managers. Respondents had an average of 10.6

years experience in the software profession (standard deviation

was 7.4; median 9.0). They have worked on their current team for

an average of 2.1 years (standard deviation 2.2, median 1.5). The

respondents were spread across different geographical locations

across the world. The work experience levels indicate that our

respondent population is fairly experienced – more than our pre-

vious results on Agile software development [4].

Figure 2: Pair Programming Example at Microsoft

Figure 2 shows a typical example of pair programming for Micro-

soft. This archival picture shows a shared keyboard and large

monitor arrangement between two developers, and is similar to

the practice in academic case studies discussed in Section 2.

5. PERCEPTIONS OF PAIR

PROGRAMMING
In this section we discuss the perceptions towards pair program-

ming by engineers at Microsoft obtained directly through the sur-

vey and through the card sort.

5.1 INDIVIDUAL ATTITUDES TOWARDS

PAIR PROGRAMMING
We asked respondents Likert-scale questions to learn whether

they liked pair programming and how well it was working for

them. Figure 3 shows the results. 64.4% said they believe that pair

programming works well for themselves and 62.8% believe it

works for their partner. A lower percentage (48.2%) say PP works

for their team, and an even lower number (39.2%) say it is work-

ing for their larger organization. This reflects the grassroots nature

of pair programming adoption at Microsoft. Individual teams are

trying out pair programming, but are finding it difficult to get

management buy-in to spread the practice.

Respondents were also asked three questions about the effects of

pair programming on their work (Figure 4). First, addressing the

perception that pair programming wastes two programmers to do

the job of one, only 37.5% of respondents agree with the state-

ment that pair programming takes more time to do the same work

that one person could have done alone. Only 25.4%, however,

believe that it does not. More than a third of respondents do not

say either way. Almost two-thirds of respondents (64.5%) agree

that pair programming results in fewer bugs in the code. We were

worried that the bugs they left in the code would be harder to fix,

but 35% of respondents disagree. Only 17.8% feel that pair pro-

gramming leaves difficult bugs behind in the code.

Figure 3: Individual attitudes towards pair programming

Figure 4: Effects of pair programming on work

0% 20% 40% 60% 80% 100%

Pair programming is working well for

my larger group.

Pair programming is working well for

my team.

Pair programming is working well for

my partner.

Pair programming is working well for

me.

Strongly Agree Agree Neutral Disagree Strongly Disagree

0% 20% 40% 60% 80% 100%

Bugs remaining in the code are harder to fix

than if no one had pair programmed at all.

There are fewer bugs in the code because of

pair programming.

Pair programming takes more time to do the

same work than if it had been done alone.

Strongly Agree Agree Neutral Disagree Strongly Disagree

5.2 PAIR PROGRAMMING BENEFITS
We asked all survey participants what they thought were the top

three benefits and problems with pair programming. We also

asked them what they thought were attributes of a good pair pro-

gramming partner and a good pair programming team. Comments

from the respondents are presented in italicized form to add more

contextual information.

Table 1 presents the top 10 benefits of pair programming as per-

ceived by the respondents, and the number who cited it as a bene-

fit. The top benefit was fewer bugs in the source code. One person

said “it greatly reduces bug numbers.” Simple bugs were found

and fixed, as one respondent reported, “there are fewer „petty‟

bugs.” In addition, respondents speculated that the longer bugs

live in the code, the more difficult they are to fix. Using pair pro-

gramming, “bugs are spotted earlier” in the development process,

and “may prevent bugs before [they are] deeply embedded.”

Table 1: Pair Programming benefits

1. 1. Fewer Bugs 66

2. 2. Spreads Code Understanding 42

3. 3. Higher Quality Code 48

4. 4. Can Learn from Partner 42

5. 5. Better Design 30

6. 6. Constant Code Reviews 22

7. 6. Two Heads are Better than One 22

8. 8. Creativity and Brainstorming 17

9. 9. Better Testing and Debugging 14

10. 10. Improved Morale 13

The second most cited benefit indicated that pair programming

helps to spread code understanding between the members of the

pair. Pair programming provides “shared equal deep knowledge of

the product,” and is an efficient means to promote “greater un-

derstanding of a larger codebase across the team.” From a risk-

aversion viewpoint, pair programming is a defense against em-

ployee attrition – “There is never only one person in the team who

knows all the code.”

