
BPF+: Exploiting Global Data-flow Optimization in a
Generalized Packet Filter Architecture

Andrew Begel Steven McCanne
University of California, Berkeley

Susan L. Graham

February 24, 1999

Abstract

A packet filter is a programmable selection criterion for classify-
ing or selecting packets from a packet stream in a generic, reusable
fashion. Previous work on packet filters falls roughly into two cat-
egories, namely those efforts that investigate flexible and extensible
filter abstractions but sacrifice performance, and those that focus on
low-level, optimized filtering representations but sacrifice flexibil-
ity. Applications like network monitoring and intrusion detection,
however, require both high-level expressiveness and raw perfor-
mance. In this paper, we propose a fully general packet filter frame-
work that affords both a high degree of flexibility and good perfor-
mance. In our framework a packet filter is expressed in a high-level
language that is compiled into a highly efficient native implementa-
tion. The optimization phase of the compiler uses a new flowgraph
set relation called edge dominators and a novel optimization tech-
nique that we call “redundant predicate elimination”, in which we
interleave partial redundancy elimination, predicate assertion prop-
agation, and flowgraph edge elimination to carry out the filter pred-
icate optimization. Our resulting packet-filtering framework, which
we call BPF+, derives from the BSD packet filter (BPF), and in-
cludes a filter program translator, a byte code optimizer, a byte code
safety verifier to allow code to migrate across protection boundaries,
and a just-in-time assembler to convert byte codes to efficient native
code. Despite the high degree of flexibility afforded by our gen-
eralized framework, our performance measurements show that our
system achieves performance comparable to state-of-the-art packet
filter architectures and better than hand-coded filters written in C.

1 Introduction

Over the past decade, a number of innovative research efforts
have built upon each other by iteratively refining the concept
of a packet filter. First proposed by Mogul, Rashid, and Ac-
cetta in 1987 [15], a packet filter in its simplest form is a
programmable abstraction for a boolean predicate function
applied to a stream of packets to select some specific subset
of that stream. While this filtering model has been heavily
exploited for network monitoring, traffic collection, perfor-
mance measurement, and user-level protocol demultiplexing,

more recently, filtering has been proposed for packet classi-
fication in routers (e.g., for real-time services or layer-four
switching) [12] [20], firewall filtering, and intrusion detec-
tion [18].

The earliest representations for packet filters were based
on an imperative execution model. In this form, a packet
filter is represented as a sequence of instructions that con-
form to some abstract virtual machine, much as modern Java
byte codes represent programs that can be executed on a
Java virtual machine. Mogul et al.’s original packet filter
(known as the CMU/Stanford packet filter or CSPF) was
based on a stack-oriented virtual machine, where selected
packet contents could be pushed on a stack and boolean
and arithmetic operations could be performed over these
stack operands. The BSD packet filter (BPF) modernized
CSPF with a higher-performance register-model instruction
set. Subsequent research introduced a number of further im-
provements: the Mach Packet Filter (MPF) extended BPF
to efficiently support an arbitrary number of independent fil-
ters [23]; PathFinder provided a new virtual machine abstrac-
tion based on pattern-matching that achieved impressive per-
formance enhancements and was amenable to hardware im-
plementation [2]; and DPF enhanced Pathfinder’s core model
with dynamic-code generation (DCG) to exploit run-time
knowledge for even greater performance [6].

More recent work on packet classification for “layer four
switching” has focused on table-based representations of
predicate templates to yield very high filtering performance.
Srinivasan et al. [20] proposed a special data structure that
they call a “grid of tries” to reduce the common case of
source/destination classification to a few memory references,
while Lakshman and Stiliadis [12] elegantly cast packet clas-
sification as the multidimensional point location problem
from computational geometry.

Neither the works on imperative models nor those on fast
layer-four switching address the issue of compiling an ab-
stract, declarative representation of a packet filter into a low-
level form. They also do not consider the minimization
of computation by exploiting semantic redundancies across
multiple, independent filters in a generalizable fashion. Work
on such optimizations has not been forthcoming for good rea-

1



High-Level
Filter

Specification
Front End

Safety
Checker

Interpreter

JIT
Assembler

Native
Code

SSA
Form

VM
Byte
Codes

Protection
Boundary

Optimizer

§4 §5 §6 §7.1 §7.2

Figure 1: System architecture diagram for BPF+. A filter, represented in a high-level language, is compiled and optimized into
the BPF+ virtual machine intermediate representation. After traversing protection boundary, the protected domain verifies the
filter code specification, and either interprets the byte codes or assembles them on-the-fly into native code.

son. If we model a packet filter program as a function of
boolean predicates, then we can reduce filter optimization to
the “decision tree reduction” [9] problem. Since this prob-
lem is “NP complete”, we know that filter optimization is a
hard problem. As a natural consequence, many decision tree
reduction works have relied upon heuristics for optimiza-
tion [4] [14] [16] [19].

Fortunately, many packet filters have a regular structure
that we can use to our advantage in our optimization frame-
work. One way to exploit this structure is to account for it
in the underlying filtering engine itself. Both PathFinder and
MPF are based on this design principle: PathFinder utilizes a
template-based matching scheme that is nicely amenable to
the computation required for parsing packet headers, while
MPF extends BPF with specific opcodes that provide a par-
ticular solution tuned to demultiplexing.

Although these sorts of assumptions are an important com-
ponent of any overall packet filter system, they fail to address
what we believe is the ripest opportunity for packet filter op-
timization: the application of global optimization algorithms
across the filter predicate flow graph to minimize the average
path length through that graph. In contrast, the MPF exten-
sions of BPF, PathFinder, and DPF all use pattern-matching
heuristics that operate locally, e.g., they do not necessar-
ily eliminate common subexpressions across the predicates,
nor do they detect the equivalence of semantically equivalent
boolean expressions. In fact, they either restrict the set of
expressible filters to those with a regular structure that can
be matched by simple patterns, or they require that the “filter
programmer” expresses the filter in a compact and already-
optimized low-level representation. Although this may be a
reasonable design assumption in “low level” environments
(e.g., where an OS protocol module creates a packet filter to
match its signature traffic as in the x-kernel [8]), it is less ap-
plicable to “high level” domains (e.g., where a user specifies
a filter in an expressive high-level language and a compiler
generates the actual low-level filter code). In this latter case,
the front end code generator would typically translate a com-
plex filter expression into a number of redundant packet sub-

predicates; thus, optimization becomes especially important
to eliminate the redundant code.

In this paper, we propose optimization techniques that
exploit well-known data-flow optimization algorithms in a
novel way for the generalized optimization of packet filters.
Our data-flow algorithm, which we call “redundant predi-
cate elimination,” interleaves partial redundancy elimination,
predicate assertion propagation, and flowgraph edge elimi-
nation to effect predicate optimization. In particular, we em-
ploy a set relationship called edge dominators that extends
the traditional node dominator relationship from flowgraph
nodes to edges and provides the key ingredient for our predi-
cate optimizations. Finally, we leverage the pattern-matching
heuristic, developed in the PathFinder and DPF work, in our
back end, as a lookup table optimization performed after the
removal of redundant predicates.

Armed with our global data-flow optimizations, we can
afford the flexibility of a high-level representation for packet
filters since we can compile and optimize them into native
implementations that achieve state-of-the-art performance
from the resulting packet-filter code. To realize a practical
system based on this design, we crafted a generalized archi-
tecture for packet filtering, which we call BPF+, built around
our suite of filter optimizations. Our system design derives
from many years of the BPF development effort and lever-
ages extensive feedback from a large user population as well
as integration efforts into several common Unix platforms.
Several of the components described herein are mature pieces
of work that have yet to be described in the literature1 while
others are comparatively new.

