
Deciphering the Story of Software Development
through Frequent Pattern Mining

Nicolas Bettenburg
Software Analysis and Intelligence Lab (SAIL)

Queen’s University, School of Computing
Kingston, Ontario K1N 3L6 Canada

nicbet@cs.queensu.ca

Andrew Begel
Microsoft Research

Microsoft Corporation
Redmond, WA, USA

abegel@microsoft.com

Abstract—Software teams record their work progress in task
repositories which often require them to encode their activities
in a set of edits to field values in a form-based user interface.
When others read the tasks, they must decode the schema used to
write the activities down. We interviewed four software teams and
found out how they used the task repository fields to record their
work activities. However, we also found that they had trouble
interpreting task revisions that encoded for multiple activities
at the same time. To assist engineers in decoding tasks, we
developed a scalable method based on frequent pattern mining to
identify patterns of frequently co-edited fields that each represent
a conceptual work activity. We applied our method to our two
years of our interviewee’s task repositories and were able to
abstract 83,000 field changes into just 27 patterns that cover
95% of the task revisions. We used the 27 patterns to render
the teams’ tasks in web-based English newsfeeds and evaluated
them with the product teams. The team agreed with most of our
patterns and English interpretations, but outlined a number of
improvements that we will incorporate into future work.

Index Terms—software teams; task tracking; mining software
repositories; pattern mining

I. INTRODUCTION

Software teams commonly record their progress on software
development tasks in a work item repository such as Team
Foundation Server (TFS), Trac, or Bugzilla. These repositories
often employ general data storage architectures and require
form-based I/O. Thus, teams are required to define a schema
of fields and values to represent the current state of their work
practices. As team members do their work, they must “encode”
the activities they perform into values stored in particular
combinations of fields in the repository. When reading the
history of a work item, for example, when assigned a bug,
team members must “decode” those fields and values back
into the specific practices they describe.

In a multi-case study of four teams, all working within
one software product group inside Microsoft, we learned how
teams appropriate the fields of the work item repository for
their own process recording needs. We asked team members to
explain to us in English their interpretation for each of the field
changes in revisions to several work items, e.g., “what is the
meaning of setting the priority field to 1?”. Many work items
contained multiple field edits that corresponded to one or more
activities, and team members found that individually, those ac-
tivities could be described in up to seven independent, English

sentences per revision of each work item, e.g., the creation of
a task on which work has already started. Unfortunately, they
did not always succeed in describing each of the activities;
sometimes they missed a few, or were misled by several field
edits, which could not easily be placed into a single activity,
e.g., commits to the version control system were believed to be
actual bug fixes, but when observing surrounding field changes
turned out to be additions of printf debugging code.

To help decipher the task database and reveal the story of
the task within, we propose a novel method for automati-
cally discovering and classifying frequent field edit patterns
found in work item repositories. These frequently occurring
patterns represent fields that are often edited together and
thus describe a particular development activity recorded in
the task repository. Our method is easily scalable because we
use a quantitative statistical approach, called frequent pattern
mining (FPM). Based on this approach, we have been able to
create a prototype of a web-based newsfeed that can represent
a chronological English language history using the frequent
patterns as news item templates.

We applied our method to two years of a Microsoft product
team’s task repository containing 801,621 work item revisions.
The team uses a total of 71 unique fields to record their
work. Our analysis abstracts 375 unique combinations of field
edits into 27 patterns that cover 95% of the instances of field
edits. In addition, we conducted focus group with one of the
teams working on that product to measure their subjective
understanding of the newsfeed. Our preliminary results are
promising. The team reported that most of the newsfeed made
sense to them, but outlined a number of possible improvements
that we plan to incorporate into future work.

II. FORMATIVE STUDY

In order to record and express their activities in their task
repository, software team members must transform their rec-
ollection of their work into values for a set of fields in a form-
based editor. We hypothesize that this cognitively demanding
recording and decoding process impedes the ability of the
engineers’ to make sense of each task’s ongoing storyline. To
identify the extent and possible sources for these difficulties,
we interviewed four randomly-selected software developers,
testers, and program managers each working on different,



loosely-coupled teams collaborating together to build a single,
large, enterprise product.

We asked the four interviewees to read through a printed
transcript of the individual field values set in every revision
of a task from their Team Foundation Server that they had
worked on in the two weeks preceding the interview. We were
interested to hear how each expressed the activities recorded
in the task history in his own vernacular. We recorded the
interviews and transcribed them verbatim.

Each engineer explained the task as he would tell a story.
Instead of explaining each field state independently of the
others, they frequently referred to the previous and next
states of the field to tell us what it meant for the field’s value
to have changed. The engineers had an easy time explaining
the purpose of many of the fields. For example, the “How
Found” field was used by a tester to say whether he had
discovered the defect via his own test, an ad hoc test, or an
automated test.