In third place was higher quality code. It provides “improved

software quality,” and “higher quality code in terms of consisten-

cy with guidelines.” The end result is a “better quality product.”

Pair programming helps improve quality “through more extensive

review and collaboration.”

Fourth was the ability to learn from a partner. The use of pair

programming is a good way to “quickly ramp-up new members,”

and enables “users to learn new techniques faster.” Partners like

to teach as well, suggesting that “mentoring and showing someone

who is unfamiliar with the code is the best benefit.” Pair pro-

gramming has reciprocal benefits to both partners because “every-

one learns constantly from each other.” “That makes each mem-

ber of the pair a stronger coder and employee.”

The fifth benefit was the perception that software being built had

a “better architecture and implementation” mainly due to “adhe-

rence to good design and standards.” Dissent is not only tole-

rated, but encouraged. Designs and architectures “are challenged

from the start, so designs are either great to start with, improved,

or scrapped and replaced with a better design.” More cooks in the

kitchen provide “designs with the benefit of broader insight” and

“differing opinions on their approach.”

Rounding out the top ten benefits of pair programming were con-

stant code reviews, the notion that two heads were better than one,

more creative brainstorming, better testing and debugging of the

software, and improved morale. The Appendix at the end of the

paper lists the other perceived benefits of pair programming we

found in our survey.

5.3 PAIR PROGRAMMING PROBLEMS
Table 2 highlights the top ten problems with pair programming as

perceived by the respondents and the number who cited it as a

problem. The number one problem reported with pair program-

ming is cost. Two people are being paid to the do the work of one.

Pair programming “requires „twice as many‟ people,” making it

“difficult to justify the cost up front.” There was considerable

“skepticism that having two people working on one task is a good

use of resources” – the time taken to “complete the project is not

halved.” Manager buy-in was also challenging, with one stating,

“if I have a choice, I can employ one star programmer instead of

two programmers who need to code in a pair.”

Table 2: Pair programming problems

1. Cost efficiency 79

2. Scheduling 31

3. Personality clash 25

4. Disagreements 24

5. Skill differences 22

6. Programming style differences 13

7. Hard to find a partner 12

8. Personal style differences 11

9. Distractions 10

10. Misanthropy 9

10. Bad Communication 9

10. Metrics/Hard to Reward Talent 9

The second problem is scheduling time to work in pairs. The two

partners require “equivalent schedules” and suffer “twice the

scheduling complications.” “Blocking out two calendars can be

hard. Makes it almost impossible for a lead.” Pairing “reduces the

freedom of work hours of individual contributors.”

The third most cited problem is a clash of personalities. “Perso-

nality differences are more disruptive to productivity than in solo

programming.” Similarly, “if the pair is not on the same frequen-

cy, it is a nuisance,” and results “in potential bad quality.” Find-

ing compatible partners is a difficult process. It is “hard to find

pair programmers that have compatible personalities, value sys-

tems and lifestyles.” “Many partnerships fail due to personality

conflicts,” especially due to “infighting, egos, and one person

trying to be the superstar.” Also, overfamiliarity can breed con-

tempt – “pairs get sick of each other.”

The fourth problem is trouble resolving disagreements. Pairs find

it “hard to get to a consensus in ideas.” “Sometimes we waste time

on discussion,” where we surmise from the spectrum of responses

that to many respondents, „discussion‟ is synonymous with „ar-

gument.‟

The fifth problem is that engineers are worried that they will be

paired with a partner who is not as smart or skilled as they are.

They worry that “it may slow down whiz kids,” and “tends to drag

the faster/smarter/better person down.” The consequences for the

partnership could be dire – “if the partners‟ abilities are imba-

lanced, it could be that one partner become obsolete in the

process.”

The rest of the top ten problems are anxiety over differences in

programming style, difficulty finding a partner to program with,

differences in personal style, and pair programming being very

distracting and preventing one from getting work done. In a three-

way tie for tenth, some respondents just do not like other people,

they have trouble communicating with others, and they feel that

management finds it difficult to properly attribute rewards to each

member of a pair for the work that they do. In the Appendix, we

list the remaining problems that respondents reported.

