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Abstract

We present an implementation of Active Messages and four im-
plementations of the Split-C parallel programming language over
the Virtual Interface Architecture user-level networking system
running on the Berkeley Millennium cluster. This cluster is com-
posed of 16 2-way SMP Intel 400 MHz PII processors using My-
rinet network interface cards. Results from application bench-
marks show that the best Split-C implementation is the one with
the lowest processor send and receive overheads.

1 Introduction

Split-C is a parallel extension of the C programming language that
supports efficient access to a global address space on distributed
memory multiprocessors [Dus93]. Programs may access data on
other processes via global pointers (essentially a normal C pointer
combined with a processor ID). One of Split-C’s more unique
features is the support for explicit split-phase communication
through these global pointers. Split-C supports a split-phase read
(called get) and two split-phase write (put and store) operations
that allow the programmer to explicitly overlap communication
with computation. Completion of communications operations is
ensured by a pair of synchronization primitives (one for get and
put, another for store). In addition to memory transfer operations,
Split-C supports explicit barriers, reductions and scans.

The Virtual Interface Architecture (VIA) defines a set of user-
level networking mechanisms designed to minimize communica-
tion overhead. The VIA specification [VIA97] was developed by
industry leaders as a proposed standard for high performance
communication in distributed systems. It combines the principles
of Active Messages and many other user level networks [Pak97,
Eic95, Pry98, Dub96, Gil96, Dru94] as well as traditional network
architectures into a combined software/hardware design.

Split-C has been implemented on many MPPs, as well as the Ber-
keley NOW (a cluster of 100 UltraSPARC 1s). This paper de-
scribes several new implementations of the Split-C communica-
tions layer targeted for the Berkeley Millennium cluster (16 2-way
Intel PII Xeon SMPs running Linux (kernel version 2.2.1)). The
low-level communications architecture on these machines is VIA.

Split-C on the NOW is based on Active Messages. Our first effort
was to implement, on top of VIA, a version of Active Messages.
This enabled us to easily port a first version of Split-C. We then
created several other versions of Split-C’s communications layer
targeting VIA directly. The VIA specification defines essentially
two levels of reliability for message delivery: unreliable (at-most-
once) and reliable (exactly-once, in-order). The first Split-C im-

plementation targets reliable VIA, reducing the communications
overhead by specializing the communications layer for Split-C.
The second targets unreliable VIA and adds mechanisms to the
first that ensure reliable message delivery.

Due to limitations in our VIA implementation, we could not sup-
port network-based communications between processes running
on the same host. A prior effort to support same-host communica-
tion [Lum98] developed Multi-Protocol Active Messages – remote
communication goes over the network, while communication be-
tween processes on the same host (local processes) goes through
queues in shared memory. While this implementation is effective,
it places the same overhead on local communication as remote
(same overhead, lower latency). We have developed a more effi-
cient form of local communication by placing the local communi-
cation directly in the Split-C communications layer.

In this paper, we describe the implementation of Split-C over these
four communication substrates and compare their performance to
Split-C on NOW. Our results show that Split-C over unreliable
VIA exhibits the best performance of our four implementations.
We attribute this to its reduced processor overhead obtained by
specializing the communications layer to Split-C. This reduction
of overhead was a driving goal of our implementations, and its
success confirms the results in [Mar97] which showed that appli-
cation performance is quite sensitive to overhead but tolerant of
latency.

In the remainder of this paper, we describe the structure, imple-
mentation and performance characteristics of the various commu-
nications architectures that underlie Split-C. In the next section,
we explain the concepts behind VIA. In Section 3, we review the
Active Messages architecture in preparation for the discussion of
the implementation of Active Messages over VIA in Section 4.
Section 5 covers our four implementations of Split-C communica-
tions layers. The next section presents performance measurements
of Active Messages over VIA and our various Split-C implemen-
tations. Section 7 discusses some lessons learned during this proj-
ect. We conclude with future work and present our conclusions.

