
Program Commenting by Voice

Andrew Begel
University of California, Berkeley

abegel@cs.berkeley.edu

May 28, 2002

Abstract

Writing documentation is a perpetual exercise for the
creators of software artifacts. For end-users, documen-
tation is a key resource to learn how to use the arti-
fact, but for the developer, documentation enables much
more – not only the ability to understand someone else’s
code, but to document one’s own thought processes re-
garding the architecture of the artifact and the code it-
self. Unfortunately, programmers usually do not create
enough documentation, nor high enough quality doc-
umentation to replace an in-person discussion of the
code. We believe this to be caused not by the inher-
ent “laziness” of programmers to document their code,
but by physical interference in the commenting activ-
ity, since both programming and commenting utilize
the same input channel: the keyboard. We have cre-
ated Commenting by Voice, a tool that enables pro-
grammers to create code comments using audio record-
ing and speech recognition and have these audio com-
ments inserted in their code with the same status as tex-
tual comments. We hope that by parallelizing the input
channels, programmers will comment their code more,
and in doing so, enable others to better understand the
original thought processes involved in the coding task.
Programmers are quite expressive writing code; if given
a chance, we hope that they become as expressive talk-
ing about it.

1 Introduction

Documentation about software artifacts is at least as
ubiquitous as the program code required to implement
them. Programmers need many forms of documenta-
tion to do their work. For instance, programmers use

API documentation to understand how to use libraries
created on-site and purchased from outside vendors.
Application designers create system architecture docu-
mentation to describe how all the components of a sys-
tem fit together. Developers create engineering spec-
ifications to refine the client specifications in order to
explicitly state the myriad implicit details that were left
out.

In the source code itself, programmers create header
documentation to describe the purpose of a file. Com-
ments on code are also ubiquitous, and can span the
gamut from a high-level description of an algorithm to
low-level explanations for non-intuitive (read: clever)
code. In this paper, we will concentrate on code docu-
mentation, in the form of program comments. We will
justify this focus later in this section.

If documentation is so pervasive, why then is it al-
most universally perceived as being of such low qual-
ity? Communication and writing skills have often been
found lacking in new college graduates in computer sci-
ence. Since programmers have such bad writing skills,
McArthur claims that they shouldn’t be the ones writing
any documentation for end-users of a system [13].

End-users are not the only consumers of documen-
tation, as we saw above. Programmers themselves use
documentation for many purposes, so we should ask, do
programmers write good documentation for their own
kind, and if so, what benefits are derived from the ac-
tivity and the product? Detienne’s studies [3] indicate
that programmers who write comments before they be-
gin coding seem to perform better on code comprehen-
sion tasks. Comments appear to aid in chunking, the
process of grouping pieces of knowledge together. Un-
fortunately, there is a pitfall to commenting that can af-
fect comprehension: comment management. When the
comments don’t appear in the code, but in a separate

1



document, one runs the risk, especially in larger soft-
ware projects, of the documentation getting out of sync
with the code that it is describing [11].

Sometimes there is too much documentation that fo-
cuses on details that experts find useless. Often this sort
of documentation is written by novices because they
themselves don’t understand how a program works, so
when told to comment their code, they concentrate on
the lexical and syntactic pieces that they do under-
stand [2]. Why are these kinds of comments (about
a program’s lexical and syntactic properties) less use-
ful than comments about the semantics? Riecken et.
al. performed a study on expert programmer’s inten-
tions for their comments [14]. First, they found that
experts communicated semantic rather than syntactic
knowledge about their program in the comments. This
was because syntactic knowledge was assumed to be al-
ready understood by any reader (even complicated syn-
tax was perceived to be a rite of passage for novices to
understand), whereas the semantic knowledge was the
hard part to understand and therefore the most critical
to convey.

The flipside of too much documentation is too little.
The fact that programmers don’t write documentation
until after they’re done coding or perhaps never at all is
well-known in the tech industry and is perhaps, one in-
stigating factor of the many new programming method-
ologies that pop up every few years to encourage pro-
grammers to comment more [6].

1.1 Solutions

We can solve some of these documentation problems
rather easily. If programmers are bad writers, we can
just hire technical writers to write the end-user docu-
mentation for them. Better programmer education as
well, is advocated to improve not only programmers’
communications skills, but to improve their program-
ming methodology and habits [19].