As depicted in Figure 1, the BPF+ system consists of a
number of sequentially arranged components that transform
a high-level filter language specification into an low-level ex-
ecutable packet filter:

� The input to the front end is a high-level language for fil-
ter expressions based on the declarative predicate syntax

1This is a very rough attempt at maintaining anonymity for the SIG-
COMM review process. The final paper will depict the history of this work
explicitly.

2



used in the Lawrence Berkeley National Laboratory’s
packet capture library libpcap [10] and network moni-
toring tool tcpdump [11].

� The BPF+ compiler translates the predicate language
into an imperative, control-flow graph representation.
The particular intermediate form we use is called “static
single assignment” (SSA) [5], which is well-suited for
our optimization algorithms.

� The SSA intermediate representation is fed forward to
the code optimizer, which performs both global and lo-
cal data-flow optimizations over the control-flow graph
form of the intermediate code. The output of the op-
timizer is a byte code representation that conforms to
the BPF+ virtual machine model, which is a RISC-
like register-based variant of the accumulator-based vir-
tual machine definition of the original BPF pseudo-
machine [13].

� The BPF+ byte codes are then delivered to an execu-
tion environment, e.g., across the user-kernel bound-
ary to implement user-defined protocol demultiplexing,
or across the network and into a switching element to
implement an externally-defined network service like
policy-based traffic management.

� Once received in the target protected domain, the safety
verifier ensures the program’s integrity.

� Finally, a “just in time” (JIT) assembler translates the
optimized and safety-verified byte codes into native
code and performs optional machine-dependent opti-
mization. This last stage is omitted if the target envi-
ronment is an interpreter rather than native hardware,
e.g., as with the BPF kernel implementation, which in-
terprets filters in the byte code form.

In the remainder of this paper, we motivate, describe and
evaluate the components of the BPF+ architecture. We first
outline related packet filtering technologies and identify cer-
tain limitations of this current art. We then present the BPF+
front end: its high-level filtering language, the virtual ma-
chine model, and the compiler that generates the SSA inter-
mediate form. Next, we describe our optimization frame-
work based on the set of local and global data-flow algo-
rithms and their interactions. Subsequently, we describe the
back end that verifies the integrity of the byte-code repre-
sentation and optionally transforms that representation into
a native machine code. To demonstrate the efficacy of our
approach, we then present measurements of our implementa-
tion that show that BPF+ performance is comparable to ex-
isting packet filter implementations despite its enhanced flex-
ibility. Finally, we summarize our plans for future work and
conclude.

2 Related Work

In its widely used form, the BPF kernel sub-system repre-
sents each user-specified filter as a separate entity. For ev-
ery packet received, each filter in turn is run over that packet
and each filter that accepts the packet is given its own copy.
Hence, if BPF were used to implement user-level protocols,
for instance, the demultiplexing overhead would scale lin-
early with the number of filters, e.g., a busy server with many
simultaneous network connections would suffer linear slow-
down as each connection would independently run the packet
filter on its own stream.

To overcome this limitation, MPF enhanced the BPF vir-
tual machine with instructions for efficient protocol demul-
tiplexing. Rather than represent each filter separately, MPF
exploits the structure of demultiplexing filter specifications to
recognize that two filters are similar up to, say, the transport
header port fields, using simple template-matching heuris-
tics. Once MPF detects this similarity, it merges the new
predicate with the existing filter automatically by expanding
the existing port checks to include the new port number, for
example.

PathFinder generalizes the MPF heuristic with a re-
designed filtering engine that is better matched to the pattern-
matching transformation. In this framework, templates
called “cells” represent packet field predicates, which are
chained together in a “line”. This line of cells represents a
logical AND operation over the constituent predicates. A
collection of lines is arranged into a chain of predicates,
which represents the logical OR over all lines. As lines are
installed into this chain, PathFinder searches for and elimi-
nates common prefixes.

For example, if process P requests TCP packets sent to
port A and process Q requests TCP packets sent to port B,
then the resulting filter logic would have the following form:

if link layer type = IP and
IP fragment offset = 0 and
IP protocol = TCP and
TCP dest port = A

then deliver pkt to P
else if link layer type = IP and

IP fragment offset = 0 and
IP protocol = TCP and
TCP dest port = B

then deliver pkt to Q

Upon processing the second filter, PathFinder would rec-
ognize the common prefix and simply extend the first if-
clause as follows:

if link layer type = IP and
IP fragment offset = 0 and
IP protocol = TCP

then
if TCP dest port = A
then deliver pkt to P

3



else if TCP dest port = B
then deliver pkt to Q

Since the inner if-else statement is effectively a “switch”
over the destination port field, a jump table (perhaps using a
perfect hash over the target value set) could be used to imple-
ment an O(1) match, and PathFinder does precisely that.

DPF utilizes the same template-matching approach as
PathFinder (templates are called “cells” in PathFinder and
“atoms” in DPF), but introduces a new low-level language
and employs dynamic code generation to attain performance
improvements over other interpreter-based implementations.
Its new language is based on a “read window” which may
be shifted and masked to match words in the packet to vari-
ous immediate constants. Given a filter specified in this lan-
guage, DPF coalesces common prefixes into lines, performs
some additional local optimizations, and dynamically gener-
ates native machine code to directly evaluate the filter.

The more recent works geared toward layer-four switch-
ing [12] [20] take the DPF and PathFinder approaches to an
extreme, where the entire model is based on a set of tem-
plates that are matched against known constants (or known
constant ranges).

While the template-matching model yields good perfor-
mance, there are a number of shortcomings associated with
the technique. For example, it is not possible to match fields
in the packet header against one another, for instance, to look
for packets that originate and terminate in the same network
(“source network = dest network”). Nor is it possible to per-
form arbitrary mathematical operations on header words be-
fore matching.

DPF and PathFinder resort to a set of ad hoc heuristics
for producing efficient filters by coalescing common prefixes.
These optimizations are foiled in PathFinder when predicates
are reordered. DPF, however, enforces in-order packet header
traversal, thus common prefixes will always appear in the
same order. However, when the filter itself does not con-
form to the same order as other already installed filters, prefix
compression fails.

To illustrate this pathology, consider the packet filter, “all
of the packets sent between host X and host Y”. In a boolean
framework, we would specify this filter as “(source host X
and dest host Y) or (source host Y and dest host X)”, and in
flowgraph form, the expression would appear as in Figure 2.
Here, basic blocks are represented by nodes and boolean con-
trol transfers are depicted by edges. By convention, false
branches point to the left; true branches to the right.

In this case, DPF, finding no common prefix and unable to
reorder the checks to obtain a common prefix, would compile
the condition into two separate filters that are sequentially in-
voked. However, there is opportunity for optimization, which
DPF by necessity must miss. If the thread of control during
filter evaluation reaches the node “dest host Y,” then we nec-
essarily know that the source host is X. Furthermore, from

that vantage point, we know that the source host cannot be
Y and that the node pointed to by the dashed edge is redun-
dant. But, we cannot eliminate the “source host Y” node yet
because there exists another path (from the root) for which
the check is not statically known. Therefore, our recourse for
optimization is to transform the dashed edge so that it points
to the FALSE node, thus reducing the average path length
through the flowgraph (and in turn, enhancing filter execu-
tion performance).

source host X?

source host Y?

False dest host Y?

True

FALSE

False dest host X?

True

False

TRUE

True

TrueFalse

Figure 2: Control-flow graph for “(src host X and dst host Y)
or (src host Y and dst host X)”. The dashed edge points to
a redundant predicate and may be redirected to the FALSE
node.

This is the sort of global data-flow optimization we want
to exploit in our packet filter optimizer. Having established
this context, we can now present the core pieces of the overall
system design, beginning in the next section with the BPF+
machine model.

3 The BPF+ Machine Model

Before presenting the details of the translation modules that
map filter predicates to the BPF+ machine representation, we
sketch in this section a high-level overview of the BPF+ ma-
chine model to establish context for the rest of the paper. This
version of the BPF virtual machine represents a number of
iterative refinements made over the past several years to the
original BPF machine model.

