
Help, I Need Somebody!

Computer-mediated Preemptive Mentoring for Domain Novices

Andrew Begel
Microsoft Research
One Microsoft Way

Redmond, WA 98052
andrew.begel@microsoft.com

ABSTRACT
Information discovery is a very difficult and frustrating as-
pect of software development. Novice developers are of-
ten assigned a mentor who preemptively provides answers
and advice without requiring the novice to explicitly ask for
help. A similar situation occurs among expert developers in
radically collocated settings. The close proximity enhances
communication between all members of a group, provid-
ing needed information, often preemptively due to ambient
awareness of other developers. In this paper, we propose
a mechanism to extend this desirable property of preemp-
tive mentoring to developers in more traditional software
engineering environments. The proposed system will infer
when and how a developer becomes blocked looking for in-
formation, and notify an appropriate expert to come to his
aid. We believe that this preemptive help will lower devel-
oper frustration and enhance diffusion of expert knowledge
throughout an organization.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications

Keywords
expert, novice, mentor, blocking, information discovery

1. INTRODUCTION
Information discovery is one of the most difficult, frustrating
tasks in software development. Experienced developers of-
ten become blocked on fairly easy-to-formulate, but difficult-
to-answer questions concerning code rationale, bug triage,
and co-worker awareness. Novice developers, whether they
are fresh out of university or transferred in from another
professional job, also experience the same kinds of frustra-
tions in information-seeking, but have a unique aid, a men-
tor. Mentors are experienced developers, or domain experts,
whose job is to look over their protégés’ shoulders and help
them out when they become confused or blocked, sometimes

before they have even asked for help. Once the novices gain
experience, the mentoring relationship is tailed off and they
are left to her own devices.

Berlin and Sim and Holt [1, 16] characterize the mentor rela-
tionship provided to new hires or “immigrants” to a software
team as providing answers to simple questions, explaining
design rationale and hard-to-find information, proffering ad-
vice on tool usage and administration, and very importantly,
introducing them to their new social network. They and
Singer and Lethbridge [17] find that the mentor relation-
ship tails off after a few months once the novice becomes
integrated into the group. This is a good thing because in
many development cultures, it can be perceived as intru-
sive to continually ask questions of others, though providing
answers and advice can usually be considered to be part of
one’s job and helpful to advance the product as a whole [12].

Once a novice learns how to find his way in an organization,
is there no more help to be provided? Of course not. Nu-
merous studies of information-seeking behaviors show that
coordination between software developers goes on at vari-
ous levels of an organization [1, 2], through various com-
munications modalities [6, 13, 20], enabling developers to
discover several important classes of information [8, 9] and
promote team awareness [5, 6, 9, 11, 14, 18]. These stud-
ies on information-seeking behaviors were characterizing ex-
perienced developers, not novices. Who are these human
sources of information and what is their relationship to one
another? Do domain experts have mentors?

Part of the problem with associating a mentor with a soft-
ware developer is that experienced developers create and
maintain code with a large and mostly unique domain due
to the traditional approach to divide up software projects
by contributor. While a mentor for a novice need only be
an expert in the local group’s software project (since novice
projects are chosen to be small and self-contained), a mentor
for an expert might need to be quite knowledgeable about an
entire product’s codebase. This may be possible in a small
organization, but it cannot scale to large ones with many
software development teams. Thus, an expert is likely to
require multiple experts, each with expertise in a particular
area.

So, to where do real experts turn for help when they get
stuck? Ko, DeLine and Venolia conducted a study of the
content of information sought by 17 developers at Microsoft [8],



and noting where the answers (if any) were found. Their
data indicate that many types of information that cause
developers to become blocked could be found by going to
coworkers. The study did not identify the responders’ ar-
eas of expertise, nor place them in the social network of the
seeker. In open source projects, experts turn to mailing lists
to look for other experts [5]. An inquiry is made to a mailing
list, and the experts monitoring the list will see the question
and respond when they have the answer. Other researchers
analyze software repositories to automatically identify likely
experts given a domain, for instance, a code file or module
in a project [10]. Those who edit a file or module most often
are inferred to be most expert in that area. Since this in-
formation is fairly well hidden without analysis, de Souza et
al. [3] propose a social call graph (analogous to a procedure
call graph in program analysis) that relates developers to
one another when their code interacts in some way.