2 VIA

This section describes the structure of and operation of VIA. The
core component of the VIA system, the Virtual Interface, is the
primary abstraction for a user’s protected, direct channel to the
network interface controller (NIC). Communication is achieved
through bulk memory-to-memory transfers between a pair of vir-
tual interfaces (VIs). To understand the construction of a VI, we
define key terms used in the architecture:



2

• Registered Memory -- A portion of a user’s virtual address space
that has been pinned into physical memory and made known to a
VI NIC. Registered memory functions as the principle communi-
cations buffer for network operations. A unique name or Memory
Handle is associated with each region and used in conjunction
with a user virtual address to access a buffer.

• Descriptor -- A data object recognized by the VI NIC that de-
scribes a network transfer request to be performed. Descriptors
reside in registered memory.

• Work Queue -- A FIFO list of Descriptors to be processed by a
VI NIC.

• Doorbell -- A mechanism for a user process to notify the VI NIC
that outstanding descriptors have been posted to an associated
work queue. Each doorbell is a protected resource, typically
mapped into a user’s address space, which is unique to a particular
VI/user pair.

As shown in Figure 2-1, a VI consists of send and receive work
queues, their associated doorbell resources and the user’s regis-
tered memory regions. Prior to conducting communication, a con-
nection is established with one, and only one, VI on a remote

node. To initiate a network data transfer, the user process builds a
descriptor and inserts it into appropriate work queue by placing a
token in the queue's associated doorbell. Send descriptors are
processed as soon as possible by the VI NIC, while receive de-
scriptors are processed upon arrival of an incoming message. Once
the data transfer is completed, the NIC marks the descriptor status
as done. The host receives notification of this completion either by
polling the descriptor or through an interrupt.

Another key component of VIA is the Completion Queue. The VI
Completion Queue allows related VIs to be grouped together and
monitored as a single object. At VI creation, each work queue may
be optionally associated with a completion queue.  When a VI

descriptor completes, the VI NIC places an entry into the comple-
tion queue that indicates which VI completed an operation. The
user process receives this notification through the same mecha-
nisms as for descriptors -- either through polling or via interrupts.
A feature of this component is that the send/receive queues of a VI
may be associated with the same of different completion queues.
For example, one completion queue could be used for all receives
while the other is used for sends.

3 Active Messages

Active Messages (AM) is a simple, extensible paradigm for mes-
sage-based communication in parallel and distributed computing
systems [Eic92, Cul95]. At its core is the concept of integrating
communication and computation in a way that minimizes the im-
pact of communication overhead on overall performance. The
Active Message mechanism may be viewed as essentially a spe-
cialized remote procedure call. Each message contains the name of
a user-level handler to invoke on a target node and a data payload
to pass in as arguments. The handler function serves the dual pur-
pose of extracting the message from the network and either inte-
grating the data into the computation or sending a response mes-

sage. A key point under Active Messages is that the network is
modeled as a pipeline with minimal buffering for messages. A
process may issue a series of messages into the network and con-
tinue its computation while the messages propagate. This differs
from other communication schemes that use blocking protocols or
special send/receive buffers. To prevent network congestion and
ensure adequate performance, message handlers must be able to
execute quickly and asynchronously. As an additional requirement
to prevent deadlock, a handler that generates a reply message must
not be prevented from receiving incoming messages, regardless of
the state of the outgoing channel. From a programmer’s perspec-
tive, Active Message handlers are similar to interrupt service rou-
tines used in OS kernels and device drivers.

VI Recv QSend Q
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Descriptor

Descriptor Descriptor

Descriptor

Descriptor

Network Interface Controller

Status Status

Receive
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Send
Doorbell

Virtual Address Space
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VI Consumer