The BPF+ abstract machine is a RISC-like, 32-bit, load-
store architecture consisting of a set of 32 general purpose
registers, a program counter, data memory, packet memory, a
packet length register, and a pseudo-random register. A filter
program is represented as an array of byte codes that conform
to a well-defined instruction format.

The BPF+ virtual machine supports five classes of opera-
tion:

� load instructions copy a value into a register. The source
can be an immediate value, packet data at a fixed offset,

4



packet data at a variable offset, the packet length con-
stant, or the scratch memory store (a reference to data
beyond the end of the packet results in a return value of
0);

� the store instruction copies a register into a fixed loca-
tion in data memory;

� ALU instructions perform arithmetic or logic on a reg-
ister using a register or a constant as an operand and a
register as the destination (division by zero causes the
filter to immediately return a value of zero);

� branch instructions alter the flow of control, based on
a comparison test between a register and an immediate
value or another register; and,

� return instructions terminate the filter and indicate the
integer-valued result of evaluation.

A filter is evaluated by initializing the packet memory to
the packet in question and executing byte codes on the BPF+
machine until a return instruction is reached. The data mem-
ory is persistent and may be queried by agents external to
the filter engine. The pseudo-random register is a read-only
register that returns a uniformly distributed random value
each time read, which is a useful primitive for building fil-
ters that can perform probabilistic sampling. To facilitate
safety verification, we require that all program branches be
forward (thus disallowing loops) and that the last instruction
on each path be a “return”. In addition to the set of condi-
tional branch instructions, we add a lookup table instruction
to abstract multiway conditional branches for later just-in-
time optimization.

We omit the details of the instruction format and through-
out the rest of this paper use an assembly language syntax
that is relatively self-explanatory. For example, a simple
BPF+ byte-code program that matches TCP packets has the
following form:

lh [12], r0
jne r0, #ETHERTYPE IP, L5
lb [23], r1
jne r1, #IPPROTO TCP, L5
ret #TRUE

L5: ret #FALSE

Presuming Ethernet encapsulation, this filter first checks
that the packet is an IP packet. If so, it then checks if the IP
protocol type is TCP, in which case it branches to an instruc-
tion that returns true. In any other case, the program branches
to label L5 and returns false.

This form of representation is far too low level for many
applications of packet filters. In the next section, we argue
that high-level filtering languages are important for a number
of problem domains and we sketch the characteristics of the
high-level filtering language that BPF+ employs.

4 The Predicate Language

The input to our system is a high-level filter represented in
a declarative predicate language. By employing a high-level
language, we hide the complexity and details of the under-
lying, imperative execution model of the BPF+ virtual ma-
chine. This facilitates the expression of complex boolean
relationships among many different predicates using natu-
ral logical expressions rather than awkward control struc-
tures. Unlike other high-performance packet filter packages
that have adopted more restrictive semantics for their packet
filter abstractions (i.e., the template matching model), we re-
tain the full generality of a programmable, control-flow graph
model for our virtual filter machine.

There are many reasons to support higher-level abstrac-
tions for packet filtering. To begin with, the system should
hide the details of where particular fields are located in
packet and how variable-length headers must be parsed to
locate those fields. For example, BPF+ refers to the IP des-
tination address field in a packet as “IP dst host” rather than
“packet[20:4]”. Additionally, a seemingly simple BPF+ ex-
pression like “TCP port HTTP” turns out to have a relatively
complex low-level structure that should not be a burden to the
filter programmer (i.e., in this case, the packet must be IP; if
fragmented, it must be the first fragment so as to contain the
IP header; there may be IP options which must be skipped
over to find the TCP ports; and finally both the source and
the destination TCP port field must be checked against the
constant 80).

This sort of high-level representation is crucial if a human
user is specifying the packet filters. While a low-level pat-
tern specification might have sufficient generality and simul-
taneously be amenable to an efficient implementation, a net-
work administrator that is diagnosing network malfunctions
on-the-fly or chasing down an intruder in real-time must have
a flexible and easy-to-use syntax for specifying packet pred-
icates. Thus, a high-level predicate syntax that allows one
to look for, say, packets “between MIT and UCB” that are
“HTTP connections” should be naturally and easily speci-
fied. To this end, the user should be able to specify which
fields of the packets they want to match and connect those
predicates with boolean operators “and”, “or”, and “not”. In
BPF+, the filter would look like this expression:

((src network MIT and dst network UCB) or
(src network UCB and dst network MIT)) and
(TCP port HTTP)

By contrast, the same expression written in DPF’s quite
low-level SHIFT language would look like the following:

(((12:16 == 0x8) && # IP?
SHIFT(6 + 6 + 2) && # skip Ether header
(9:8 == 6) && # TCP?
(12:8 == 18) && # src network MIT?
(16:16 == 0x8020) && # dst network UCB?

5



SHIFT(20) && # skip IP header
# (assume fixed length)

(0:16 == 80) && # src port 80?
(2:16 == 80)) # dst port 80?
||
((12:16 == 0x8) && # IP?
SHIFT(6 + 6 + 2) && # skip Ether header
(9:8 == 6) && # TCP?
(12:16 == 0x8020) && # src network UCB?
(16:8 == 18) && # dst network MIT?
SHIFT(20) && # skip IP header

# (assume fixed length)
(0:16 == 80) && # src port 80?
(2:16 == 80)) # dst port 80?

In the middle ground between a predicate language and
a fully general pattern specification language, we might in-
terpose the ability to match various fields of the packet in
relation to each other, or the ability to perform mathematical
operations on the fields before matching them. Thus, for ex-
ample, to track down a TCP protocol bug, we might need to
extract all the packets from a trace that fall within a certain
range of TCP sequence numbers, e.g., TCP.seqno � 10000
and TCP.seqno � 11000.

Finally, users may want to combine the aforementioned
filter language approaches and compose them with a policy
language that enables the runtime system to apply a filter at
a particular time (e.g. for probabilistic sampling of packets
meeting a particular predicate), add a filter (e.g. if the source
address of an intruder has been identified), or remove a filter
from use (e.g. if a particular email adversary sends unso-
licited mass email only at certain times of the day).

Designing a language that meets these high-level require-
ments is not a difficult problem. Several languages have been
devised, for example the filtering language in the Lawrence
Berkeley National Laboratory’s packet capture library libp-
cap, Sun’s etherfind program, and Digital’s snoop tool. Since
the BPF+ design effort is built upon BPF, libpcap, and tcp-
dump, we naturally incorporated the libpcap language into
our system. We omit the details of this well-known and
widely used packet capture system, as it is well described
elsewhere [10] [11].

5 The Front End

Given our high-level filter language and our low-level filter
machine model, we are faced with the problem of translating
filter predicates into BPF+ byte codes. Rather than integrate
translation and optimization into a monolithic framework, as
PathFinder and DPF have done, we have deliberately fac-
tored apart the translation stage from the optimization stage.
This has a number of advantages. First, it allows us to cre-
ate different front ends and high-level languages that can be
optimized and carried by the same back end. Second, it al-
lows us to evolve and develop the two stages independently.
An improvement to the optimization framework need not re-
quire changes to the high-level language defined in the front

end. Finally, this breakdown provides a framework for in-
crementally composing filters on the fly, e.g., as required by
user-level protocol demultiplexing where filters are installed
and removed dynamically. More specifically, a set of active
filters (each individually representing a given connection fin-
gerprint) can be maintained in predicate form so that filters
may be easily inserted and deleted. Each time the set changes
(because a connection starts or stops), we can invoke the op-
timizer and back end on the altered form to produce our new
aggregate filter program.

