
Mining Software Effort Data: Preliminary Analysis of
Visual Studio Team System Data

Lucas Layman+
Dept. of Computer Science

North Carolina State University
Raleigh, NC, USA

lucas.layman@ncsu.edu

Nachiappan Nagappan, Sam Guckenheimer, Jeff Beehler
Andrew Begel

Microsoft Corporation
Redmond, Washington, USA

nachin, samgu, jeffbe, abegel@microsoft.com

ABSTRACT

In the software development process, scheduling and predictabili-

ty are important components to delivering a product on time and

within budget. Effort estimation artifacts offer a rich data set for

improving scheduling accuracy and understanding the develop-

ment process. Effort estimation data for 55 features in the latest

release of Visual Studio Team System (VSTS) were collected and

analyzed for trends, patterns, and differences. Statistical analysis

shows that actual estimation error was positively correlated with

feature size, and that in-process metrics of estimation error were

also correlated with the final estimation error. These findings

suggest that smaller features can be estimated more accurately,

and that in-process estimation error metrics can be provide a quan-

titative supplement to developer intuition regarding high-risk fea-

tures during the development process.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Performance measures,

Process metrics, Product metrics.

General Terms

Measurement, Experimentation

Keywords

Effort estimation, scheduling, prediction

1. INTRODUCTION
Accurate estimates of software development effort lead to more

reliable schedule prediction. As work progresses on a software

feature and the amount of remaining effort changes, inaccurate or

varying effort estimates can serve as indicators that the feature

may require further risk assessment and mitigation. Estimation

inaccuracy can be detrimental to an organization’s economics and

credibility due to delayed releases, poor quality, and customer

dissatisfaction with the product.

One approach to software effort estimation entails the creation of

prediction models, including the classical COCOMO [2] and CO-

COMO II [3] models, and the use of function points [1]. These

models focus on an algorithmic approach to build software effort

estimation models. Other effort estimation efforts, such as the

CoBRA® model [4], supplement expert judgment with quantita-

tive data. There is tremendous potential to mine effort databases

and to use machine learning algorithms to understand and build

cost-estimation models using effort estimation revision data. De-

fect prediction, a current focus of the software mining community,

can also be combined with effort data to understand the relation-

ship between cost estimations and quality. This paper serves to

highlight the need for research in mining software effort databases

and discusses our preliminary work in this area.

This paper describes our research in mining software effort esti-

mation data for the Visual Studio 2008 release of Microsoft’s

Visual Studio Team System (VSTS). The VSTS development

group predicted the effort required to complete 55 features for the

2008 release and updated the actual and remaining effort tallies

throughout the development process. We collected the effort es-

timation data from Microsoft’s Team Foundation Server and per-

formed statistical analyses to identify estimation error and rela-

tionships between error and effort metrics. We also asked team

members about the causes of estimation error.

Our paper begins with our motivation and research goals in Sec-

tion 2. We summarize related work in Section 3. In Section 4, we

discuss our data collection, and experimental context. Section 5

presents our experimental findings. We conclude the paper with

our contributions and plans for future work in Section 6.

2. MOTIVATION
Effort estimation in software development is still an open problem

in research and in practice. Top software engineering conferences

and journals including TSE, TOSEM, and ICSE yield few publi-

cations on effort estimation when compared to the amount of pa-

pers on software quality prediction. A better understanding of

effort estimation will help organizations to predict and adhere to

development schedules and will provide a more thorough under-

standing of risk factors affecting software development effort. In

this paper, we aim to motivate researchers to mine effort estima-

tion data to help understand various software engineering

processes and phenomena and to encourage researchers to build

+ This work was completed while Lucas Layman was an intern with

the Software Reliability Research Group at Microsoft Research in
the summer of 2007.

better prediction models to estimate software effort.

In our first experiment, we analyzed effort data extracted from the

latest release of the Microsoft Visual Studio Team System (VSTS)

project – a large software product developed at Microsoft Corpo-

ration. The main goal of this paper is not to provide definitive

conclusions or research results, but to open discussion on mining

and understanding software effort data. We had the following

goals in our preliminary research experiment.

Goal 1 Identify the relationship between feature estimation

errors (actual and relative to feature size) and various

estimation metrics (e.g., # of updates, effort change)

Goal 2 Visualize overestimation and underestimation of

features in VSTS.

Goal 3 Build time-based statistical models for effort data to

predict future effort.