Figure 2-1: An individual Virtual Interface.  Both descriptors and data reside in the registered memory
regions (denoted by RM).
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Active Messages on the NOW is implemented on top of a virtual
network scheme which supports protected multi-programming
communication [Main95]. The design architecture consists of two
principal components: endpoints and bundles. The first compo-
nent, the AM endpoint, is the fundamental abstraction for a proc-
ess’s connection to the network. A collection of endpoints among
separate processes is connected to form a protected virtual net-
work. Endpoints implement a two-phase request/reply [Mar94]
Active Message scheme in which a request message is directly
paired with a subsequent reply message. To provide flexibility for
different applications, three different message sizes are supported:
shorts (< 32 bytes), mediums (< 4 Kbytes) and bulk transfers (<
network MTU). The internals of an endpoint include of a pair of
buffer pools (send and receive), a virtual-memory segment, a
translation table, a handler table and a protection tag. Endpoints
also utilize a credit based flow-control scheme for requests to
prevent network congestion and buffer overflow. To initiate a
message transfer, a process calls AM_Request() or AM_Reply()  to
insert a message into an endpoint send pool for delivery to a re-
mote receive pool. The message contains an integer handler index,
a protection tag and the data payload. Upon receipt of a message,
the message protection tag is compared against the endpoint pro-
tection tag.  If they match, the handler index is used to reference
the appropriate function in the handler table. For short messages,
the arguments in the data payload are passed directly to the func-
tion. Medium messages include a pointer to a buffer containing
data in addition to the regular arguments. Bulk transfers first copy
the data payload to a sender-specified offset in the endpoint’s vir-
tual-memory segment and then invoke the handler with the speci-
fied arguments. To hide network addressing details, remote end-
points are referenced through an integer index into the translation
table that contains the network address of all endpoints in the vir-
tual network. Endpoint addresses are inserted into this table
through separate calls to AM_Map().  A process can create several
endpoints, each of which represents a connection to a separate
virtual network.

An important aspect of this Active Messages implementation is
that incoming messages are serviced through user-level polling of
the endpoints.  To simplify operations, a process’s endpoints are
gathered into disjoint subsets known as AM bundles. Polling of
the endpoints in the bundle is done explicitly though a call to
AM_Poll() and implicitly whenever a process calls AM_Request()
or AM_Reply(). The bundle abstraction permits programmers to
group together related endpoints and service them as a single unit.
This simplifies programming tasks and permits a form of quality-
of-service differentiation for groups of endpoints.

4 Active Messages over VIA

In this section, we present the internal details of the Active Mes-
sages over VIA (AMVIA) implementation. A core goal is to
maintain the same API as AM in order to allow unmodified use by

existing AM applications. As we will show, this goal influences
many of the design decisions in AMVIA.

4.1 Components
To preserve API semantics and behavior, AMVIA’s implementa-
tion retains much of the high level portions of the original AM
code base. Low-level details such as operating system and net-
work hardware calls have been replaced with VIA primitive func-
tions. Facilitating the mapping from AM abstractions to VIA ab-
stractions are two meta-structures: the VI Queue (VIQ) and the
MAP object (Figure 4-1). The VIQ is essentially a logical channel
for AM exchanges of a particular message size. Each VIQ con-
tains a VI, pointers to unique send and receive buffers for de-
scriptors and data, and a request credit counter. The request credit
counter has a maximum credit value, k, which varies according to
the message size assigned to the VIQ. The buffers are sized to
support 2*k sends and 2*k + 1 receives (the need for the extra
receive is discussed later). Three VIQs, one each for shorts, medi-
ums and bulks, are allocated within a MAP object. The MAP ob-
ject represents a logical point-to-point connection between end-
points in a virtual network. The MAP object also allocates a single
registered memory segment from which the independent VIQ
buffers are allocated. This minimizes the number of separate
memory registration operations that must be performed. A collec-
tion of MAP objects in a user process forms an AM endpoint.
Each MAP object in an endpoint is connected to a peer MAP ob-
ject in every other endpoint on the virtual network. An advantage
of the one-to-one connections is that it eliminates the need for
protection tags. The connections provide the necessary security
from errant messages or spoofing.
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Figure 4-1: The VIQ (left) and the MAP Object
(right) meta-structures of AMVIA.
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A side effect of the VIQ strategy is that it requires symmetry of
message size between request/reply pairs. For example, if a me-
dium request is sent, a medium reply must be used. Likewise, if a
medium reply is expected, a medium request must be issued. The
reason for this is a matter of buffering. If request/reply sizes were
asymmetric, then each VIQ would have to have additional buffer
space equivalent to the largest message size times the sum of allo-
cated credits in the VIQ trio. This defeats one of the design func-
tions of the VIQ to minimize required buffering. We further dis-
cuss this limitation later in this paper.