Another advantage of the separation between the compiler
and optimizer is that the code generator is greatly simplified.
For example, consider the way in which we generate code for
short-circuited logical predicates. In an expression like “p�
and p�”, p� is evaluated only if p� is true. However, the sec-
ond predicate might contain sub-predicates that have already
been evaluated in the first predicate. For example, the expres-
sion may have a decomposition, in which another predicate
p� represents a common protocol check, e.g., “(p� and p�)
and (p� and p�)”. Factoring out these common predicates all
within the code generator would be a complex task. The op-
timizer, on the other hand, is well suited to the elimination
of this sort of redundancy. Thus, our code generator can be
relatively simple and straightforward and rely on these later
optimizations to achieve efficiency.

In short, we have adopted an approach where we first
transform the predicate language into an intermediate form
through naive compilation, and then apply aggressive opti-
mizations to transform the naively compiled structure into an
optimized BPF+ byte-code program.

The BPF+ compiler uses off-the-shelf lexical analysis and
parsing tools as well as well-known compiler techniques to
convert the filter specification into a control-flow graph in
SSA intermediate form. SSA is a relatively new intermedi-
ate representation used in optimizing compilers, in which the
abstract data values are separated from the locations in which
they are stored. The key property of SSA is that any register
is written exactly once, so we assume that we have an infinite
supply of registers with which to work. In turn, we rely upon
a register allocator to map this unbounded number of virtual
registers into a finite set of physical registers. SSA is highly
amenable to many simple but effective forms of global data-
flow optimization, and we heavily exploit this property in our
system.

Each node in the control-flow graph generated by the
BPF+ compiler is a basic block in SSA form that ends with a
boolean predicate. There is one unique entry node, and flow
moves through the graph until it reaches a “return” statement.
At the end of each basic block, the flow may branch based
on the value of the predicate. Flow may only move forward
(downward through the graph); this property is enforced by
the requirement that branch offsets must be positive. Thus,
the entire graph is guaranteed to be acyclic.2

2The fact that BPF+ flowgraphs are acyclic simplifies data-flow calcula-

6



6 The Optimizer

The price that we pay for our naive SSA form code genera-
tion is many computational and logical redundancies. This
results in an overabundance of code, conditional branches,
and allocated registers. Thus, optimization of the generated
code is vitally important for improving its performance and
justifying the cost of the high-level starting point. In this
section, we describe the global data-flow optimizations and
peephole optimizations that are performed on the interme-
diate code — which remove redundancies, rearrange non-
optimal code sequences and identify potential lookup tables
— in order to generate efficient code.

In addition to incorporating many standard optimizations
found in traditional compilers, the BPF+ optimizer intro-
duces a novel application of the redundant predicate elimi-
nation global data flow analysis. This optimization is rarely
found in compilers for traditional languages like C or Java
because redundant predicates do not occur very often and the
optimization would not be very profitable. However, in the
domain of packet filter compilation, BPF+’s naive code gen-
erator produces decision trees with many redundant predi-
cates, thereby making this optimization one of the most use-
ful that can be applied.

The next four sections describe our optimizations in more
detail. In the first section, we introduce the redundant predi-
cate elimination and its composition from partial redundancy
elimination, predicate assertion propagation, and redundant
edge elimination. Then, we illustrate the peephole optimiza-
tions that are performed within the basic blocks. We also
use constant folding and constant propagation to help iden-
tify and eliminate redundant computations in the global data
flow phase of optimization. After the other optimizations
have completed, we enter a jump table encapsulation phase to
optimize linear sequences of predicates. Finally, we do regis-
ter allocation and assignment to map each remaining variable
to an actual register in the BPF+ virtual machine.

To get a feel for the potential of the redundant predicate
elimination optimization, consider the following filter:

IP src host A or IP src host B

Without optimization, this expression is compiled into the
following code3:

tions considerably. Because all information flows only up (or only down),
a minimal fixed point solution can be reached with a single top-down (or
bottom-up) level-order traversal of the control-flow graph.

3Logic is inverted in several places to make the conditional branch code
more straightforward to read. The compiler back end optimizes the order of
the basic blocks to minimize the need for absolute jumps.

lh [12], r0
L1: jeq r0, #ETHERTYPE IP, L3

ja L5
L3: ld [26], r1

jeq r1, #A, L11
L5: lh [12], r2
L6: jeq r2, #ETHERTYPE IP, L8

ja L10
L8: ld [26], r3

jeq r3, #B, L11
L10: ret #FALSE
L11: ret #TRUE

Note that both predicates test whether the packet is IP.
Since the first test (at L1) always occurs before the second
(at L6), the second test is redundant and may be eliminated.
The problem is better visualized by analyzing the program in
flow graph form. Figure 3 shows the basic blocks and con-
trol edges that correspond to the filter above. By convention,
false branches are to the left of true branches. The nodes are
numbered for reference. The dashed boxes indicate the two
predicates, IP src host A and IP src host B.

ret #FALSE ret #TRUE

ld [26], r1
jeq r1, #A

lh [12], r0
jeq r0, #ETHERTYPE_IP

ld [26], r3
jeq r3, #B

lh [12], r2
jeq r2, #ETHERTYPE_IP

1

65

4

3

2

Figure 3: Unoptimized version of “IP src host A or B”.

Since control must pass through N�
4 before reaching N�,

and since N� and N� perform equivalent tests, N� is redun-
dant. However, at N�, it is not known whether the result is
true or false, since either edge could have been taken on exit
from N�. On the other hand, we know the result of N� from
the vantage point of the in-bound edges. Therefore, our ap-
proach is to find edges that point to redundant nodes, and
point them past the redundancy.

For instance, along edgeE��
5 we know thatN� is true; and

since N� and N� perform equivalent tests, N� must be true
from this vantage point. Thus, edge E�� can be deleted, and
edge E�� inserted. Similarly, if flow passes along E��, then
N� will be false; hence, E�� can be replaced by E��. The
flow graph after these modifications is shown in Figure 4. A

4Let Ni be a synonym for node i.
5Let Eij denote the directed edge fromNi to Nj .

7



reachability analysis will discover that N� is now unreach-
able and eliminate the dead code from the graph.

ret #FALSE ret #TRUE

ld [26], r1
jeq r1, #A

lh [12], r0
jeq r0, #ETHERTYPE_IP

ld [26], r3
jeq r3, #B

lh [12], r2
jeq r2, #ETHERTYPE_IP

1

65

4

3

2

Figure 4: Moving the edges.

As is often the case in optimization algorithms, one class
of optimizations will expose opportunities for others. Here,
the edge movements have caused a load operation to become
redundant. Since the in-degree of N� is reduced to one after
the dead code at N� is eliminated, we know that N� and N�

load the same value. Thus, the second load at N� can be
removed. Figure 5 shows the flow graph in its final form.

ret #FALSE ret #TRUE

ld [26], r1
jeq r1, #A

lh [12], r0
jeq r0, #ETHERTYPE_IP

jeq r1 , #B

1

65

4

2

Figure 5: The optimized filter.

6.1 Redundant Predicate Elimination

Redundant predicate elimination is an optimization used to
determine, at compile-time, which predicates found in the
control-flow graph may be bypassed by particular flow edges.
This optimization is composed of three pieces: partial re-
dundancy elimination, used to eliminate redundant compu-
tation within the nodes of the control-flow graph; predicate

assertion propagation, a data-flow analysis used to flow the
values of determinable predicates down through the control-
flow graph to the leaves; and static predicate prediction,
which uses the assertion information to identify statically de-
terminable conditional branches and bypass them whenever
possible.

6.1.1 Partial Redundancy Elimination

Our use of SSA form, combined with BPF+’s acyclic control-
flow graph, enables the optimizer to identify and eliminate a
significant amount of redundant computation. In the code
from our simple code generator, most redundancies are loads
from packet memory and oft-repeated ALU operations.

In order to determine which computations are redundant,
we must first establish a metric of value equivalence. We use
a value numbering scheme for each register to indicate its
source definition. Each definition, which can be a defining
computation, a load from memory, or a register-to-register
copy, is identified by a unique ID which can be used to indi-
cate whether two variables have the same definition.