These notions of code expertise are all based on the no-
tion that an inquirer will seek out an expert when he gets
blocked or stuck. But that is not always what happens.
Latoza, Venolia, and DeLine report that developers first ex-
hausted other, often inadequate, sources of information (the
code, documentation, debuggers, logs, bug databases), be-
fore seeking the help of others [9]. Sillito, Murphy and De
Volder note that the questions developers often ask do not
always map very well onto the answers that software tools
can provide [15]. Humans can be much more efficient at an-
swering vague or desperate questions. Mentors assigned to
novices keep track of them and drop by their desks to see
what they are up to. Mentors can usually tell when a novice
is stuck without the novice having to ask. The mentor pre-
emptively provides the answer before the novice wastes too
much time looking on his own. This is a good thing. Unfor-
tunately, in a typical development culture of private offices
and cubicles, looking over someone’s shoulder to see if they
are stuck is not prevalent.

Teasley et al. [19] report that a technique called radical
collocation makes preemptive advice a regular occurrence.
Radically collocated groups work together in one big room.
Developers can use their ambient senses to overhear con-
versations and see their colleague’s screens as they work.
Whenever one developer needs help, she needs only pop up
her head and spot the right person already in the room to
answer her question, or someone else will notice her frustra-
tion and preemptively ask to help out. If another expert is
nearby, he can join the conversation just as easily and pro-
vide extra information, context and institutional memory.
Radical collocation, in short, provides the mentoring rela-
tionship that novice developers receive and makes it avail-
able to every developer in the room.

Unfortunately, just like most face-to-face communication,
radical collocation induces large coordination problems when
scaling to very large software projects. In the past, when
direct human coordination proved unwieldy, researchers de-
veloped technological solutions to mediate the communica-
tion, such as email, bug databases, configuration manage-
ment systems and wikis. Using each of these systems may
appear to each developer to be a locally optimal solution,
however, they exact a cost. Each provides a less immedi-
ate and lower bandwidth mode of information transfer than

would otherwise be achieved with face-to-face communica-
tion.

We think that face-to-face communication opportunities should
be encouraged, mediated by a new technology that combines
the best aspects of radical collocation, social call graphs
and ambient displays. This technology would enable experts
across a large product team to preemptively interrupt do-
main novices when they are stuck on a problem, without re-
quiring the novice to discover who to ask, without requiring
the novice to exhaust all personal means of searching infor-
mation repositories before asking his question, and without
a novice feeling like he creates too much of an imposition on
the expert to ask his question.

In our model, the expert is considered the altruistic, omni-
scient superhero who comes to save the day when he some-
how detects that another developer is in trouble. It is a
scenario already proven to work for novice developers new
to a programming team, and in radically collocated teams
for experts who need help. It is a model that can coexist
with notions of privacy where individual developers main-
tain their own office or cubicle space. We view our par-
ticular statement of the model in direct opposition to an
alternate one, where a system notices that a developer is
stuck on something and “warns” the expert that the novice
may come to ask a question. By using the word “warn” we
mean to imply that an introverted expert may actually close
his door to maintain privacy or appear very busy to avoid
taking the novice’s question. It is exceedingly important, we
think, to ensure the model is one of altruism, giving advice
to a customer in need, rather than bothersome interruption,
receiving questions from someone who does not deserve an-
swers or who should have been smart enough to figure out
the answer.

Why should an expert be so altruistic and preemptively
talk to someone who needs their help? Experts are short
of time; they need to get their own work done [12]. But,
domain novices who use an expert’s code are the expert’s
customers. If the customers cannot use the expert’s soft-
ware, they will feel frustrated and spread their negativity to
their friends. If the customers get blocked and the author
of some code comes to their rescue, a positive review can be
formed and spread. In addition, creating satisfied customers
reflects well on a developer among the members of his own
product group, as long as they all know about it.

Note that not all questions require human help. If a system
can identify a human developer as an expert in a particular
area, it ought to be possible to tag other information sources
as appropriate repositories of answers that a domain novice
might look at before needing help. In fact, frequent use of
these sources could be interpreted as a trigger to understand
when the novice requires expert intervention.

To test out our ideas, we will need to answer five questions.

1. Is it possible to tell when a developer is stuck or blocked
and needs help? It is likely a domain expert can tell,
but can this state be inferred through logs of developer
actions?