5.4 GOOD PAIR PROGRAMMING

PARTNERS
Table 3 highlights the top ten attributes our respondents indicated

were important to have in pair programming partner.

Table 3: Attributes of good pair programming partners

1. Complementary Skills 40

2. Flexibility 33

3. Good Communications 31

4. Smart 25

4. Personable 25

6. At Least the Same Skills as Me 21

7. Strong programmer 17

7. Better Skills than Me 17

7. Able to Focus 17

10. Knowledgeable 15

The top attribute of a good pair programming partner is that the

person has complementary skills to your own. The diversity of

thought process is the overriding sentiment in many responses.

My partner “usually looks at things from a different angle.” He

has a “different background which provides a different perspec-

tive.” An ideal partner would be “able to think … even [from] a

different role (e.g. test and dev together).” Development skills

were also important. For example, they should have an “overlap-

ping but not identical skill set.” It was useful that an ideal partner

is “experienced in areas that I am not,” “blocks on different things

than I do,” and “knows everything I don‟t know.” Engineers

wished for a work partner in the truest sense of the term – “some-

one who complements my thinking and skills in terms of technical

and design skills.”

The second attribute is flexibility. An ideal partner is “open

minded,” and “open to new ideas.” He is “willing to cooperate

and step away from the PC with me to work on design or other

details.” He “understands that there is often more than one „right

way‟ and doesn‟t argue every point.” A key characteristic of an

ideal partner is that he is “not stubborn.” He has to be “able to

adapt to different working styles.”

Every study of pair programming has shown that it is a communi-

cations-intensive process. Thus, not surprisingly, the third most

important attribute of a pair programming partner is good com-

munications skills. Industrial developers qualify the communica-

tion to ask that their partner be a “good listener,” “articulate,”

“easy to discuss code with,” and “very verbal, so I can understand

the thought process.” He should “enjoy debating and discussing

code,” and should “ask questions, [and] provide opinions.”

Tied for fourth is that the person is smart and personable. A good

partner is “mentally quick,” “technically skilled,” and “intelli-

gent.” He should have “good interpersonal skills,” be “easy to

work with,” have a “sense of humor,” and be “comfortable with

people around them.” Other mental qualities included being an

“analytical thinker,” an “excellent problem solver,” and someone

who “can think abstractly.” Demonstrating sensitivity in particu-

lar situations is quite important. He should be “able to correct you

without making you feel uncomfortable,” and definitely “should

not be a know-it-all or a person who always gets his/her way.”

The rest of the top ten attributes are that the person has at least the

same level of skills as the other, that they are a strong program-

mer, that they have better skills than the other, that they can focus

on the job at hand, and are generally knowledgeable. In the Ap-

pendix, we list the remaining attributes of a good pair program-

ming partner that respondents reported.

5.5 GOOD PAIR PROGRAMMING TEAMS
Table 4 highlights the top ten attributes our respondents indicated

were important to have in a successful pair programming team.

Many of these were similar to that of a good pair programming

partner, but were from a more summative point of view.

Table 4: Attributes of good pair programming teams

1. Good Communications 32

2. Complementary Skills 31

3. Compatible Personalities 25

4. Team Works Effectively 16

5. No Ego 15

6. Fast and Efficient 14

7. Flexibility 12

8. Common Goals 11

8. Good Quality 11

10. Same programming skills 10

10. Collaborative 10

10. Work Well Together 10

The number one attribute possessed by a good pair programming

team is good communication skills. “Communication, communi-

cation, communication.” Again, similar to a good partner, teams

need “compatible communication styles,” where each partner

“communicates often,” especially about design. The way partners

interact face-to-face was crucial – they should have “excellent

communication (verbal as well as body language).” Communica-

tion outside the team is important as well. They should be able to

“communicate effectively about what they did to others.”

Number two is that they should have complementary skills. “A

little diversity here is good.” The team members should “work off

of each other‟s strengths and weaknesses.” Considering different

ways to tackle problems was very important – partners need

“complementary sets of knowledge [so] they don‟t get locked into

the same approaches every time just due to familiarity.”