3. RELATED WORK
Algorithmic prediction of software development effort estimation

began with research on COCOMO [2], COCOMO II [3] and func-

tion points [1]. Shepperd and Schofield [8] describe an approach

for building effort estimation models by using similar projects

according to attributes such as development method and size of

the requirements document. Jørgensen et al. [7] report that predic-

tions of an experienced maintainer were better than the predictions

of an inexperienced maintainer for corrective and small, simple

maintenance tasks only in an empirical study with 109 randomly

selected tasks at a large Norwegian company. Jorgensen and

Moløkken-Østvold [6] analyzed data from 68 completed projects

and identified reasons for estimation error that include the role of

the respondents, the data collection approach, and the type of ef-

fort analysis. Jørgensen [5] and Briand, et al. [4] present ap-

proaches for systematically integrating expert opinion into a more

formal effort estimation process.

4. EXPERIMENTAL SETUP
We collected effort estimation data for all 55 features in the Visu-

al Studio 2008 release of Microsoft’s Visual Studio Team System

(VSTS). VSTS is a suite of Application Lifecycle Management

tools for effective team software development. The VSTS product

is comprised of over 1 million lines of code. It is written primari-

ly in C#, with some T-SQL, and some C++. The VSTS product

group was formed in 2003, and is presently composed of 350+

personnel: 21 managers. The group is distributed over locations

in Redmond, WA (USA), Raleigh, NC (USA), and Hyderabad,

India. In its first release, Visual Studio 2008, the development

team followed a traditional ―plan-driven‖ approach where the

entire feature set was planned in detail up-front and then updated

periodically.

In the VSTS development group, work is divided into features that

are implemented by small teams (4-5 persons) comprised of de-

velopers, testers, and one program manager, and are called ―fea-

ture crews.‖ Feature information, including effort data, is availa-

ble through the Visual Studio IDE to all members of the team.

Having the feature information centralized within the develop-

ment environment lessens the amount of work required to update

the data. Effort data for features implemented the Visual Studio

2008 release are stored and maintained in the VSTS system by

program managers. Each feature in VSTS received an initial ef-

fort estimate in person-hours. The amount of estimated remaining

work and the amount of completed work on each feature is up-

dated periodically by members of the feature crew. The effort

estimates and work completed are typically updated on a weekly

basis.

For our research, we mined the revision history for each feature in

the Visual Studio 2008 release of VSTS. All feature information

is stored in the Team Foundation Server (TFS) component of

VSTS. TFS serves as a central repository for the information, and

its data is accessible through the Visual Studio IDE and a variety

of database connections. TFS provides an On-Line Analytical

Processing (OLAP) cube that affords easy access and querying of

the data stores, including effort information. We collected revi-

sion history using TFS’s query capabilities. An example effort

revision history for a feature is shown in Figure 1.

Figure 1. Effort revision history for a feature in person-hours

We computed overall estimation accuracy according to the effort

completed since the first available estimate. The ―Cumulative

Completed Work‖ (CCW) value is entered by a member of the

feature crew to represent the number of person-hours thus far

completed toward the feature. The ―Cumulative Remaining

Work‖ (CRW) value is also entered by a member of the feature

crew and serves as an estimate of the amount of remaining work.

The effort completed since the first estimate is calculated automat-

ically as ―Cumulative Newly Completed Work‖ (CNCW), where

CNCW is the CCW in the revision minus the CCW in the first

entry. This computation affords a better assessment of estimation

accuracy for the many work items with work completed before the

first effort revision, but it overcorrects for work items that had no

work completed before the first entry. All calculations regarding

effort estimation and accuracy use the CNCW (rather than CCW).

The ―Estimation Change‖ (∆CRW) column displays estimate

change between effort revisions while accounting for work com-

pleted in the interval. A positive value indicates an increase in the

amount of estimated work.

Revision Date

Cumulative

Completed Work

Cumulative

Remaining Work

Cumulative NEWLY

Completed Work

Estimation

Change

8/21/2006 6 510 0 0

8/22/2006 70 558 64 112

8/31/2006 144 484 138 0

9/7/2006 174 454 168 0

9/14/2006 240 388 234 0

9/20/2006 286 342 280 0

9/22/2006 286 294 280 -48

9/28/2006 352 230 346 2

10/5/2006 394 188 388 0

10/11/2006 422 144 416 -16

10/19/2006 443 123 437 0

10/23/2006 451 235 445 120

10/26/2006 470 188 464 -28

11/2/2006 558 100 552 0

11/9/2006 552 61 546 -45

11/16/2006 583 30 577 0

11/30/2006 584 2 578 -27

12/13/2006 554 0 548 -32

Table 1. Effort metrics

Effort metrics Description Formula

Actual Estimation Error (AEE) The difference of the initial estimate from the cumula-

tive newly completed work.
𝐴𝐸𝐸 = 𝐶𝑅𝑊1 − 𝐶𝑁𝐶𝑊𝑛

Relative Estimation Error

(REE)

The initial estimation error proportionate to the

amount of effort in the feature. 𝑅𝐸𝐸 =
𝐴𝐸𝐸

𝐶𝑁𝐶𝑊𝑛

of Estimation Updates The number of effort entries for a work item sans

those entries where the CRW has remained at zero.