We can solve the out of sync documentation problem
by inlining structured documentation in the code and
process it with a separate tool to generate the final doc-
umentation. Such a technique is used by JavaDoc [10]
for the Java programming language.

Some feel that tool support would help programmers
document their code more easily [1]. There is a long
history in automatic commenting tools [4, 17] which

derive a description of the code through program anal-
ysis. More recently, an interactive commenting tool
for Prolog was developed [15] that enables the pro-
grammer to comment on each step of execution of a
Prolog query and insert those comemnts back into the
code. Work with commenting agents has also been re-
ported [5] which helps users design user interfaces.

1.2 Programmers are just lazy

However comprehensive this research seems, there is
still one zebra left in our herd of horses. Programmers
are perceived to belazy. The unspoken argument is that
they don’t document because they don’t want to expend
the effort. We argue that this strawman argument is cor-
rect, but for the wrong reasons. Programmers arenot
lazy. In fact, programmers are anything but lazy. Who
else would commit to the same long hours in pursuit of
a bug or finishing off a feature before a deadline?

1.3 Or are they?

It is the assertion of this author that programmers com-
ment poorly because there is no good time to do it. Why
not? There are three times during coding when a pro-
grammer could comment her code: before she starts,
while she is coding, and after she is finished. The kind
of comments that can be written before the code are
only blackbox comments – they must necessarily be de-
scriptive of the intent and semantics of the code, for the
lexical and syntactic structures haven’t yet been written.
After the programmer has spent a few hours poring over
their solution, and the code is completely written, pro-
grammers feel as if they know the code like the back of
their hands. It may even seem that there is no reason to
comment code that appears so intuitively obvious (how-
ever non-obvious the code will appear in a week). Of
course, the explanation is that “the source codeis the
documentation.”

If the programmer can not be fully descriptive with
their comments before they start, and does not want
to or forgot to comment their code after she finishes,
that leaves only one time to comment: while she is
coding. We argue that programmers do not comment
while coding as often as they should because coding
and commenting use thesame input channel: the key-
board. Thus, in order to comment their code, they must

2



necessarily stop coding, and vice versa. Even if they
would like to be very descriptive with their comments
about the actual code, in the end, it is the code that they
get paid to write, not the comments.

1.4 Voice Comments

In this project, we aim to solve this input channel con-
flict. We enable the programmer to constructvoice
commentsas they program by recording what the pro-
grammer says out loud into a headset microphone. We
use a speech recognizer (IBM ViaVoice [9]) to trans-
late the audio into text, and insert this audio/text com-
bination into the code as a comment. Voice comments
can be played back aurally or read visually at any time.
The comments are saved (structurally) with the program
document and restored when the document is reloaded.

By using the voice channel in addition to the key-
board channel, a programmer can talk about their code
at the same time as they code it by hand. It is similar to
a Think Aloud study, in which participants are encour-
aged to talk about what they are doing while performing
an action. This enables an experimenter to gain insight
into the thought processes involved in a task without
cognitively interfering with the task itself. We hope to
show that utilizing both voice and keyboard input chan-
nels will enable a programmer to annotate their code
with spoken utterances about the thought processes that
are going on in their heads as the they design and write
down the program. In the rest of this paper, we present
the design and implementation of the voice commenting
project, as well as possible scenarios for its use in the
real world. We then discuss experiments we would like
to perform with novice and expert programmers to both
better design the system and elucidate its impact on the
programming process. Finally, we describe future work
and conclude.

2 Scenarios

In this section, we present some possible scenarios of
interaction with the Voice Commenting tool that we are
building. The first is drawn from educational perspec-
tive, and the second from a code review perspective.

The notation that we use for visualizing the code
is as follows. Program code is marked inCourier
font . Traditional program commands are marked in

italics and bordered by language-defined boundary to-
kens (e.g. in Java, we use/* A comment */). Voice
comments are marked initalics with � and� bound-
ary tokens.

2.1 Education

It has long been the case that everyone grading a pro-
gramming assignment laments that they do not under-
stand how a student could have possibly come up with
the answers that they did. Students do not comment
their code enough, and the code itself is usually written
in a language or style that is particularly obtuse. Plus,
the turned in copy represents only a tiny fraction of the
code that the student actually typed in while trying to
make their project.