2. Once it is possible to know when someone is stuck,
is it possible to identify what topic or code area the
developer is stuck on? It may be possible to record
wear on the code, documentation or bug database to
detect this.

3. Once the areas of blockage are known, is it possible to
use it to discover which the likely experts who know
something about the areas? Mining source code repos-
itories for experts based on code ownership [10] is a
start, but should be extended to other information
sources as well as validated in a real software project.

4. What kinds of ambient displays can you put on a de-
veloper’s desktop to make them aware when people
need their help? For example, a digest of all domain
novice/customer activity could be delivered to the ex-
pert (and his product group), enabling the expert to
understand his customers’ behaviors, spot when they
are stuck, and preemptively help them when it appears
appropriate.

5. How would such a technology affect the culture of the
organization in which it was deployed? The design and
potential success of such a technology has to be sensi-
tive to an organization’s existing culture, especially in
regards to the value system placed on asking questions,
asking for help, helping someone in need, and help-
ing someone repeatedly. A thorough understanding of
these issues can be developed using a value-sensitive
design methodology [4].

2. STUDY PROPOSAL
To learn if our model is viable and answer each question
posed above, we will undertake several studies. The first
study will begin with an survey of a random sampling of
software developers at Microsoft. Surveyed developers who
agree to take part in the study will be shadowed for an entire
workday once a month by a researcher who will code their
activities according to a coding schema initially designed by
Ko, DeLine and Venolia [8]. This schema will enable us to
record developers’ information-seeking activities and their
outcomes. If other developers meet the study participant
to ask a question, those interactions, the identity, and the
expertise of the coworker will be recorded as well. To capture
more information about developer behavior, a developer’s
computer-based activities will be logged. An IDE logger will
record their development activities, a window title logger
will record their windowing behavior [7], and if accepted by
the developer and his colleagues, an email logger will record
his conversations with other members of their software team.
Our hope is that the logging information can be used to
synthesize a summary of developer behavior that can be
subsequently analyzed and correlated with the observations
to enable us to infer the tasks the developer is working on
and identify the events that lead up to task switches caused
by blocking.

The second question can be answered by the shadow ob-
server during the first study. Whenever a task switch due
to blocking occurs, the observer can ask what areas of the
code the developer was working in and learn whether they
are related to the blockage or are merely incidental. This
can then be correlated with the logging information.

The third question can be answered with a survey. Given
several existing technologies for relating developer experts
to code and bug reports, a list of potential matches can
be generated. We can send out a survey to developers at
Microsoft and ask them what their area of expertise is and
for which files, code modules, and bugs they feel they could
provide expert help. There is quite likely to be a many-
to-one mapping of expert developers to area. A question
we might ask next is how often the mapping remains stable
or changes over time. It is possible that human resources
information might be used to help keep this mapping up to
date.

Finally, the real test is to build a system using the task infer-
ence technologies proposed above that can notify an expert
automatically as to the activities of the domain novice who
is using his software, and enable the expert to stop by or
communicate electronically to solve the problem. Note that
this kind of interaction can be run through a Wizard of Oz
study, where an expert observer can watch a developer dur-
ing the day and hit a private Help Me button when they
think the developer has become stuck. We expect to pro-
vide a knob to the developer to tune how quickly help is
requested after they get stuck. Some developers may want
more time to play around before someone helps them, some
may want less.

The effects of this technology may be difficult to measure.
Much of it may simply be that the general stress level and
level of frustration experienced by developers goes down
with this tool. It may take just as long to get help as it
did before, but as developers become more accustomed to
asking for (and providing) information to others, less time
may be wasted learning about irrelevant code in the search
for understanding. In addition, by linking domain experts
with other programmers in the organization, knowledge will
flow more freely.

The technology may have negative effects as well, including
the perception that person who needs help is less capable
than others, or that a person who offers help is not spending
enough time doing their own work. A study is necessary to
understand and evaluate the software development culture
and identify how to design and sell the technology to make
sure it is perceived as a good thing and not a target or
enabler for scorn.

3. CONCLUSION
In this paper, we have proposed a new mechanism for en-
abling expert developers to preemptively help less knowl-
edgeable colleagues when those colleagues get blocked. Car-
rying out the proposed studies will help inform us of the
feasibility of this mechanism and of its utility and accep-
tance in practice. If it works, it could help bring some of
the benefits of group awareness and participation enjoyed
by small development teams to larger organizations.