We compute the node dominator relation over the control-
flow graph and look over every register’s definition. This re-
lation identifies which nodes must be traversed in order to go
from the entry node to each node in the control-flow graph.
If at a given node, the value assigned to a register has already
been computed in a dominating node, the second definition
is redundant.6 We then replace the redundant computation
with a register-to-register copy from the dominating defin-
ing register. Afterwards, using copy propagation, we replace
all later uses of the second register with the first. A subse-
quent dead store elimination phase will remove the now use-
less register and the corresponding register-to-register copy.

This implementation only achieves partial redundancy
elimination, however, since redundancies may only be iden-
tified and elided when found in dominating relationships. We
shall see how the next two phases of redundant predicate
elimination can improve the effectiveness of this optimiza-
tion if we apply them one after another.

6.1.2 Predicate Assertion Propagation

The example shown at the beginning of Section 6 assumes
a priori that we can make certain edge movements without
compromising the semantics of the program. In actuality,
we must be analytically precise that such transformations are
legitimate. This problem can be solved through a global data-
flow analysis.

The traditional approach to global data-flow problems typ-
ically involves computing set relations over the nodes of a
flowgraph. However, as first seen in Cocke and Schwartz [3]

6Since our SSA form control-flow graph is acyclic, and each register
is only defined once, we do not have to check whether the register’s value
might have been changed before the second definition is reached.

8



and later exploited by Graham and Wegman [7], applying the
data-flow functions to edges rather than nodes can have sub-
stantial advantages. This is indeed the case for BPF+ flow
graphs.

First, we adapt terminology traditionally used to describe
node relationships to make the following definitions: An
edge (E�) (defined by a predecessor node pred(E�) and a
successor node succ(E�)) dominates another edge (E�), writ-
ten E� dom E�, if every possible execution path from the
entry node to E� includes E�. In addition, an edge (E�) im-
mediately dominates another edge (E�), if E� dominates E�

and there is no edge (E�) such that E� dominates E� and E�

dominates E�.
Since every basic block ends with a predicate, an edge E

represents the truth value (sense(E)) of a predicate (predi-
cate(pred(E))) — a true edge (true(pred(E))) is traversed if
the predecessor node evaluated a true condition, otherwise
the false edge (false(pred(E)) is traversed. Suppose an edge
E� dominates an edge E�. If the edge predicate of E� is
equivalent to the predicate of the successor node N of E�,
then we know the outcome of N , when traversed from E�.
Hence, we can delete E� and insert a new edge from the pre-
vious predecessor of E� to the appropriate child of N , pro-
vided no conflicting inter-block data dependencies exist.

We use a simple data-flow algorithm to abstractly de-
fine the value of each predicate in the control-flow graph.
If a predicate ends up with a statically determinable value,
we may bypass the predicate with a new control-flow edge.
First, we compute the edge dominator relationship7 in a fash-
ion similar to the node dominators algorithm given by Aho,
Sethi, and Ullman [1]. The set relation, which we call edom,
is given by:

edom�E� � fEg � f
�

P�pred�E�

edom�P �g

We use edom to calculate idom:

�E � edges�
idom�E� � edom�E�� fEg�

�E � edges�
�F � idom�E��

�G � idom�E�� fFg�
if G � idom�F �

idom�E� � idom�E�� fGg

The immediate dominator relation forms a forest of trees,
where each edge (E) in the control-flow graph is a node in a
tree. The predecessor of each node is its immediate domina-
tor and its successors are those nodes which it immediately

7The fact that BPF+ flowgraphs are acyclic allows us to compute this
flow equation in O(E) time.

dominates. We use this tree in the next phase of predicate
assertion propagation.

For each edge in the control-flow graph, there are a set of
assertions that we can make about the values of the predi-
cates. For instance, the false edge coming out of a node that
tested the predicate a � � would contain the assertion that
a �� �. In addition, the assertions for all of the edge domi-
nators of a particular edge also hold true for that edge, since
those edge dominators must be traversed in order to reach it.
The assertion set relation is given by the following:

assertion�E� �f�predicate�pred�E��� sense�E��g
� assertion�idom�E��

Each element of the assertion set is a tuple of the predi-
cate tested (assertion(E).predicate) and and the value of the
proven answer (assertion(E).sense).

6.1.3 Static Predicate Predication

Now that we have the assertion set for each edge, we are
ready to use this information to predict statically deter-
minable predicates. In general, the problem of proving that
a set of assertions implies a certain result is NP-complete,
however, there is a small set of rules that we can use in prac-
tice to prove many assertions about the predicates typically
found in packet filters. The rules used by BPF+ are shown in
Table 1.

Beyond these few entries, a generalized theorem prover
would be necessary to make more involved implications from
the given set of assertions. However, it turns out that the
most-used implications come from the jeq and jne entries
of the table.

For a particular edge E, if the assertions in assertion(E)
statically prove predicate(succ(E)) to be true or false, then
on this path, edge E may bypass the redundant predicate and
we may remap the edge’s successor to the predicted child of
succ(E). We may do this only with the guarantee that the edge
movement does not violate data dependencies that occur later
on in the flow graph. Specifically, if any registers defined in
the node to be bypassed are used by any other node on the
predicted path, we must forbid the movement.

Formally, the algorithm looks like this:

�E � edges�
��pred� sense� � assertion�E��

let N � succ�E��
P � predicate�N��

in

if table�pred� sense� P � � TRUE
succ�E� � succ�true�N��

if table�pred� sense� P � � FALSE
succ�E� � succ�false�N��

9



Input Output
Assertion Sense Predicate Sense

jeq #lval #rval TRUE jeq #lval #rval TRUE
jeq #lval #rval TRUE jne #lval #rval FALSE
jeq #lval #rval TRUE jlt #lval #rval FALSE
jeq #lval #rval TRUE jgt #lval #rval FALSE
jeq #lval #rval FALSE jeq #lval #rval FALSE
jeq #lval #rval FALSE jne #lval #rval TRUE
jeq #lval #rval1 TRUE jeq #lval #rval2 FALSE
jne #lval #rval TRUE jne #lval #rval TRUE
jne #lval #rval TRUE jeq #lval #rval FALSE
jne #lval #rval FALSE jeq #lval #rval TRUE
jne #lval #rval FALSE jne #lval #rval FALSE
jne #lval #rval1 FALSE jne #lval #rval2 TRUE
jlt #lval #rval TRUE jlt #lval #rval TRUE
jlt #lval #rval TRUE jeq #lval #rval FALSE
jlt #lval #rval TRUE jge #lval #rval FALSE
jlt #lval #rval TRUE jgt #lval #rval FALSE
jlt #lval #rval FALSE jlt #lval #rval FALSE
jlt #lval #rval FALSE jge #lval #rval TRUE
jgt #lval #rval TRUE jgt #lval #rval TRUE
jgt #lval #rval TRUE jeq #lval #rval FALSE
jgt #lval #rval TRUE jle #lval #rval FALSE
jgt #lval #rval TRUE jlt #lval #rval FALSE
jgt #lval #rval FALSE jgt #lval #rval FALSE
jgt #lval #rval FALSE jle #lval #rval TRUE
jle #lval #rval TRUE jle #lval #rval TRUE
jle #lval #rval TRUE jgt #lval #rval FALSE
jle #lval #rval FALSE jle #lval #rval FALSE
jle #lval #rval FALSE jgt #lval #rval TRUE
jge #lval #rval TRUE jge #lval #rval TRUE
jge #lval #rval TRUE jlt #lval #rval FALSE
jge #lval #rval FALSE jge #lval #rval FALSE
jge #lval #rval FALSE jlt #lval #rval TRUE

All other inputs return “undefined”

Table 1: Lookup Table for Predicate Algebra.