To implement a bundle of endpoints, the VI completion queue
mechanism is used. When a bundle is allocated, two completion
queues are created: one for monitoring sends and the other for
receives. VIs are attached to these completion queues when they
are created as part of a VIQ. The use of two completion queues
permits assigning preferential service priority to receive opera-
tions. This minimizes network congestion and helps prevent
deadlock. A problematic aspect of the VI specification with re-
spect to completion queues is that there is no mechanism to bind a
user-defined context with a particular VI. Thus, there is no direct
method of determining the parent VIQ or MAP object of a VI that
completes an operation. To solve this problem, a generalized
binding table is employed which uses the VI handle value as a key
to store an arbitrary pointer.

4.2 Operations
With the exception of events, AMVIA implements all of the API
calls available in the native AM implementation. Prior to con-
ducting communication, AM endpoints and bundles are allocated
in their normal manner and the virtual network topology created.
Upon calling AM_Map(), a new MAP object is created with suffi-
cient registered memory space for the three VIQ structures. For
each VIQ, a new VI is created and bound to it’s VIQ and descrip-
tors pre-posted to the receive queue. The VI is then connected
with it’s peer on the remote node. VIA uses a discriminator value
to match together connections requests between two VI’s. For

AMVIA, the discriminator is generated by an ordered concatena-
tion of the local and remote endpoint names. Connection estab-
lishment is synchronous and will block until both VI’s are con-
nected and ready to communicate. Once all three VIQ’s have been
created and VI connections established the AM_Map() function
returns.

Sending operations in AMVIA are straightforward and are only
slightly modified from the original AM implementation. For an
AM_Request(), the function attempts to obtain a free send de-
scriptor and a request credit. If both are not available, the function
polls until it can proceed. The data payload is then copied into the
appropriate message buffer and the send descriptor posted to the
send queue. Control then returns to the calling thread without
waiting for descriptor completion.  AM_Reply() functions in an
identical manner except that it does not wait for a request credit.
Instead, the function checks to ensure the symmetry requirements
discussed previously are followed. If not, the reply aborts.

The sequence of operations that take place in an AMVIA receive
vary depending on the message size.  Short messages are proc-
essed by directly invoking the designated handler with the data
arguments (the copy here is implicit). For long messages, the data
payload is transferred to the VM segment and then the handler
function invoked. Processing of medium messages, however, does
not involve a copy of the data payload. Instead, the handler is
invoked with a direct pointer to the medium message. Thus, in-
coming medium messages are able to exploit the zero-copy se-
mantics intended by the VI architecture. Once the handler returns,
the associated receive descriptor is cleared and re-posted to the
VI’s receive queue. The fact that the receive descriptor is not recy-
cled until after the handler completes requires the receive queue to
contain one extra element. This is to ensure that a reply sent by a
request handler does not create a new request from which there is
no available buffer. Recycling the receive descriptor before in-
voking the handler would require extra data copies that would
degrade performance.

Proc A

Proc B

Proc C

Endpoint
Bundle

CQ

Virtual Network

Figure 4-2: The AMVIA component integration architecture.
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The AM_Poll() operation serves a dual purpose in AMVIA. First,
the routine checks the receive completion queue in the bundle for
incoming messages. For each received message, the routine de-
termines the message type, request or reply, and pushes a pointer
to the message into a respective queue. This is repeated until all
outstanding receive operations have been segregated into their
appropriate queues. Then, depending on a binary argument to the
routine, one entry from both the reply and request queues or just
the reply queue is processed. This marshalling of incoming re-
quests and replies is necessary for two reasons. First, it provides
the means to disable processing of incoming requests that might
result in deadlock and, second, it ensures that request handlers are
executed atomically. In the native AM implementation, the NIC
could distinguish between request/reply types and place them in
separate queues, thus negating the need for the host to marshal the
two types. The other purpose of the polling routine is to recycle
send descriptors. The head of the send completion queue is
checked once per call to AM_Poll() and the completed send de-
scriptor marked available for reuse.

5 Implementing Split-C

The Split-C compiler is based on a modified version of the gcc C
compiler that calls specific functions for each basic Split-C opera-
tion: read, write, get, put and store. These operations are imple-
mented in a library (libsplit-c) that also provides the other Split-C
functions (e.g., bulk_get, bulk_put, barriers, reductions, etc.). This
library also deals with the startup and shutdown of the Split-C
program. Thus, all platform-specific code is confined to libsplit-c.