The engineers also told us why a field was changed to a
particular value. One said that when his manager changes the
“Assigned To” field to Jason in Revision 1, it means that Jason
should triage the problem (not fix it). But, when he changed
“Assigned To” again in Revision 2, he said he realized it some
other team’s issue, and should be triaged further by one of
their team members. Since, it was not uncommon to modify
several of the fields in groups, rather than one at a time, in
Revision 2, the manager also changed “Substatus” from “Not
Started” to “Investigation.” The combination of field changes
indicated that he had now found the person who could look
at the problem.

The interviewees reported some cases of incorrect, missing,
and misleading data, just as was found by Aranda et al. [1].
Most pointed out omissions, such as not recording decisions
that took place during a face to face meeting; errors, such
as that the “author” recorded by the repository as having
reassigned the task to someone in another team was not the
person who was responsible for the task, but was simply the
meeting scribe recording the decision made by the true author
at the weekly triage meeting; and misleading data, such as
mischaracterizing the team members’ relative contributions to
a task to make the team’s workload appear more balanced to
his management chain.

A new kind of problem appeared, however. Interviewees
had trouble interpreting some of the combinations of field
edits that impeded their ability to recall the events of the
task. In some cases, they noticed that a field that should have
been set was missing from the edit. We noticed that two task
revisions were done by the same editor, within a few minutes
of one another. When we pointed this out, the interviewees
told us that since there were so many individual fields to
edit on the forms, and they had to set them all from scratch
every time, they would sometimes forget to set a few of them
when the task edit was submitted. They would then remember,
re-open the task edit, and submit another revision with the
missing field. For example, during a triage meeting, one of our
interviewee’s team members had to change the milestone in

which the task would be completed. He updated the “Iteration
Path” field to new hierarchical value that represented the
milestone, but forgot to add the milestone name itself (the
leaf of the path) to the “Internal Milestone” field, and had to
add it in the next revision, 2 minutes later.1

In other cases, they saw an unexpected field being set in
a revision, and were confused as to its purpose. Eventually,
they realized that there were two different activities encoded
into the same task revision, and the extra field was part of
the second activity. The developer told us that he had done
this often. After creating and triaging a task, he spent an
afternoon working on it. He had to then indicate that work
on the task progressed by changing the “Completed Work”
and “Remaining Work” fields. However, while working on
the task, he realized that the task needed work in a different
subsystem than he initially assumed, recorded this knowledge
in the “Area Path” and “Baseline Work” fields. Since he was
busy working toward his deadline, he updated all of those
fields in a single task edit right before the weekly meeting,
so that the task would be current during the meeting. The
developer told us that keeping the task repository up to date
has a high overhead, so updates to tasks are often carried out
in bulk. Thus engineers may update multiple fields that are
conceptually different and do not belong together in a single
revision in the repository.

Combining conceptually different field edits into the same
task revision makes it difficult to tell which set of fields
represent each activity. In the next section, we outline the use
of frequent pattern mining, a statistical analysis, to recover
frequently occurring field edit patterns and make it easier for
engineers to decipher the story of the task.

III. ACTIVITY ANALYSIS METHOD

To recover the true software development activities of the
product teams, we use a statistical knowledge discovery ap-
proach called Frequent Pattern Mining (FPM) [2]. FPM has
most popularly been used to analyze commercial transaction
databases of customers’ shopping baskets [3], enabling the
discovery of patterns, such as “people who buy diapers also
buy beer.” In software engineering, Zimmermann et al. use
FPM to mine the co-occurrences of files checked into a source
control repository [4]. In our method, we use FPM to discover
field edit relationships in each revision of the task repository,
such as “developers who edited Completed Work also changed
Remaining Work.” In this section, we explain how FPM works
and how we use it in more detail.
Data Representation. To begin FPM, we must represent the
transitions between each revision in a task as a binary vector
in a k-dimensional space. Let k be the number of fields in
the task repository schema. We represent each field as one
entry in a k-dimensional binary vector, where a 1 indicates
that the field value changed from the previous revision, and
0 means it did not. The collection of all transitions over all

1The apparent duplication of field values enables filtering on the milestone
name during triage meetings.



Change Effort Required Priority Effort Spent Assigned To

1 1 0 1 1
2 0 1 0 1
3 1 1 1 0
4 0 1 0 1

TABLE I
FOUR CHANGES TO FOUR FIELDS FOR A TASK.

tasks is represented as a k × m “binary incidence matrix,”
(where m is the total number of revisions counted over all
tasks), and forms the input into the FPM algorithm. We use
the aRules [5] package in R to execute FPM, and generate
lists, called “itemsets,” of the fields that are often changed
together.
Maximally Frequent Itemsets. We use a variant of FPM
that looks for the “maximally frequent itemsets.” We want to
capture the most detailed itemsets that retain enough support
to represent a frequent co-occurring pattern of field changes.
Otherwise, they might have been produced by chance, rather
than by a true association.