Would it not be nice, if you could follow a student’s
thought process along from beginning to end, and see
not just the end product of their efforts, but all inter-
mediate stages in between? Even better, if you could
not only watch their code develop, but you could also
know what they were thinking when they wrote it? That
would give a teacher/grader much more information to
work with in order to understand how a student devel-
oped their code, and more easily identify where they
went wrong (and, where they had a great flash of in-
sight!).

Consider a CS2 student working on a Java program-
ming assignment to implement a linked list data struc-
ture. The student must define the appropriate Java class,
but first thinks out load about what he needs to do.

�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

Then the student types in the class declaration:

�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

public class LinkedList {
}

The student next states out loud that they know one
of the fields to add to the class:

3



�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

}

And, he then defines the value:

�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;
}

At this point, the student wavers a bit. He’s not sure
how to complete the data structure.

�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;

�And I know there’s another to continue the list
but I don’t know what it should be�

}

Fortunately for him, he knows his TA can read back
what he’s saying, so he puts a coded message in there
for him.

�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;

�And I know there’s another to continue the list
but I don’t know what it should be�
�I guess I can leave it out for now and my T A will
understand what I meant to write�

}

The student then completes, to the best of his abili-
ties, the functions in the LinkedList (head andtail )
data structure and turns in his assignment to the TA.

At this point, the TA needs to grade this student’s
programming assignment. He runs the automatic test-
ing suite, and finds that this student’s program has failed
all the tests. “How is that possible?” the TA thinks to
himself. “He was doing OK in the beginning of the
term.”

Using Harmonia, the TA loads up the student’s pro-
gram. He reads the voice comments in the code and
does not understand what the student meant to write.
Perhaps if he played back the edit history of the doc-
ument, he will be able to figure out where the student
went wrong. Using Harmonia in XEmacs, the TA types
in M-x replay-history . The document refreshes
to an empty state, and replays each edit at a rate of one
every three seconds. When the computer replays a voice
comment, it plays back the audio of the comment in
real-time synchronized with the text edits that occurred
while the student was speaking.

Once the edit history plays back the last voice com-
ment, the TA understands that the student knew he
should extend his LinkedList with a pointer to the next
LinkedList in the chain (or nil). The TA then adds his
own voice comment to the student’s code:

4



�The assignment says to create a linked list. I
guess I’ll need to declare the data structure.�

public class LinkedList {

�Well, there’s definitely one slot for the value�

public Object value;

�And I know there’s another to continue the list
but I don’t know what it should be�
�I guess I can leave it out for now and my T A
will understand what I meant to write�
�Yes, I figured it out. You
need to declare another field
with the linked list type. Also
try to think about what you would
do to point to the end of the
linked list. �

}

The TA sends back the annotated assignment for the
student to correct. He was able to provide the voice
comment facility to give appropriate and more directed
feedback to the student to help with his next revision.

2.2 Code Review

In this scenario, an employee of a networking startup in
Silicon Valley is reviewing the code for a proxy server
written by a colleague. He is reviewing the code at 2am
because he is a night owl, and could not find a time to
meet with his colleague that was suitable to both.

The code looks like this:

for (int i = 0; i < 10; i++ ) {
Server serv = new Server(i);
Socket sock = serv.recvConn();
String input = sock.readStream();
execute(input, i);

}

First, the employee states the obvious:

�It’s a loop of 10 connections.�

for (int i = 0; i < 10; i++ ) {
Server serv = new Server(i);
Socket sock = serv.recvConn();
String input = sock.readStream();
execute(input, i);

}

Then, he notices an inefficiency. The employee’s col-
league is allocating a new Server object for every new
connection when she should be reusing it:

�It’s a loop of 10 connections.�

for (int i = 0; i < 10; i++ ) {

�Why are you allocating a new server socket every
time?�

Server serv = new Server(i);
Socket sock = serv.recvConn();
String input = sock.readStream();
execute(input, i);

}

Reading onward, she notices an egregious security
violation:

�It’s a loop of 10 connections.�

for (int i = 0; i < 10; i++ ) {

�Why are you allocating a new server socket every
time?�

Server serv = new Server(i);
Socket sock = serv.recvConn();
String input = sock.readStream();

�@#@%! This is a huge security hole right here! You
didn’t check the input for validity before executing it.�

execute(input, i);
}

After making these comments, the employee quickly
fires off two emails – one to the security officer at the
company to turn off the alpha version of the server, and
the second to his colleague berated her for leaving such
as glaring security hole in their software.