Third is that they have compatible personalities. With “coopera-

tive personalities, they work well together, rather than trying to

compete with one another.” Also, “neither pushes their opinion

too much to the detriment of the partnership.” An ideal team

“consists of easy-going people who want to listen and share ideas

with each other.” “Tolerance” and “mutual trust” were vital traits

that both members should feel for one another, as well as “perso-

nality types which aren‟t domineering.”

The fourth attribute is that the team works effectively. The team

should “work well together.” In order to do this, their “minds

[ought to] work in similar ways when solving problems (so they

don‟t argue too much about how to do something).” Demonstrat-

ing that they can produce results, a good team “delivers quality

code on time,” and “shows [that they] have the collective skills

required to achieve the job.”

Rounding out the top five is that the team should leave their ego at

the door. An ideal pair is “ego-less,” where “partners are not

overly critical,” and are “permissive to mistakes.” Each should

“respectfully disagree with each other, ” and “not take criticism

of their code as a personal attack against them.” A team should

exhibit a “willingness to co-excel, as opposed to compete directly

with their partner.” “No one [should] push their opinion too much

to the detriment of the partnership.”

The rest of the top ten attributes are that the team is fast and effi-

cient, they are flexible, they share common goals, they produce

good quality code, they have the same programming skills, are

collaborative and that they work well as a pair. The remainder of

the positive attributes of a good pair programming team can found

in the Appendix.

6. THREATS TO VALIDITY
From the perspective of threats to validity we have the issue of

content validity. Content validity is a subjective assessment of

how appropriate the instrument [survey document] is for a group

of reviewers with knowledge about the subject matter [18]. To

assess this threat we did a pilot evaluation of our survey with

people in different product groups familiar with Agile software

development and pair programming. We observed them taking the

survey while thinking aloud. What they said about each question

and its response was used to remove any confusing elements or

misunderstandings due to poor wording in the survey. These pilot

participants were not part of the group to which the survey was

sent.

From the researcher bias (and internal validity) point of view, the

survey was conducted anonymously, by the two authors who do

not belong to any Microsoft product division (all respondents

belong to the product division). The benefits and problems were

self-reported in free-form to remove any bias that could have been

introduced by the authors asking the respondents to pick the bene-

fits and problems of pair programming from a list. Furthermore,

the authors have no influence on the use or perception of pair

programming in Microsoft‟s product groups.

The main threat to external validity is that the results are from one

organization. We cannot assume a priori that the results of our

study generalize beyond the specific environment in which it was

conducted. Researchers become more confident in a theory when

similar findings emerge in different contexts [2]. Towards this

end, we intend that our case study will be replicated in different

software organizations.

7. CONCLUSION
In this paper we have reported on a large scale survey deployed at

Microsoft Corporation to gain insights into perception towards

pair programming in industry. Overall our findings indicate that a

significant majority (64.4%) of our respondents believe that pair

programming works well for them. But as things scale up to the

team and organization level they feel pair programming does not

work as well. A significant majority (65.4%) of our respondents

also feel that pair programming produces higher quality code.

Additionally our respondents are divided on whether pair pro-

gramming take make time than solo programming – only 25.4%, a

minority, believe that it does not. The primary perceived benefit

of pair programming is better code quality with fewer bugs and

the biggest perceived problems deal with cost efficient, schedul-

ing issues and personality clashes with the partner. Most pro-

grammers would like to pair with someone who has complemen-

tary skills to their own, is flexible and has good communication

skills. From the perspective of teams, good communication skills,

compatible personality and complementary skills were most de-

sirable.

Our study results show results which differ from prior empirical

studies done in academia regarding the preference of pair pro-

grammers to work with partners having similar skill levels or

knowledge, regarding perceptions towards time spent on pair

programming, and regarding quality.