Consider Table I. It shows four changes from one task in our
repository. Each cell shows a 1 if the field heading that column
was changed in the row for that change, and a 0 if it did
not change. We can see that fields Effort Required and
Effort Spent were changed together 2 / 4 times. Hence,
the support of their itemset, {Effort Required, Effort Spent},
is 2

4 = 0.5. Two other sets of edited fields include the itemset
{Effort Required, Effort Spent}: {Effort Required, Effort Spent,
Assigned To} and {Effort Required, Effort Spent, Priority}.
However, the support for these itemsets is only half as large
as their common superset. They both appear just 1 / 4 times
(sup = 1

4 = 0.25).
The maximally frequent itemsets variant of FPM computes

exactly those itemsets that lie on the boundary between most
specific and noise. Conceptually, itemsets are maximally
frequent if adding another item to the set would make the
itemset too infrequent. This boundary condition is defined as
a parameter to the algorithm, called the support threshold. It
sets a lower bound on the number of times the particular set
of fields actually changed together in the input data. If we
set support to 0.01, the algorithm would filter out any itemset
that occurred in less than 1% of all revisions, thus filtering
out infrequently co-occurring field changes, and helping us
focus on the signal in the result, rather than the noise.

IV. RESULTS

To test our activity analysis approach, we applied FPM to a
subset of task repository data from the same product team
we encountered in our formative study. Since they were
approached first, and readily available for our study, we chose
two of the teams that our four interviewees worked with (Team
A and Team B) and subset the data to just the tasks that any
of the chosen team members had ever edited over the last
complete release of the product. This way, we could take our

analyses to that product team and have them help us interpret
our results.

We collected a total of 1,314 tasks: 522 from Team A,
and 792 from Team B. These tasks contain a total of 16,477
revisions: 6,370 for Team A, and 10,107 for Team B. These,
in turn, describe a total of 82,986 field changes: 37,915 for
Team A, and 45,071 for Team B. There were 375 unique
combinations of field changes in the task data.

A. Activity Patterns

From the product teams’ tasks, our FPM analysis method
distilled 27 activity patterns, which we categorized into six
kinds of activities.

• Scheduling activities are carried out to plan the execution
of tasks and situate them in the software development life-
cycle. Effort estimation is also contained in this category.

• Status reporting activities show engineers and managers
the current state of the task (e.g., scheduled, in progress,
blocked, finished, ...) and let them take appropriate action.

• Progress reporting activities show how far along a task
is towards completion, which is essential to making sure
deadlines are met.

• Assignment activities are used to give the responsibility
to other team members, other teams and business units.
They are also used to associate tasks with product work
scenarios and release themes used by the upper manage-
ment.

• Communication activities help stakeholders of a task
to stay connected. These range from simple messages,
to the rationale for particular activities. For example,
status was set to “Blocked” because no resources were
available. Automated tools also communicate through
these activities (e.g., build warnings).

• Other miscellaneous activities which did not fit in any
other categories, such as updating a team-custom field.

To perform a coverage analysis we calculated a histogram
of patterns across instances of field changes and found that
these 27 patterns covered 95% of the actual instances of field
edits found all of the task revisions in the data, thus showing
that almost all of the 348 other possible patterns are mainly
in the noise.

B. Newsfeed

We built a prototype for a web-based newsfeed that renders
the revisions of each task in English. Each of our 27 activity
patterns is encoded in an HTML template. Whenever a set
of field edits from a task revision matches the pattern, we
instantiate the template as a news item. To check for a match,
we use represent the revision and the pattern as a bit vector.
The pattern bit vectors, however, contain wildcards in their
unset bits, so that they can match revisions with extra field
edits. A revision may match multiple patterns, in which case,
each pattern would generate a news item for the newsfeed.

We evaluated the newsfeed in a focus group setting with the
product teams. We showed them newsfeeds for several tasks
and asked them to tell us if we got the English explanation



correct. They agreed with most of our interpretations of their
activities, but sometimes suggested a better explanation than
we had, or recognized individual news items that should have
been merged together. They were also able to explain what
some of the more obscure fields were for us, which we will
apply in future versions of our newsfeed.

Based on our results, we believe that recovery of team
activities through frequent pattern mining is a valuable asset
for scalable and simple recovery of the story of software
development activities.