This use of voice comments illustrates the benefit
of informal voice commenting to annotate production
source code and to rationalize quick decisions which
everyone else can easily verify.

5



3 Implementation

The facilities for supporting voice comments are based
on technology from the Harmonia research project [8]
led by Prof. Susan L. Graham at the University of Cal-
ifornia, Berkeley. Harmonia is a language analysis li-
brary that can be plugged into an application to provide
incremental lexing [18], parsing and semantic analysis
services. For lexing, Harmonia supports flex-style lex-
ers; for parsing, Harmonia supports LALR(1) and more
commonly, a variant called GLR [16]. The GLR pars-
ing algorithm is built upon LR(1) and adds the ability
to parse grammars requiring any number of tokens of
lookahead (infinite), as well as parse ambiguous gram-
mar and retain ambiguities in the generated syntax tree.

For each language supported, Harmonia requires a
language module plug-in, a shared library that con-
tains the lexing tables, parsing tables, and syntax tree-
walking semantic analysis code for a given program-
ming language. A language module designer creates
a flex description, aladle (essentially bison + EBNF)
LALR(1) or GLR grammar, and a set ofastdeffiles de-
scribing an object-oriented walk through the syntax tree
produced by the parser.

Harmonia is designed primarily as an analysis engine
for text-based languages, but for the author’s disserta-
tion, he is exploring ways to use voice in the program-
ming process and use Harmonia to support the process.
This means generalizing the Harmonia framework to
support lexers that don’t analyze text, as well as parsers
that can accept lexemes from multiple lexers.

3.1 Lexer Modifications

First, it was necessary to enable Harmonia’s language
modules to support more than one lexer table per lan-
guage. It was relatively straightforward to change the
lexer table pointer into a C++ STL vector of Lexer ob-
jects. However, it was a bit more complicated to extend
the lexing algorithm to use a particular lexing table at
any point in the lex process.

The incremental lexer is not a simple processor that
transforms an input of characters into an output of lex-
emes. Its input is a stream of tokens that were previ-
ously lexed. When a file is first lexed, all of its charac-
ters are inserted into one giant, undifferentiated token.
The incremental lexer may begin at any token in the to-

ken stream, at which point it decomposes the token into
characters and feeds it into the lexer driver produced by
flex. Tokens produced are stored in a token list to be
incorporated back into the syntax tree by the parser. If
more characters are needed to lex a token, tokens fur-
ther ahead in the token stream are broken down and fed
to the lexer. In order not to relex the entire input stream
every time the lexer is invoked, the lexer compares the
tokens produced to the tokens that it broke down. At the
first point where these match (by a number of criteria),
the lexer can stop lexing, since any further lexing will
just create the same tokens.

It was necessary to convince the lexer to stop lexing
when it reached a token that was produced by a differ-
ent lexer table than the one the lexer was using. We cre-
ated a mixin class, LexerChoiceMixin, which contained
an integer to identify each unique lexer table. Each to-
ken type (each a C++ class) inherits from this mixin to
record which lexer table produces the token. We then
modified the incremental lexing algorithm to check the
next lexeme to break down before passing it to the flex
lexer. If this lexeme type was produced by a different
lexer than the current one, it would treat the token as if
it were an end of file marker. (Note, this also implies
that the token preceding thiseof would be limited to a
lookahead of 0 characters.) The current lex would be
stopped without harming the foreign token. Since that
token, in all likelihood, would be need relexing itself,
the incremental lexing algorithm would detect it, and
switch its current lexer to the one found in the token,
and then proceed to lex again. To restate the modifi-
cation in one sentence, the lexer treats a token from a
different lexer table (meaning different from the lexer is
currently using) as an end of file and ends lexing. The
algorithm will already continue the lexing process on
the next token needing relexing without any changes.