The first effort entry is not counted.

Mean Estimation Change

Magnitude (𝐸𝐶)
The average magnitude of change in a work item’s

effort entries. 𝐸𝐶 =
|∆𝐶𝑅𝑊𝑖|

𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑈𝑝𝑑𝑎𝑡𝑒𝑠

𝑛

𝑖=2

Mean Update Interval (𝑈𝐼) The average number of days that have passed between

effort entries. 𝑈𝐼 =
𝑇𝑖 − 𝑇𝑖−1

𝑜𝑓 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑈𝑝𝑑𝑎𝑡𝑒𝑠

𝑛

𝑖=2

Mean Estimation Speed (𝐸𝑆) The estimation change magnitude relative to the num-

ber of days between estimates. 𝐸𝑆 =
|∆𝐶𝑅𝑊𝑖|

𝑇𝑖 − 𝑇𝑖−1

𝑛

𝑖=2

5. FINDINGS
The metrics defined in Table 1 were computed for the collected

data. The Actual Estimation Error (AEE) and Relative Estimation

Error (REE) provide the overall effort estimation accuracy of a

feature. A negative AEE/REE value indicates that the work

item’s effort was underestimated – the amount of work to com-

plete the feature was greater than originally estimated. The AEE

value is useful for interpreting the impact of effort estimation

inaccuracies, while the REE value can be used to normalize esti-

mation accuracy for comparison between features.

5.1. Metric Correlations
We performed a Spearman rank-order correlation on the metrics

to identify any relationships between the metrics collected, the

amount of new work, and the estimation error. The results are

summarized in Table 2.

Table 2. VSTS 2008 metric correlations

 (CNCW)

(Person

Hours)

|REE| |AEE|

Absolute Relative

Estimation Error

(|REE|)

Not

significant

Absolute Actual

Estimation Error

(|AEE|)

ρ = 0.635

p < 0.01

of Estimation

Updates

ρ = 0.754

p < 0.01

Not

significant

ρ = 0.573

p < 0.01

Mean Estimation

Change Magni-

tude (𝐸𝐶)

ρ = 0.642

p < 0.01

ρ = 0.573

p < 0.01

ρ = 0.825

p < 0.01

Mean Update

Interval (𝑈𝐼)
ρ = -0.522

p < 0.01

Not

significant

ρ = -0.450

p < 0.01

Mean Estimation

Speed (𝐸𝑆)
ρ = 0.668

p < 0.01

ρ = 0.507

p < 0.01

ρ = 0.761

p < 0.01

The correlation between the CNCW and the |AEE| is expected and

implies that larger features tend to have larger estimation errors.

The correlations between CNCW and 𝐸𝐶 (estimation change

magnitude) and 𝐸𝑆 (estimation speed) also suggest that larger

work items require more substantial revision in effort estimates

during development. Not surprisingly, more estimation updates

are correlated with larger features and higher |AEE| values. Re-

lated to this, larger features and those with higher |AEE| values are

updated more frequently.

The 𝐸𝐶 and 𝐸𝑆 values are strongly correlated with both the |REE|

and |AEE| values. This implies that the magnitudes of the indi-

vidual effort estimation changes are indicative of the overall accu-

racy of the initial estimate. This relationship is expected, but is

also important for two related reasons. First, the relation of these

in-process metrics to the overall estimation accuracy suggests that

these in-process metrics are viable measurements of overall effort

estimation accuracy. Second, these in-process metrics may have

value to the product teams during development as a means to

identify and quantify which features are likely to require large

overall changes in their effort estimates.

5.2. Visualizing Effort Estimation History
Visualization of the effort estimation revision history for a feature

can provide insights into a feature’s history. Estimation evolution

charts are ―burn-down‖ charts with a separate line for the com-

pleted work. Figure 2 shows an ―ideal‖ estimation evolution

chart. The chart displays the ―burn-down‖ of the cumulative re-

maining work (CRW) along with the ―burn-up‖ of the cumulative

newly completed work (CNCW). The Y-axis units are person-

hours. The X-axis displays the date of the revision, however the

X-axis units are the revisions themselves and not the time span

between revisions.