We have implemented a number of different versions of Split-C
for the Millennium cluster using the VIA networking abstraction.
These four versions are all based on the AMII-based Split-C for
the NOW:

1. Split-C over AMVIA: This is essentially unchanged from the
NOW version, except for program startup and shutdown is-
sues, which we will not address further.

2. Split-C over AMVIA plus Shared Memory: Off-host com-
munication uses AMVIA, communication between local pro-
cesses uses shared memory.

3. Split-C over Reliable VIA: This implementation assumes that
the VIA layer provides reliable message delivery.

4. Split-C over Unreliable VIA: This implementation does not
assume reliable message delivery.

We start with a short overview of the functionality provided in
libsplit-c, and then present a description of the implementation of
each of these versions of Split-C.

5.1 Overview of libsplit-c
The libsplit-c library implements a number of primitive opera-
tions:

• get, put, and store for the basic types (char, short, int, float,
double, long long) and bulk objects

• completion detection for gets, puts, and stores (the sync and
store_sync operations)

• barriers

All other operations (reductions, scans, reads, writes, etc) are im-
plemented in terms of these primitive operations. There are no
practical differences between get, put and store for the different
basic types, therefore we will restrict our attention to get, put and
store of integers.

5.2 Split-C over AMVIA
Upon startup, Split-C sets up an AM connection between every
pair of processes. Split-C’s primitive operations (get, put and
store) are implemented in a straightforward manner. Each primi-
tive operates on a global pointer and a local address. If the global
pointer is local to this process, the operation is carried out using
local memory. Otherwise, an active message request is sent to the
process specified in the global pointer and the operation carried
out remotely. The reply to this active message specifies a handler
which alternately writes the result of a get, signals the completion
of puts, and does nothing for stores. Bulk get, put and store opera-
tions use the AM Medium message format. Each bulk operation is
broken into segments corresponding to the maximum medium
message size. The implementation is otherwise identical to that
used for integers. The sync and store_sync operations busy wait
(while calling AM_Poll() to drain the network) until the appropri-
ate condition is fulfilled. The barrier uses a two-phase binary tree
communication pattern.

5.3 Split-C with Shared Memory
The Millennium cluster is made up of 16 2-way x86 SMPs. In
order to use both processors on an SMP, Split-C’s communica-
tions layer has to support local communication between processes.
This may be accomplished at various levels in the communications
hierarchy. For instance, we might have each process use a unique
physical network endpoint, and use the network to form a loop-
back connection. As an optimization, we might modify the firm-
ware in the NIC to recognize packets destined for the same host
and reroute them directly into its receive buffer. Moving up the
hierarchy, we might modify the VIA software layer to recognize a
message to another VI on the same host and deliver it directly into
the other process’s receive buffer. The same optimization might
also be performed in the Active Message layer, using shared
memory to implement a communications buffer between multiple
processes on the same host. This is the implementation choice
used by Multi-Protocol Active Messages on a cluster of Solaris
SMPs [Lum98].
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In furtherance of our goal to remove unnecessary abstractions, we
modified the Split-C communications layer to recognize when a
message is destined for another process on the same host and use
shared memory to copy the data directly into the other process’s
address space.

Split-C’s global address space assumes a separate address space
for each process running in a Split-C program. In the tradition of
C, Split-C allows a programmer to create a global pointer that
points to any part of memory in any process. Split-C also guaran-
tees that some local addresses are the same in all processes,
namely the addresses of global variables and the result of
all_spread_malloc. The programmer can use this invariant to cre-
ate a valid global pointer to another process’s address space from
knowledge of where a pointer is in its own address space.

To maintain compatibility with Split-C programs that exploit this
invariant (essentially all Split-C programs) we should map the
stack, data segment and heap of each process on a host into the
address space of every other process on the same host (Figure
5-1). We decided to not support the stack because it is dynami-
cally allocated and were it to be extended, every other process
would have to be notified to map the new chunk of memory. We
give each process a 256 MB virtually allocated heap which we
map into the address space of every other process at program
startup.