Second, we created a new type of grammar terminal
attribute, a VoiceComment. A VoiceComment is imple-
mented as a LexerChoiceMixin whose lexer is number
1. (The default flex lexer is number 0). We added a new
token type to the ladle grammar for Java, called “voice-
comment”, and gave it the VoiceComment attribute. We
then wrote a method to create a voice comment token
and insert it structurally into the parse tree. Finally,
we created a new subclass of the lexer to correspond to
lexer number 1. When the lexer switches to this lexer, it
returns the voice comment (without destroying it as the

6



flex lexer does) and then indicates an end of file to force
the lexer to switch back to the flex lexer.

3.2 Parser Modifications

In theory, the GLR parser doesn’t need any modifica-
tion to accept lexemes from a different lexer table. As
long as the lexeme is described accurately by the gram-
mar, everything should be fine. However, since the in-
cremental parser drives the incremental lexer, and Har-
monia is not as modular as is should be, a few modi-
fications to the parser driver were necessary to get the
parser in line. In addition, the history-based GLR er-
ror recovery mechanism [18] references character loca-
tions in the underlying token stream. This still needs
to be modified to reference token position rather than
character positions. Finally, there is a bug in the parser
that causes it to infinitely recurse and insert thousands
of copies of a voice comment into the parse tree. We
will fix this soon.

3.3 User Model

We next designed the user model. We integrated the
voice commenting feature into Harmonia-mode [7], our
XEmacs plug-in. Harmonia-mode uses the features of
Harmonia to support interactive error detection and dis-
play, syntax highlighting, indentation, structural navi-
gation and selection, structurally-filtered searches, and
elision throughout the code document.

Our desired user model would allow the user to talk
modelessly and have their speech inserted into the docu-
ment at various points as voice comments. Some design
questions about the user model concerned us.

1. If a user speaks a voice comment, where should
it go? Should it be inserted at the current cur-
sor position? Perhaps we should speech-to-text
the comment and use AI to interpret what they’re
talking about. For example, the user says ”This
field needs to be renamed.” before a class defini-
tion. Since the user is talk about a field, the com-
ment could be associated with the field declaration.
Could a comment be associated not just with a text
position in the buffer, but also with structural el-
ements in the syntax tree? This way a comment
could be associated a class, or a field, and even

if that field is subsequently edited or moved, the
comment could be kept near it. We decided to go
with option 1, where the comment is inserted at
the cursor position because it was the simplest op-
tion. AI is not our speciality, so we ruled out op-
tion 2. We ruled out option 3 as well because the
text-oriented (as opposed to syntax-oriented) user
model of the editor does not preserve enough infor-
mation to determine anything but the text location
where the comment should go.

2. If a user speaks for a length a time while simul-
taneously editing the document, where does the
comment go? It could go at the position where
they initially started speaking, or go at the end
where they stopped speaking. Or the comment
could span the entire range of characters. Un-
fortunately, Harmonia-mode associates text ranges
(in XEmacs, these are called extents) in the buffer
with nodes in the syntax tree. Without a node to
represent this expanded range, we could not make
the proper association. We decided to insert the
comment at the cursor position where the user first
began to speak, since that was likely close to what
they intended to comment.

3. When should comments be inserted in the code?
Should they go in as soon as the programmer stops
speaking, or should we wait a few seconds? If the
comments go as the user is coding, it could disrupt
the visual flow of the program and interrupt the
programmer’s thought process – exactly the oppo-
site of our intentions with this project. In addition,
if the comment is too colorful for code (such as the
expletive uttered by the code reviewer in the sec-
ond scenario above), the speaker may not want it
to go on. Likewise, the speaker may have forgot-
ten to turn off the microphone when talking to a
colleague in the room and the comment inadver-
tently was recorded. We could batch up spoken
comments with their insertion locations and store
these in a buffer. When enough time has passed or
there are too many voice comments in the buffer,
we interactively ask the programmer whether it
should be inserted. It is important to present the
voice comment inserted into the buffer with con-
text above and below in order for the programmer
to remember what they were thinking when they

7



spoke the comment.