The combination of partial redundancy elimination, pred-
icate assertion propagation, and static predicate prediction
is repeated until there are no new changes. Each data-flow
phase removes its own redundancies, and in doing so, ex-
poses new redundancies to be removed by the next phase.
Partial redundancy elimination removes data dependencies
that might inhibit edge removal, whereas static predicate pre-
diction exposes newly redundant computation.

6.2 Peephole Optimizations

During each round of the redundant predicate optimization,
we perform peephole optimizations on code within each ba-
sic block. For example, an ALU operation with an identity
may be removed. A load from a scratch memory location
preceded by a store to the same location may be changed into
a copy operation. An add or subtract immediate instruction
followed by an indirect load may be merged with the built-in
index calculation.

Next, we use copy propagation to track computations
on constants as they move through the control-flow graph.
When we have register-register operations in which one of
the registers is a known constant, we can transform the op-

eration into its equivalent register-immediate form (provided
that either the operation is commutative or the transforma-
tion does not change the order). When both values (either
both registers or the register in a register-immediate instruc-
tion) are known, we may perform constant folding to turn the
instruction into a load-immediate of a constant value.

lh [12], r0
jne r0, #ETHERTYPE IP, L19
lb [23], r1
jne r1, #IPPROTO TCP, L19
lh [20], r2
and r2, 0x1fff, r3
jne r3, 0x0, L19

L7: li #13, r4
lb [14], r5
and r5, 0xf, r6
lsh r6, 0x2, r7

L11: add r4, r7, r8
L12: lb [r8 + 14], r9
L13: li #7, r10

and r9, r10, r11
L15: li #0, r12
L16: sub r11, r12, r13

jeq r13, 0x0, L19
ret #TRUE

L19: ret #FALSE

Figure 6: Unoptimized code for “tcp[13] & 7 != 0”.

As seen in Figure 6, these optimizations play an impor-
tant role in minimizing the computation performed. Line 7
shows a load immediate instruction that is used in line 11 to
load the ��th byte of the TCP header. Since add is a com-
mutative operator, we can replace the reference to r� with
the immediate value 13 and change the instruction to an add
immediate. However, since line 11 is followed by a load
byte indirect instruction on line 12, we can just fold in the
immediate 13 into the index of the load byte indirect (to get
27) and remove line 11 from the code.

On line 13, we notice another load immediate that is used
on the next line. Since and is a commutative operator, we can
perform constant propagation again and replace the reference
to r�	 with the immediate 7. On line 15, there is another
load immediate that may be removed by constant propaga-
tion. But after its substitution, line 16 becomes a subtract
immediate instruction — subtracting the constant #0 from
r��. We notice that this is an ALU operation by an identity,
and therefore can be removed completely. Figure 7 shows
the code after all of these peephole optimizations have been
performed.

6.3 Lookup Table Encapsulation

The example in Figures 4-5 showed how redundant loads can
be removed. These opportunities arise often in expressions
that check a packet field against a set of possibilities, as in

10



lh [12], r0
jne r0, #ETHERTYPE IP, L14
lb [23], r1
jne r1, #IPPROTO TCP, L14
lh [20], r2
and r2, 0x1fff, r3
jne r3, 0x0, L14
lb [14], r5
and r5, 0xf, r6
lsh r6, 0x2, r7
lb [r7 + 27], r9
and r9, 0x7, r11
jeq r11, 0x0, L14
ret #TRUE

L14: ret #FALSE

Figure 7: “tcp[13] & 7 != 0” after peephole optimization.

ip src host A or B or C. The code generator output for this
expression is:

lh [12], r0
jne r0, #ETHERTYPE IP, L4
ld [26], r1
jeq r1, #A, L13

L4: lh [12], r2
jne r2, #ETHERTYPE IP, L8
ld [26], r3
jeq r3, #B, L13

L8: lh [12], r4
jne r4, #ETHERTYPE IP, L12
ld [26], r5
jeq r5, #C, L13

L12: ret #FALSE
L13: ret #TRUE

After the peephole optimization and redundancy elimina-
tion phases have completed, the filter has been reduced to the
following:

lh [12], r0
jne r0, #ETHERTYPE IP, L6
ld [26], r1

L3: jeq r1, #A, L7
jeq r1, #B, L7
jeq r1, #C, L7

L6: ret #FALSE
L7: ret #TRUE

Note the contiguous sequence of conditional branches
starting at line 3. We can optimize this linear chain of con-
ditional branches, especially when the chain is long, by ar-
ranging it into a lookup table instruction. In general, to
identify potential lookup tables, we traverse the control-flow
graph looking for chains of blocks containing only condi-
tional branches. Lookup table chains have the following
properties: the chain’s backbone is linked by all false or all
true branches; all of the other branches point to the same exit
node; each element of the chain dominates the rest of the
chain; and all of the conditional branches in the chain test the
same value. The example code after lookup table enscapula-
tion is shown below:

lh [12], r0
jne r0, #ETHERTYPE IP, L4
ld [26], r1
or table r1, #A, #B, #C, L5

L4: ret #FALSE
L5: ret #TRUE

While this approach finds most of the lookup tables, we
find that we can expose more lookup table chains by sim-
ply reordering the constituent nodes of a more general chain.
However, we may only reorder a node if there are no data de-
pendencies that would be altered. We ensure this by requir-
ing that the block to be moved be empty of all computation,
save the final conditional branch. This is not as restrictive as
it sounds, due to the effectiveness of our partial redundancy
elimination.

Once the lookup tables have been abstracted, we will use
heuristics (described later) to turn them into combinations of
linear search, binary search and hashtable lookup. Thus, we
can incorporate the core design structure and optimizations
of PathFinder and DPF as a low-level optimization at the tail
end of our optimization framework.

6.4 Register Allocation and Assignment

Before we can run our intermediate code on the BPF+ virtual
machine, we have to map the virtual registers that remain in
the optimized code into the 32 real registers available in the
virtual machine.

We use a graph-building algorithm to perform this task.
Each register is represented by a node in a graph. For each
register, we compute a liveness range (i.e., a lifetime), which
is the list of basic blocks between a register’s definition and
its last use. When two registers have overlapping lifetimes,
we place an edge between them. This results in an inter-
ference graph. The registers in a connected subgraph of the
interference graph have lifetimes that interfere with one an-
other, although they might not all be live at the same time.

Each subgraph’s virtual registers may be assigned to phys-
ical registers independently of the other subgraphs because
their lifetimes do not intersect. Two virtual registers in a sub-
graph may be assigned to the same physical register if there
is no edge between them. We use a simple graph coloring
scheme to assign physical registers to each register.

The size of each subgraph is typically small and is gener-
ally bounded by the size of the largest predicate. Registers
often have short lifetimes because after optimization, their
predicates are computed and used only once. In fact, most
registers are live in only one basic block. Those that live
longer tend to occur in OR and AND chains which have al-
ready been collapsed into lookup tables by the lookup table
encapsulation phase.

11



7 The Back End

7.1 Safety Verifier

Since the BPF+ filter code interpreter is run in a protected
domain, the validity of the program must be checked. A user
task must be prevented from installing a program that would
execute an infinite loop, or would cause memory faults by
reading, writing, or jumping out of bounds.

In a program, a loop is represented as a jump to a pre-
viously executed piece of code. In most correct programs,
each iteration of the loop will check a predicate to deter-
mine whether to continue or exit out of the loop. However,
in general, the value of this predicate cannot be predicted
at compile-time, and is often dependent on the inputs to the
program. Since any program that runs in a protected domain
must terminate, and since the protected domain should not
trust user code, we must be able to identify which programs
will loop forever and which will terminate. Consequently,
the protected domain must solve the halting problem when
accepting a filter program. In general, this is impractical,
but by adopting fairly benign restrictions, verification can be
made trivial. Namely, filter programs must be acyclic, with
all branches forwardly directed.8

Further verification entails checking that all opcodes are
valid, that all jumps are forward and within bounds, that the
terminating operation is a return instruction, and that all reads
and writes to memory are within bounds. If a malicious fil-
ter program were allowed to indiscriminantly read or write
data, it could corrupt the protected memory space. In BPF+,
loads and stores to scratch memory are indexed by an im-
mediate, thus, we can verify their validity during this phase.
However, since we cannot prove what the bounds on an in-
direct load from packet memory will be, we employ runtime
bounds checks on each load to ensure safety. If any load tries
to read out of bounds memory, the filter is stopped and the
packet is discarded.