Mapping the data segment of each process was a little more diffi-
cult. We first tried to copy the data segment into the first part of
the shared memory heap, for if the code were compiled to be posi-
tion independent (-fPIC) then every access to memory in the
data segment would be indirected through a register. At the start of
main(), we could just modify the register to point to the copy of
data segment residing in the shared memory heap. Unfortunately,
we also found that the Split-CC compiler (a modification of gcc)
inserts code to compute the PC-relative offset to the global offset

table (GOT) in every function prologue. This meant we would
have had to reset the GOT register at the start of every procedure
(even those in library functions). We made an attempt to modify
Split-CC to not insert the GOT calculation, but this broke gdb
which relied on knowing the length of the function prologue. In
addition, we would have had to rewrite the binary for each library
that was not compiled with Split-CC.

Instead, we take advantage of Linux 2.2.1’s new /proc file sys-
tem to mmap the data segment. Each process has a virtual direc-
tory in /proc which contains a virtual file called “mem.” This
file points to the virtual memory of each process. In order to suc-
cessfully attach to each process’s data segment, we had to modify
the Linux kernel to turn off conservative error checking clauses
that prevented any process from mmapping another process if it
was not its parent.

With these modifications in place, we modify the communications
primitives in the Split-C communications layer. First, we add a
clause to each read, write, get, put and store operation to identify
global pointers to memory on the same host and perform a read or
write directly in the shared memory region belonging to the proc-
ess specified in the global pointer. We also rewrite the barrier
operation to perform an array-based barrier among processes local
to each host. Then, one process on each box participates in a two-
phase tree-based barrier using active messages. Most of Split-C’s
other global operations are written using get, put and store, and
require no changes.

Atomic operations, however, are another tricky area. Split-C takes
advantage of the atomicity semantics of Active Message handlers
to implement atomic remote procedures. Unfortunately, a process
isn’t able to run arbitrary user functions on behalf of another proc-
ess on the same host even if it has access to its memory. Support
for these atomic operations has not yet been completed, however,
it will likely consist of an explicit producer/consumer queue con-
taining functions for each process to execute.

5.4 Split-C over Reliable VIA
The implementation of Split-C assumes that reliable message de-
livery is provided by VIA. On a reliable VIA connection, recep-
tion of an unexpected message for which there is no descriptor
posted, or for which the posted descriptor is not big enough causes
the connection to be terminated [VIA97]. Therefore, it is essential
to run a credit scheme to prevent this from occurring. As the ex-
isting implementation of AMVIA implements such a scheme (and
also assumes a reliable VIA connection), we chose to implement
this version of Split-C by merging libsplit-c with the AMVIA
library. This opens up a number of opportunities for optimization
of the send and receive overhead:

We remove support for the active message "bulk" format (Split-C
bulk operations use the "Medium" format), thus reducing the
number of VIs per connection to a remote process from three to
two. Dynamic dispatch is not required on sends, nor on receives.
Messages are still identified by a small unique integer (which we
still call the "handler"), but the code for each handler is placed
inside a switch statement in the poll routine. Finally, we reduce the

Process 1
Local

Memory

Process 2
Local

Memory

P1’s view
of

Process 2
P2’s view

of
Process 1

P1’s address space P2’s address space

Figure 5-1: Address space mapping on shard-memory
Split-C
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message size by removing unnecessary fields in the message for-
mat. The smallest possible message is reduced to 4 bytes from an
original specified minimum size of 28 (in fact, the AMVIA im-
plementation has a 64 byte minimum message size).

Split-C over reliable VIA also brings a small change to the AM
request/reply discipline (and hence to the AMVIA request credit
management scheme): some requests need not send replies. This is
useful for the Split-C store operations which do not deliver any
completion notification to the sender. Obviously, if store requests
were never acknowledged, a processor sending such requests
would soon run out of credits. To get around this problem, after a
processor P1 receives n requests from a processor P2 for which it
does not reply, it sends a special acknowledgement message to P2

that restores n request credits to it. We chose n to be a quarter of
the maximum number of credits. If n is chosen too small, there is
little benefit for reply-free requests. If n is too large, the general
credit scheme will become ineffective.