4. How should voice comments be rendered?
Should a voice comment be translated into the pro-
gramming language’s syntax for a comment? If
yes, the user would not be able to visually iden-
tify which comments contained audio and which
did not. We thus chose to present the voice com-
ment in a distinct typeface. Should a voice com-
ment be a simple one character glyph or should we
present the entire speech-to-text translation with
special delimiter glyphs? We chose to render the
entire text of the comment in order to facilitate
skimming. If all of the voice comments needed
to be played back in order to find out what was in
them, then one would have to listen to all of the
comments to find anything. To reduce the clutter
from the voice comments, we enable the user to
elide their visual representation into a two char-
acter glyph (the boundary tokens of the fully ex-
panded voice comment). The user can also click
on the voice comment and choose to have the
recorded audio spoken back out the speakers.

5. Can voice comments be editable? If so, are they
editable in text or in audio? If voice comments
are modifiable via text, it will be important to keep
the audio in sync. One would have to know the
time indices of all of the words in the audio stream
and be able to cut and paste them. If the user re-
ordered the words in the comment, the audio could
be recut to match. But, what if a user deleted a
few characters of an existing word, or even added a
completely new word? Should the tool synthesize
new speech and insert it in the audio? Since this
project was more about how the voice comments
would be used as an annotation tool, and not in-
tended to be a complete prototype, we prohibited
all editing of voice comments.

We made all the aforementioned modifications to our
harmonia-mode for XEmacs (all except that code com-
ments are automatically inserted into the code buffer
two seconds after the programmer has finished speak-
ing each one) and informally tried out our prototype.
Barring some initial technical difficulties with IBM Vi-
aVoice related to discovering when the user has started
and stopped speaking into the microphone (the speech
recognition engine only reports when it is decoding

voice into text, and reports the overall input volume
level, which the author used to infer when the program-
mer stopped speaking), the prototype worked well.

4 Experiments

We plan to conduct several experiments to see how
voice comments can be used by both novice and ex-
pert programmers to create better comments in their
code. For novices, we would like to deploy the sys-
tem to three students in an introductory programming
class (conducted in the Java programming language),
and ask them to use voice commenting on one of their
programming assignments. We hope to see an increase
in commenting in the program itself as compared to the
rest of the students in the class.

Our main metrics will be the total number of com-
ments, number of comments per class, field, method
and line in the code, as well as the number of characters
in the comments themselves. Another metric will be the
number of comments that are about semantic informa-
tion in the program, rather lexical and syntactic. This
will be mainly a comparative one with the other stu-
dents in the class, since novices tend to comment poorly
anyway. Indirect metrics will be evaluations from the
students as to the distraction or benefits they see from
talking about their code, and an evaluation from read-
ers who grade the programming assignments to see if
they feel that they gain a better understanding of what
the students were thinking when they were writing their
programs. This last evaluation is critical to understand-
ing whether or not playback of the comment audio is
useful to the reader, as well as if it is possible to wade
through the (hopefully) copious quantity of comments
in the code to find out what is important.

For experts, we can conduct a similar experiment ex-
cept that instead of a programming assignment, the ex-
pert’s current project will be studied. A tool created
by another member of this Software Engineering class
can report statistics on commenting behavior found in a
code repository [12]. We plan to use this to establish
a baseline for an expert’s tendency to comment their
code. Then, we encourage the expert to use our voice
commenting system, and look at the changes, if any,
in their commenting behavior by examining the repos-
itory. We can use the same metrics as for the novices
as well as the same evaluation by the programmer to

8



identify any cognitive issues that interfere with the pro-
gramming activity.

5 Future Work

The experiments described above have not yet been
completed. The author plans to conduct them over the
next few months. In addition, the user interface that
enables a programmer to interactively insert their voice
comments en masse into the document has not yet been
completed either. This will also be completed in the
next few months. Playback of the audio portion of a
voice comment is also be forthcoming.

6 Conclusion

This paper describes a novel system for improving the
quality and quantity of comments in programs. By us-
ing their voice to comment their code, programmers can
exploit an additional input channel that should not in-
terfere with their ability to code at the same time. Us-
ing the Harmonia framework to support program code
analysis and structural editing, it is relatively straight-
forward to add this new form of commenting to any
programming language.

We hope our experiments will show that program-
mers, both novices and experts, will be able to use this
tool to comment their code more completely and de-
scriptively. Exploration of the cognitive interference is-
sues will be critical to its success – speaking about one’s
code may interfere with programming, or even if not,
the stream of conscious style of comment may increase
the likelihood that the comments will be lexical or syn-
tactic in nature, rather than the more useful semantic
form of comments.