4. REFERENCES
[1] L. M. Berlin. Beyond program understanding: A look

at programming expertise in industry. In C. R. Cook,
J. C. Scholtz, and J. C. Spohrer, editors, Empirical
Studies of Programmers: Fifth Workshop, pages 6–25.
Ablex Publishing Corporation, 1993.



[2] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems.
Communications of the ACM, 31(11):1268–1287, Nov.
1988.

[3] C. R. B. de Souza, D. F. Redmiles, L.-T. Cheng, D. R.
Millen, and J. F. Patterson. Sometimes you need to
see through walls: a field study of application
programming interfaces. In J. D. Herbsleb and G. M.
Olson, editors, Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work,
CSCW 2004, Chicago, Illinois, USA, November 6-10,
2004, pages 63–71. ACM, 2004.

[4] B. Friedman. Value-sensitive design. interactions,
3(6):16–23, 1996.

[5] C. Gutwin, R. Penner, and K. A. Schneider. Group
awareness in distributed software development. In
J. D. Herbsleb and G. M. Olson, editors, Proceedings
of the 2004 ACM Conference on Computer Supported
Cooperative Work, CSCW 2004, Chicago, Illinois,
USA, November 6-10, 2004, pages 72–81. ACM, 2004.

[6] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson.
Introducing collaboration into an application
development environment. In J. D. Herbsleb and
G. M. Olson, editors, Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work,
CSCW 2004, Chicago, Illinois, USA, November 6-10,
2004, pages 21–24. ACM, 2004.

[7] D. R. Hutchings, G. Smith, B. Meyers, M. Czerwinski,
and G. G. Robertson. Display space usage and
window management operation comparisons between
single monitor and multiple monitor users. In M. F.
Costabile, editor, Proceedings of the working
conference on Advanced visual interfaces, AVI 2004,
Gallipoli, Italy, May 25-28, 2004, pages 32–39. ACM
Press, 2004.

[8] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development groups. In
Submitted to 29th International Conference on
Software Engineering (ICSE 2007). ACM, 2007.

[9] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006, pages 492–501. ACM, 2006.

[10] A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on
Software Engineering (ICSE-02), pages 503–512, New
York, May 19–25 2002. ACM Press.

[11] C. O’Reilly, P. J. Morrow, and D. W. Bustard.
Improving conflict detection in optimistic concurrency
control models. In B. Westfechtel and A. van der
Hoek, editors, Software Configuration Management,
ICSE Workshops SCM 2001 and SCM 2003 Toronto,
Canada, May 14-15, 2001 and Portland, OR, USA,
May 9-10, 2003. Selected Papers, volume 2649 of

Lecture Notes in Computer Science, pages 191–205.
Springer, 2003.

[12] L. A. Perlow. The time famine: Toward a sociology of
work time. Administrative Science Quarterly,
44(1):5781, 1999.

[13] D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
People, organizations, and process improvement.
IEEE Software, 11(4):36–45, July 1994.

[14] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
Raising awareness among configuration management
workspaces. In ICSE, pages 444–454. IEEE Computer
Society, 2003.

[15] J. Sillito, G. C. Murphy, and K. D. Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT Symposium
on Foundations of Software Engineering, Portland,
Oregon, November 2006. ACM SIGSOFT.

[16] S. E. Sim and R. C. Holt. The ramp-up problem in
software projects: A case study of how software
immigrants naturalize. In ICSE, pages 361–370, 1998.

[17] J. Singer and T. Lethbridge. Studying work practices
to assist tool design in software engineering. In IWPC,
page 173. IEEE Computer Society, 1998.

[18] M.-A. D. Storey, D. Cubranic, and D. M. Germán. On
the use of visualization to support awareness of
human activities in software development: a survey
and a framework. In T. L. Naps and W. D. Pauw,
editors, Proceedings of the ACM 2005 Symposium on
Software Visualization, St. Louis, Missouri, USA,
May 14-15, 2005, pages 193–202. ACM, 2005.

[19] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson.
How does radical collocation help a team succeed? In
CSCW, pages 339–346, 2000.

[20] J. Wu, T. C. N. Graham, and P. W. Smith. A study of
collaboration in software design. In ISESE, pages
304–315. IEEE Computer Society, 2003.