We have found several teams at Microsoft that currently use pair

programming. Our next goal is to conduct a focused study with

quantitative data from the team‟s product (like source code, defect

measurements), qualitative data (surveys, interviews and ethno-

graphic shadowing observations), and do an end-to-end observa-

tional study of a team using pair programming. To further build an

empirical body of knowledge, we wish to collaborate with faculty

and researchers in academia and industry to collect empirical data

on the perceptions of pair programming in different environments.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous respondents to

our survey at Microsoft. Researchers and faculty wanting to repli-

cate the study are encouraged to contact the authors for a copy of

the survey.

REFERENCES

[1] E. Arisholm, Gallis, H., Dyba, T., Sjoberg, D., "Evaluating

Pair Programming with Respect to System Complexity and

Programmer Expertise", IEEE Transactions in Software En-

gineering, 33(2), pp. 65 - 86, 2007.

[2] V. Basili, Shull, F.,Lanubile, F., "Building Knowledge

through Families of Experiments", IEEE Transactions on

Software Engineering, 25(4), pp. 456-473, 1999.

[3] K. Beck, Extreme Programming Explained: Embrace

Change, Second ed. Reading, Mass.: Addison-Wesley, 2005.

[4] A. Begel, Nagappan, N., "Usage and Perceptions of Agile

Software Development in an Industrial Context: An Explora-

tory Study", Proceedings of Empirical Software Engineer-

ing and Measurement (ESEM), pp. 255-264, 2007.

[5] J. Bevan, L. Werner, and C. McDowell, "Guidelines for the

User of Pair Programming in a Freshman Programming

Class", Proceedings of Conference on Software Engineering

Education and Training, Kentucky, pp. 100-107, 2002.

[6] C. Bishop-Clark and D. D. Wheeler, "The Myers-Briggs

personality type and its relationship to computer program-

ming", Journal of Research on Computing in Education,

26(3), pp. 358-370, Spring 1994.

[7] J. Chong, Hurlbutt, T., "The Social Dynamics of Pair Pro-

gramming ", Proceedings of International Conference on

Software Engineering, pp. 354-363, 2007.

[8] A. Cockburn and L. Williams, "The Costs and Benefits of

Pair Programming," in Extreme Programming Examined, G.

Succi and M. Marchesi, Eds. Boston, MA: Addison Wesley,

2001, pp. 223-248.

[9] H. Hulkko, Abrahamsson, P., "A multiple case study on the

impact of pair programming on product quality", Proceed-

ings of International Conference on Software Engineering,

pp. 495 - 504, 2005.

[10] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, and E.

Gehringer, "On Understanding Compatibility of Student Pair

Programmers", Proceedings of ACM Technical Symposium

on Computer Science Education (SIGCSE), Norfolk, VA, pp.

7-11, 2004.

[11] T. D. LaToza, Venolia, G., DeLine, R., "Maintaining mental

models: a study of developer work habits", Proceedings of

International Conference on Software Engineering, pp. 492-

501, 2006.

[12] C. McDowell, L. Werner, H. Bullock, and J. Fernald, "The

Effect of Pair Programming on Performance in an Introduc-

tory Programming Course", Proceedings of ACM Special

Interest Group of Computer Science Educators, Covington,

KY, pp. 38-42, 2002.

[13] C. McDowell, L. Werner, H. Bullock, and J. Fernald, "The

Impact of Pair Programming on Student Performance of

Computer Science Related Majors", Proceedings of Interna-

tional Conference on Software Engineering 2003, Portland,

Oregon, pp. 2003.

[14] M. M. Müller and O. Hagner, "Experiment about Test-first

Programming", Proceedings of Conference on Empirical

Assessment in Software Engineering (EASE), pp. 2002.

[15] N. Nagappan, L. Williams, M. Ferzli, K. Yang, E. Wiebe, C.

Miller, and S. Balik, "Improving the CS1 Experience with

Pair Programming", Proceedings of SIGCSE 2003, pp.

2003.

[16] N. Nagappan, L. Williams, E. Wiebe, C. Miller, S. Balik, M.

Ferzli, and J. Petlick, "Pair Learning: With an Eye Toward

Future Success", Proceedings of Extreme Program-

ming/Agile Universe, New Orleans, pp. 2003.

[17] J. Nawrocki and A. Wojciechowski, "Experimental Evalua-

tion of Pair Programming", Proceedings of European Soft-

ware Control and Metrics (ESCOM 2001), London, England,

pp. 2001.