V. RELATED WORK

Understanding how software engineers enact their software
process, record their development activities, and communicate
with one another through the stories of their work, and helping
them to do so more easily and effectively is a common goal
we share with other researchers in this area.
Recording Work in Task Databases. Bertram et al. inter-
viewed small, collocated software development teams on their
use of issue tracking systems, and found that each stakeholder
has a unique set of reasons for what data they record about
their development tasks and activities. This led team members
to use the fields in the repository for their own purposes, which
were sometimes at odds with the interpretations of others on
different teams [6]. The software engineers we interviewed
reported similar appropriation of repository fields, resulting in
difficulty interpreting the activities of other engineers, even
those working on the same task as them.
Summarization of Development Activities. Rastkar et al. [7]
and Lotufo et al. [8] both tackle the problem of summarizing
the bug reports in the Bugzilla issue tracking systems. Working
solely with the freetext discussion fields, they use NLP tech-
niques to identify representative sentences and phrases that
can be accumulated into a single paragraph bug summary.
Our work focuses on non-freetext fields, using FPM to recover
frequently co-changing fields that represent activities, and then
rendering those activities in colloquial English that the product
team would have used. Our newsfeed adorns its news items
with the raw freetext of the discussion from each revision in
the task.
Frequent Pattern Mining. Zimmermann et. al used FPM to
identify source code files that are often checked in together,
and found that checkins following one of the patterns were
more likely to have defects if they omitted one of the typically
co-checked-in source code files [4]. They used their analysis
to build an interactive tool to warn engineers of any files that
were potentially missing from a checkin. Chang et al. [9] used
FPM to identify combinations of actions in a business project
that could best predict future defects in the project. We find
FPM to be just as valuable, simply to cluster related field edits
in order to enable a more concise and abstract interpretation
of the activity it represents.
Telling the Story through a Newsfeed. Begel and Zimmer-
mann proposed using an automatically generated newsfeed
of activities occurring in a variety of software development-
related repositories to help teams maintain awareness of depen-

dent teams, and enable them to make their work practices more
transparent to one another [10]. They warned, however, news
summarization would be necessary, and difficult, to ensure
that the feed’s utility did not get overwhelmed by noise.
This paper takes an early step toward constructing a useful
news summarization function. Holmes and Walker describe
another mechanism to reduce the noise in newsfeeds [11].
Their YooHoo system filters incoming checkin messages to
remove those modify code on which the developer’s own
code does not currently have a dependency. Our work shrinks
the feed as well, but operates on a single task at a time,
abstracting individual edits into larger and fewer sets that make
up an activity. Finally, Kuhn and Stocker propose using a
set of information visualizations on a software development
timeline to entice engineers to manually annotate the timeline
with human-understandable explanations of important activi-
ties [12]. Our approach uses FPM to reduce the number of
distinct activities to a very small number of activity patterns
that can be explained by team members, and then used to
render almost all of the important activities automatically.

VI. CONCLUSIONS

Deciphering the story of development activities is difficult,
even when you lived through the story firsthand. Our approach
of using FPM to identify frequently co-occurred field edits
patterns in task repositories is a promising start to helping
software engineers decode software work activities and reveal
the real story behind what happened.

REFERENCES

[1] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors
and omissions in software repositories,” in Proceedings of ICSE. IEEE
Computer Society, 2009, pp. 298–308.

[2] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of SIGMOD.
New York, NY, USA: ACM, 1993, pp. 207–216.

[3] M. J. Berry and G. Linoff, Data Mining Techniques: For Marketing,
Sales, and Customer Support. New York, NY, USA: John Wiley &
Sons, Inc., 1997.

[4] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proceedings of ICSE. IEEE
C.S., 2004, pp. 563–572.

[5] M. Hahsler, B. Gruen, and K. Hornik, “arules – A computational en-
vironment for mining association rules and frequent item sets,” Journal
of Statistical Software, vol. 14, no. 15, pp. 1–25, October 2005.

[6] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in Proceedings of CSCW, 2010, pp. 291–300.

[7] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports,” in Proceedings of ICSE. ACM,
2010, pp. 505–514.

[8] “Modelling the ‘hurried’ bug report reading process to summarize bug
reports,” in Proceedings of ICSM. IEEE, 2012.

[9] C.-P. Chang, C.-P. Chu, and Y.-F. Yeh, “Integrating in-process software
defect prediction with association mining to discover defect pattern,”
Inf. Softw. Technol., vol. 51, no. 2, pp. 375–384, 2009.

[10] A. Begel and T. Zimmermann, “Keeping up with your friends: function
foo, library bar.dll, and work item 24,” in Proceedings of Web2SE.
ACM, 2010, pp. 20–23.

[11] R. Holmes and R. J. Walker, “Customized awareness: recommending
relevant external change events,” in Proceedings of ICSE. ACM, 2010,
pp. 465–474.

[12] A. Kuhn and M. Stocker, “Codetimeline: storytelling with versioning
data,” in Proceedings of ICSE. IEEE Press, 2012, pp. 1333–1336.