Finally, the one incontrovertible benefit of voice
comment is that it will form an indelible and more com-
plete record of the programmer’s process while per-
forming his duties. Programmers have a lot to say –
it is time that we started capturing it.

7 Acknowledgments

The author would like to thank Michael Toomim for
creating the modern version of harmonia-mode for

XEmacs as well as making many of the changes neces-
sary to render and edit voice comments. Marat Bosher-
nitsan should also be thanked for his assistance in mod-
ifying the Harmonia lexer and parser to accept voice
comments without crashing.

References

[1] Daniel Brantley and David Dillard. Software tools in
the service of documentation. InThird International
Conference on Systems Documentation, pages 60–70,
1984.

[2] Angela Carbone, John Hurst, Ian Mitchell, and Dick
Gunstone. Principles for designing programming exer-
cises to minimise poor learning behaviours in students.
In Proceedings of the on Australasian computing edu-
cation conference, pages 26–33. ACM Press, 2000.

[3] Françoise Detienne.Software Design – Cognitive As-
pects. Springer, 2001.

[4] Timothy E. Erickson. An automated fortran docu-
menter. InProceedings of the international conference
on systems documentation, pages 40–45, 1982.

[5] Michael Ericsson, Magnus Baurn, Jonas Lwgren, and
Yvonne Wrn. A study of commenting agents as design
support. InProceedings of the conference on CHI 98
summary : human factors in computing systems, pages
225–226. ACM Press, 1998.

[6] R. Escalona. Case study of the methodology of j. d.
warnier to design structured programs as systems doc-
umentation. InThird International Conference on Sys-
tems Documentation, pages 95–100, 1984.

[7] Harmonia Research Group. Harmonia-
Mode Project Documentation.
http://acacia.cs.berkeley.edu:8081/harmonia2/
projects/harmonia-mode/index.mhtml.

[8] Harmonia Research Group.Harmonia Research Group
Home Page. http://www.cs.berkeley.edu/ harmonia.

[9] IBM, Inc. IBM ViaVoice Product Home Page.
http://www-4.ibm.com/software/speech/.

[10] Douglas Kramer. Api documentation from source code
comments: a case study of javadoc. InProceedings
on the seventeenth annual international conference on
Computer documentation, pages 147–153. ACM Press,
1999.

[11] C. Lewerentz. Extended Programming in the Large in a
Software Development Environment. InProceedings of
the Third ACM SIGSOFT ’88 Symposium on Software
Development Environments, pages 173–182, November

9



1988. Published as SIGSOFT Software Engineering
Notes, volume 13, number 5.

[12] David Marin. Searching source code to enable code
reuse, 2002. UCB CS294-1 Class Project.

[13] Gregory R McArthur. If writers can’t program and pro-
grammers can’t write, who’s writing user documenta-
tion? InProceedings of the Fourth International Con-
ference on Systems documentation, pages 62–70. ACM
Press, 1985.

[14] R. Douglas Riecken, Jurgen Koenemann-Belliveau,
and Scott P. Robertson. What do expert programmers
communicate by means of descriptive commenting? In
Empirical Studies of Programmers: Fourth Workshop,
Papers, pages 177–195, 1991.

[15] David Roach, Hal Berghel, and John R. Talburt. An
interactive source commenter for prolog programs. In
Proceedings of the conference on SIGDOC ’90, pages
141–145. ACM Press, 1990.

[16] Masaru Tomita.Efficient Parsing for Natural Language
— A Fast Algorithm for Practical Systems. Int. Series in
Engineering and Computer Science. Kluwer, Hingham,
MA, 1986.

[17] Vicente Lopez Trueba, Julio Cesar Leon Carrillo, Os-
car Olvera Posadas, and Carlos Ortega Hurtado. A sys-
tem for automatic cobol program documentation. In
Third International Conference on Systems Documen-
tation, pages 36–43, 1984.

[18] Tim A. Wagner. Practical algorithms for
incremental software development environ-
ments. Technical Report CSD-97-946, Univer-
sity of California, Berkeley, March 11, 1998.
ftp://sunsite.berkeley.edu/pub/techreps/CSD-97-
946.html.

[19] J. M. Yohe. An overview of programming practices.
ACM Computing Surveys (CSUR), 6(4):221–245, 1974.

10