7.2 JIT Assembler

Once the filter program has passed the safety verifier, it may
be run in the BPF+ virtual machine or may be JIT assem-
bled into native code. The speed advantages of an assembled
filter program should be clear, and indeed, our results show
that assembled programs run up to 6 times faster than their
interpreted counterparts on an UltraSPARC IIi processor.

There are two phases of JIT assembly. First, we translate
the lookup table abstractions into an optimized sequence of
linear, binary or hash checks of the values inside. Then, since
the target machine often has tighter register availability con-
straints than the BPF+ virtual machine, we perform another
phase of register assignment.

8Any acyclic program can be expressed using only forward jumps.

7.2.1 Lookup Table Translation

The first stage of the BPF+ assembler translates each lookup
table instruction into an optimized sequence of native code
instructions. A naive approach might just translate the table
into a linear sequence of predicates, but this is no better than
what we started with. When there are more than several pred-
icates, the overhead causes the lookup to slow down linearly
with the number of predicates.

Consequently, we may turn the table into a balanced binary
tree based on the values in the table. This would have the
effect of making the average case lookup equal to the worst
case lookup. The overhead of the lookup would slow down
as the log of the number of predicates.

As a third alternative, we can turn this table into a
hashtable with a perfect hash function (since we know all
of the entries at compile-time) and get constant time access.
For small numbers of predicates, the overhead involved in
computing the hash function may be too great, but for larger
tables, this approach works well.

How do we know which one to pick? Currently, we use
a static heuristic based on an evaluation of how each repre-
sentation performs as a function of the number of predicates.
Recent papers by Yang, Uh, and Whalley [21] [22] suggest
the use of a profile-driven approach to determine whether to
implement multiway branches using hash lookup, or to sim-
ply reorder the branches in a sequential lookup to reduce the
dynamic number of branches encountered during program
execution.

7.2.2 Register Assignment

The native code phase of register assignment is somewhat
more delicate than the first phase, due to the greater regis-
ter pressure found in most architectures. In an UltraSPARC
with register windows, our simple assignment scheme is con-
stricted to the use of 20 registers. An assembler for an x86 is
constrained to only six.

If there are enough registers in the native code to run a
particular filter directly, we skip this second register assign-
ment phase. However, when we must compress a filter’s use
of registers, we rerun the register assignment algorithm used
before with one change. Instead of using liveness ranges that
are sets of basic blocks, we construct a register’s lifetime as
the set of pseudo instructions between its definition and last
use. This finer granularity lets us reuse registers within a
basic block, thereby minimizing our use of registers subject
only to data dependencies.

If we still cannot fit the filter in the specified smaller num-
ber of registers, we must take the drastic step of spilling ex-
tra values to memory. We use a graph coloring algorithm to
identify where spills must take place and add in the auxiliary
code for spilling and restoring the data values.

12



8 Evaluation

To demonstrate the efficacy of our compiler and optimization
framework, we have built all of the components described
herein, culminating in a comprehensive implementation of
the BPF+ architecture. In this section, we measure the per-
formance characteristics of the BPF+ compiler — its ability
to generate and optimize BPF+ byte codes, and the speedup
in filter execution that we attain from JIT assembly. We also
compare the effectiveness of our global data-flow optimiza-
tion against the optimizations performed by an optimizing C
compiler. We show that for the packet filter application, our
optimizations are far more effective than those utilized by the
C compiler.

Our experiments illustrate several measures of perfor-
mance which we think have not been addressed in earlier
work. In particular, we draw a distinction between measure-
ments of filters that use independent high-level predicates
and measurements of filters that use predicates which may
be coalesced into a lookup table.

Our experiments were run on a Sun Ultra 10 workstation
with a 300 Mhz Ultra IIi processor. One hundred thousand
trials were run per experiment;9 the running time for each
filter was measured with the CPU tick register, enabling us to
get accurate cycle counts of the time spent on each individual
filter.

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

550

Number of Independent Predicates

T
im

e 
(n

s)

Average AND Chain

Accept AND Chain 

Reject AND Chain 

Average OR Chain 

Accept OR Chain  

Reject OR Chain  

Figure 8: Time to recognize packets with various numbers of
independent predicates. Lower numbers are better.

In Figure 8, we show the speed of filtering various num-
bers of independent predicates – TCP, src A, dst B, port C,
and network D connected in a chain by either “and” or “or”.
There are six measurements shown (of the optimized JIT as-
sembled filters), three showing the average, accept and re-
ject times for the chains linked together by “and”, and three

9The packet trials are from a capture session that recorded normal net-
work traffic in the UCB computer science domain.

showing the same results for the same chains linked together
by “or”. As expected, the time to reject an OR chain has the
same upward trend as the time to accept an AND chain.10

In contrast, the time to accept an OR chain stays low be-
cause the earlier predicates, if matched, halt the filter and re-
turn TRUE immediately. The average time reported for both
AND and OR chains are similar and hover between 200 ns
and 300 ns. This is comparable to filter speeds reported in
the literature.

1 2 3 4 5 6 7 8 9 10 15 20 30
0

500

1000

1500

2000

2500

Number of Table Entries

F
ilt

er
 T

im
e 

(n
s)

BPF+ Linear
BPF+ Hash  
Optimized C

Figure 9: Time to recognize TCP packets with various num-
bers of source hosts. Lower numbers are better.

In Figure 9, we show, for non-independent predicates, the
speed of filtering when a lookup table is implemented by a
linear sequence of conditional branches, an O(1) perfect hash
function (each hash table entry has one conditional branch
to ensure a match), and the equivalent filter coded in C and
run through the GCC (egcs-2.91.60) optimizer. BPF+ per-
forms better than C in both cases, primarily due to BPF+’s
redundant predicate elimination. Since redundant predicates
do not often occur in user-level C code, GCC does not per-
form the elimination optimization that BPF+ does. In addi-
tion, the translation of filter code into native machine code
has lowered the penalty that we pay for increased numbers
of conditional branches in the final filter.

In addition to these measures, we also examine the
speedup attained when using the various optimizations found
in BPF+. In Figures 10 and 11, we show the filter times for
unoptimized interpreted, optimized interpreted, unoptimized
JIT assembled, and optimized JIT assembled packet filters
for both independent and non-independent predicates.

For independent predicates, the speedup grows dramati-
cally (from 3.5x to 9x) as the number of filters increases,
which shows the effectiveness of our optimization algorithms
and JIT assembler. The speedup due to optimization alone

10The last “Accept AND chain” measurement is left off the graph because
the particular expression was never accepted.

13



1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

Number of Independent Predicates

F
ilt

er
 T

im
e 

(n
s)

Unoptimized Interpreted AND Chain

Unoptimized Interpreted OR Chain 

Optimized Interpreted AND Chain  

Optimized Interpreted OR Chain   

Unoptimized Assembled AND Chain  

Unoptimized Assembled OR Chain   

Optimized Assembled AND Chain    

Optimized Assembled OR Chain     

Figure 10: Time to recognize TCP packets with various num-
bers of independent predicates. Lower numbers are better.

varies from 1.3x to 2x for unoptimized code, and from zero
speedup to 1.4x for optimized code. The speedup due to the
JIT assembly by itself varies from 3.9x to 6.6x for unopti-
mized code, and from 3.3x to 5x for optimized code.