The evolution chart in Figure 2 is ―ideal‖ because the CRW and

CNCW lines mirror each other. The lines would be an exact ref-

lection if the CRW and CNCW values were changing in concert in

each segment (i.e., the amount of estimated remaining work was

dropping by the amount of completed work).

Figure 2. An “ideal” estimation evolution chart from a VSTS

2008 feature

One can gauge the actual estimation error (AEE) from the evolu-

tion chart by evaluating the distance on the Y-axis from the be-

ginning of the CRW line and the end of the CNCW line – greater

distance implies more actual error. Figure 3 shows an underesti-

mation – indicated by the difference in the magnitude of the CRW

and the CNCW.

Figure 3. Estimation evolution chart showing a 33% underes-

timation

Effort evolution charts were created for all features in the two

releases of VSTS under study. The feature crews that had estima-

tion errors (over/under estimation) were contacted to ask for rea-

sons for the errors. Conversations with VSTS personnel revealed

common causes for estimation inaccuracy: requirements change,

changes in feature scope, developer resource constraints and ex-

ternal commitments, newly formed teams, and unfamiliar feature

requirements.

6. FUTURE WORK AND CONCLUSIONS
Our main intent with this paper is to motivate further research in

the software mining community to investigate effort databases. A

wealth of effort and process information, easily gathered, is avail-

able for analysis for process improvement when developers are

willing and motivated to update effort data. The data gathered for

our study was readily available from the TFS system available in

VSTS, and the analysis effort enabled by TFS was simple and yet

informative for the team.

In the future, we plan to investigate whether the use of statistical

prediction models is useful for identifying trends in effort revi-

sions. If we can fit the effort data to statistical growth models, we

can understand better the trends in the effort growth/modification

and use this information to help plan future effort estimates. We

plan to collect additional information regarding causal relation-

ships, expert decisions, and feature attributes to supplement the

historical data used in effort prediction models.

In this paper, we described our preliminary research in mining

effort estimation data for 55 features in the Visual Studio 2008

release of Microsoft Visual Studio Team System. We observed

the following:

 There is a positive correlation between actual estimation

error with feature size

 In-process metrics of estimation error were correlated

with the final estimation error.

 Visualizing effort estimation revisions allowed us to

quickly identify over/under estimation errors

 Conversations with development team members re-

vealed common, yet unsolved, causes for effort estima-

tion inaccuracies

Our findings supplement conventional wisdom and empirical data

on the sources of effort estimation inaccuracy and that larger fea-

tures are harder to accurately estimate than smaller features. The

correlation between in-process estimation accuracy metrics and

overall accuracy metrics suggests that monitoring estimation accu-

racy throughout the development process can be useful for identi-

fying risk-prone features.

7. REFERENCES

[1] A. J. Albrecht and J. E. Gaffney, "Software Function, Source

Lines of Code, and Development Effort Prediction: A Soft-

ware Science Validations," IEEE Transactions on Software

Engineering, vol. 9, pp. 639-648, November-December 1983.

[2] B. W. Boehm, Software Engineering Economics. Englewood

Cliffs, NJ: Prentice-Hall, Inc., 1981.

[3] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K.

Clark, E. Horowitz, R. Madachy, D. Reifer, and B. Steece,

Software Cost Estimation with COCOMO II. Upper Saddle

River, NJ: Prentice Hall, 2000.

[4] L. C. Briand, K. E. Emam, and F. Bomarius, "COBRA: A

Hybrid Method for Software Cost Estimation, Benchmark-

ing, and Risk Assessment," in 20th International Conference

on Software Engineering, Kyoto, Japan, 1998, pp. 390-399.

[5] M. Jørgensen, "Practical Guidelines for Expert-Judgment-

Based Software Effort Estimation," IEEE Software, vol. 22,

pp. 57-63, May-June 2005.

[6] M. Jørgensen and K. Moløkken-Østvold, "Reasons for Soft-

ware Effort Estimation Error: Impact of Respondent Role, In-

formation Collection Approach, and Data Analysis Method,"

IEEE Transactions on Software Engineering, vol. 30, pp.

993-1007, December 2004.

[7] M. Jørgensen, D. I. K. Sjøberg, and G. Kirkebøen, "The Pre-

diction Ability of Experienced Software Maintainers," in 4th

European Conference on Software Maintenance and Reein-

gineering, Zurich, Switzerland, 2000, pp. 93-99.

[8] M. Shepperd and C. Schofield, "Estimating Software Project

Effort Using Analogies," IEEE Transactions on Software

Engineering, vol. 23, pp. 736-743, November 1997.