[18] F. Shull, Singer, J., Sjoberg, D.I. (Editors), Guide to Ad-

vanced Empirical Software Engineering. London: Springer,

2008.

[19] L. Williams and R. Kessler, Pair Programming Illuminated.

Reading, Massachusetts: Addison Wesley, 2003.

[20] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries,

"Strengthening the Case for Pair-Programming," in IEEE

Software, 2000, pp. 19-25.

[21] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L.

Werner, "Building Pair Programming Knowledge Through a

Family of Experiments", Proceedings of International Sym-

posium on Empirical Software Engineering (ISESE) 2003,

Rome, Italy, pp. 143-152, 2003.

APPENDIX
In this appendix, we report on the benefits, problems, attributes of

a pair programming partner and attributes of a pair programming

team that were mentioned by at least two respondents in the sur-

vey.

After the top ten benefits for pair programming are another 18

benefits. Here they are in order of popularity: Better team work,

improved productivity and efficiency, socialization, a single indi-

vidual cannot block progress, maintainability of code, increased

work focus, faster work pace, two people can work in parallel,

shared code ownership, reliability, potential for self improvement,

quick releases, better coding practices, shared work, better archi-

tecture, better customer support, high-level low-level balance, and

fewer distractions.

The remaining problems that respondents reported with pair pro-

gramming in order of popularity are that it is hard to adopt pair

programming, there is limited office space, it is hard to think with

another person working over your shoulder, it requires a commit-

ment from the entire team, partners can be overcritical, it is diffi-

cult to get management to agree to let you use program in pairs,

and you cannot easily do independent work while pairing. Contin-

uing, some people are afraid of pair programming, they feel a

lower sense of ownership over the code, they feel it is not part of

the Microsoft culture, pairs can ignore their own interpersonal

problems when programming, pairing suffers when there are too

many changes in the product cycle, they compete with their part-

ner, and they feel that people should work alone sometimes. The

rest of the problems have two respondents associated with them:

They worry about an unequal commitment level between the part-

ner, long term pair compatibility, bad documentation, extra man-

agement overhead, a passive partner, less creativity, lack of tools,

lack of privacy, they find it hard to pair when the team has an odd

number of people, less work on upfront design, hard bugs are not

found, it is stressful, hard to deal when a partner is absent, people

do not know about pair programming, it can be difficult to share

driving duties, they cannot multitask, they may need more than

two people when working on a problem, they may need to rework

some code written by the partner, it is too easy to stop pairing, it

requires discipline, sometimes it does not work if the partner is

not compatible, and it can deliver fewer features.

There are many other attributes that respondents attribute to a

good pair programming partner: critical, objective, detail-oriented,

easy to work with, no ego, patient, team player, good at reviewing

designs, has the same work hours, fast thinker, committed to qual-

ity, likes to switch drivers, self-motivated, respectful, tolerant,

good at planning, good problem solver, has acceptable personal

hygiene, is a quick typist, thinks about multiple use cases, and is

professional. A number of qualities were reported by only two

respondents: willing to commit to pair programming, honesty,

quick learner, pairing a developer with a program manager, pair-

ing a developer with another developer, they like to swap pairs

frequently, diverse, has the same design style, is productive and

hard-working, is a good teacher, is creative and punctual.

The rest of the attributes that respondents perceive are important

for a good pair programming team to have are shares knowledge,

has a similar working style, willing to swap partners, learns from

the other, committed to pair programming, critical, tolerant, en-

joys pair programming, is a good team leader, conducts focused

meetings, has equal knowledge as me, has good skills, conducts

good discussions, cares about metrics, is a problem solver, is a

junior developer paired with a senior developer (and vice versa),

is productive, has an open workspace, is patient, self-motivated,

synergistic, feels strongly about code ownership, is a good match,

disciplined, diverse, is on the same wavelength, and has expe-

rience. The remaining attributes were given by two respondents:

has a customer focus, is willing to swap drivers, is dynamic,

trustworthy, reliable, produces maintainable code, is engrained in

the Microsoft culture, has matching passion, knows when pair

programming is useful, and adheres to coding standards.