1 2 3 4 5 6 7 8 9 10 15 20 30
0

2000

4000

6000

8000

10000

12000

Number of Table Entries

F
ilt

er
 T

im
e 

(n
s)

Unoptimized Interpreted
Optimized Interpreted  
Unoptimized Assembled  
Optimized Assembled    

Figure 11: Time to recognize TCP packets with various num-
bers of source hosts. Lower numbers are better.

When we look at the non-independent predicates, we see
a more dramatic story. The unoptimized, interpreted filter
shows striking evidence of the naive code generation’s pro-
duction of redundant predicates. The optimized, interpreted
filter strips out almost all of these redundancies. The trends
for both assembled filters are the same as the interpreted fil-
ters, but the overall running time is much improved. The
speedup due to optimization varies from 1.1x to 8.6x for in-
terpreted code, and from 1.2x to 5.2x for assembled code,
while the speedup due to assembly runs from 4.1x to 5.5x for
unoptimized code, and from 2.6x to 4.9x for optimized code.

While the improvement for non-independent predicates is
more dramatic than for the independent predicates, we feel
that their use in combination more accurately reflects the type
of filters used by the network community. For example, on
two large (27 and 29 predicates) filters used daily by Vern
Paxson at Lawrence Berkeley National Laboratory, we see
speedups of 32x and 36x between unoptimized, interpreted
code and optimized, assembled code.

Overall, our measurements indicate that optimization is
an important factor in packet filter performance, especially
when compiled from a high-level source language such as
the one BPF+ uses. The template-matching heuristics that
PathFinder and DPF use are effective in discovering lookup
tables when filters are written in a low-level way, however,
they will not work for more general types of filters. We had
hoped to compare our results to those reported by the current
state-of-the-art, DPF, but did not have access to their exper-
imental data or their platform. However, if we adjust their
published measurements of speed vs. table size to account
for differences in the processor speed, our data suggests that
the performance is similar.

9 Future Work and Summary

There are several different directions to explore in future de-
velopment of BPF+. We have chosen to use a high-level
functional predicate language based on tcpdump; we could
add primitives that side effect the store to implement user-
level state variables and enable user-level demultiplexing.
We might also add the ability to specify large tables of packet
information to be matched in a filter.

In the BPF+ virtual machine instruction set, we would like
to add the ability to use backward branches, in order to allow
loops in the code. This would provide the ability to parse
IPv6 “stacked headers” as well as the ability to implement
other, more general control structures. Not only would this
change have an impact on the implementation of our opti-
mization algorithms, but it would also impact the ability of
the safety verifier to ensure that code migrated across the pro-
tection boundary does not enter into an infinite loop. Nec-
ula’s proof-carrying code work [17] appears to be a suitable
framework in which to define and enforce a semantics for the
protected execution of packet filters.

BPF+ packet filters currently return a boolean true or false
value. Some users have expressed interest in a more com-
plicated return result that indicates which of the predicates
in the filter matched the packet. This is a hard problem be-
cause the code generator creates many more predicates than
are specified by the user. After passing through the optimizer,
there may not even be a mapping from the resulting predicate
expression back to the user-specified expression. However,
for many purposes, just knowing selected information about
the packet may suffice, e.g. in an intrusion detector that uses

14



many different ways to detect intruders, if a packet source
matches the source found in a large intruder table, we might
just want to know the packet’s source address, and not care
about any of the other predicates that may have matched.

Our experience with BPF+ has proven that you can start
with a high-level language and can compile and optimize
packet filters into an efficient implementation. Through the
novel application of the “redundant predicate elimination”
global data-flow optimization, our high-level boolean pred-
icate language can be compiled, optimized, and optionally
JIT assembled, into a form that performs as well or better
than the current state-of-the-art packet filter packages.

10 Acknowledgements

References

[1] Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

[2] Mary L. Bailey, Burra Gopal, Michael A. Pagels, and Larry L.
Peterson. PATHFINDER: A pattern-based packet classifier. In
Proceedings of the First USENIX Symposium on Operating
Systems Design and Implementation, pages 115–123, Mon-
terey, CA, November 1994.

[3] J. Cocke and J. Schwartz. Programming Languages and Their
Compilers. NYU, Courant Inst., TR., Second Revised Version,
April 1970.

[4] J. R. B. Cockett and J. A. Herrera. Decision tree reduction.
Journal of the ACM, 37(4):815–842, October 1990.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K. Weg-
man, and F. Kenneth Zadeck. An efficient method of com-
puting static single assignment form. In 16th Annual ACM
Symposium on Principles of Programming Languages, pages
25–35, 1989.

[6] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, flexible
message demultiplexing using dynamic code generation. In
Proceedings of SIGCOMM ’96, pages 53–59, Stanford, CA,
August 1996. ACM.

[7] Susan L. Graham and Mark Wegman. A fast and usually lin-
ear algorithm for global flow analysis. Journal of the ACM,
23(1):172–202, January 1976.

[8] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel:
An architecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1):64–76, January
1991.

[9] L. Hyafil and R. L. Rivest. Constructing optimal binary de-
cision trees is NP-complete. Information Processing Letters,
5(1):15–17, May 1976.

[10] Van Jacobson, Craig Leres, and Steven McCanne. pcap(3).
Available via anonymous ftp to ftp.ee.lbl.gov, June
1989.

[11] Van Jacobson, Craig Leres, and Steven McCanne.
tcpdump(1). Available via anonymous ftp to
ftp.ee.lbl.gov, June 1989.

[12] T.V. Lakshman and D. Stiliadis. High speed policy-based
packet forwarding using efficient multi-dimensional range
matching. In Proceedings of SIGCOMM ’98, September 1998.

[13] Steven McCanne and Van Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. In Proceedings
of the 1993 Winter USENIX Technical Conference, pages 259–
269, San Diego, CA, January 1993. USENIX.

[14] R. S. Michalski. Designing extended-entry decision tables
and optimal decision trees using decision diagrams. Techni-
cal Report UIUCDCS-R-78-898, Univ. of Illinois at Urbana-
Champaign, Urbana-Champaign, Ill., 1978.

[15] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta.
The packet filter: An efficient mechanism for user-level net-
work code. In Proceedings of 11th Symposium on Operat-
ing Systems Principles, pages 39–51, Austin, TX, November
1987. ACM.

[16] B. M. E. Moret, M. G. Thomason, and R. C. Gonzalez.
The activity of a variable and its relation to decision trees.
ACM Transactions on Programming Languages and Systems,
2(4):580–595, October 1980.

[17] George C. Necula and Peter Lee. Safe kernel extensions with-
out run-time checking. In Proceedings of the Second Sympo-
sium on Operating System Design and Implementation, Seat-
tle, Wa., October 1996.

[18] Vern Paxson. Bro: A system for detecting network intruders
in real-time. In Proceedings of the Seventh USENIX Security
Symposium, San Antonio, TX, January 1998. ACM.

[19] J. R. Quinlan. Inductive inference as a tool for the construc-
tion of efficient classification programs. In T. Mickalski, R.,
Carbonell, J. and Mitchell, editor, Machine Learning: an Ar-
tificial Intelligence Approach. Tioga, Palo Alto, CA, 1983.

[20] V. Srinivasan, George Varghese, Subash Suri, and Marcel
Waldvogel. Fast scalable algorithms for level four switching.
In Proceedings of SIGCOMM ’98, September 1998.

[21] G.R. Uh and D. B. Whalley. Coalescing conditional branches
into efficient indirect jumps. In Proceedings of the Interna-
tional Static Analysis Symposium, pages 315–329, September
1997.

[22] Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Im-
proving performance by branch reordering. In Proceedings
of the ACM SIGPLAN’98 Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 130–141,
Montreal, Canada, June 1998.

[23] Masanobu Yuhara, Brian Bershad, Chris Maeda, and
J. Eliot B. Moss. Efficient packet demultiplexing for multi-
ple endpoints and large messages. In Proceedings of the 1994
Winter USENIX Technical Conference, pages 153–165, San
Francisco, CA, January 1994. USENIX.

15