5.5 Split-C over Unreliable VIA
A large part of the Split-C over unreliable VIA implementation is
identical to the reliable version. Split-C’s primitive operations are
still implemented assuming a reliable request/reply mechanism --
the only difference is in the implementation of the mechanism
itself.

Our goal for this implementation is to provide reliability with very
low processor overhead on both send and receive sides. We as-
sume that message failures are extremely rare, so that it is not
necessary to perform well in their presence. In the absence of
losses, the credit scheme assuming unreliable VIA should behave
the same as for reliable VIA. No messages will be lost because the
target process was not ready to accept them. While we have im-
plemented all the bookkeeping necessary to provide reliability, it
is important to note that our current system does not implement
detection and retransmission of lost messages.

We provide a reliable request/reply mechanism over each VIA
connection by merging a conventional sliding window protocol

with the credit scheme used by AMVIA. There are six important
aspects to our implementation:

• We number requests and replies uniquely and separately,
rather than number all messages in a single sequence.

• Each request or reply exchanged includes an acknowledge-
ment of the received requests and replies that have been fully
processed (see the discussion of reply-free requests below).

• Requests and replies are processed in the order they were
sent; while this is not necessary to satisfy Split-C semantics,
it is required as the sliding window protocol acknowledge-
ments all previous message with a single acknowledgement.

• For each connection, we keep track of the number of request
credits available. This information is derived from the request
acknowledgements in the messages we receive.

• Reply-free requests do not normally need any extra acknow-
ledgements as long as both sides are exchanging messages (a
request acknowledgement takes the place of a reply, hence
the need to acknowledge requests once they are processed,
rather than acknowledging them as soon as they are re-
ceived). A special "no-op" reply is sent in the case where n
reply-free requests are received from a process without any
message being sent back to it. We have arbitrarily set n to a
quarter of the maximum number of request credits.

• Timeouts are detected by recording the time at which each
message is sent. In the poll routine, the current time is com-
pared with those of unacknowledged messages which cause
them to be resent if a (fairly high) timeout has expired. How-
ever, we have not yet implemented this important part of our
reliability scheme.

Figure 6-1: One-way messsage timing and streaming performance for AMVIA. The underlying VIA and the
native AM implementation results are provided for comparison.
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6 Performance

This section discusses the performance measurements of AMVIA
and the various implementations of Split-C described above, as
well as Split-C on the NOW. For AMVIA, we measure one way
message time, streaming bulk performance and LogP micro-
benchmarks. For Split-C, we measure raw communication primi-
tive performance and benchmark five applications.

6.1 AMVIA
The performance of AMVIA is evaluated from three benchmarks:
One-way message time, streaming performance and the LogP
micro-benchmark [Cul93, Cul96].  One way message time is a
measure of the average time it takes for a message of a given size
to be transmitted from a source node and received by the destina-
tion node. It is measured through a series of ping-pong tests in
which a message is sent to a destination node which reflects it
back to the sender. The resulting round-trip time (RTT) is divided
by two to yield the one-way time. The streaming benchmark
measures the throughput when messages are sent successively
from a source to a sink with no pause in between. The results of
these two benchmarks are presented in Figure 6-1. Performance
results for the native VI Architecture an AM implementations are
included for comparison.

The AMVIA one-way message time of 53 µsec adds 15 µsec to
the underlying VIA one-way time for the same message size. It is
three times worse than the AM implementation on the NOW. The
extra time is attributable to the complex polling routine and han-
dler dispatching on the host. The polling routine must travel
through multiple layers of indirection (Completion Queue to VI to
Descriptor to Data) to retrieve the message and lookup the VI to
VIQ binding. It must then marshal the message by request/type
and then dispatch the handler. For messages larger than 32 bytes,
additional overhead is incurred due to buffer copying. In AMVIA,
this cost is amortized by other factors whereas it is pronounced in
AM.

The factors that affect one-way time also extend to streaming per-
formance. AMVIA achieves a throughput of 172 Mbits/sec for
4KB messages. This is less than half of either VIA or AM on the
NOW. Some of the throughput limitations are due to the credit-

based flow control scheme in Active Messages which enforces
positive acknowledgement for every message sent. However, the
majority of the impact comes again from the polling routine. The
problem is exacerbated because outgoing messages may stall
while incoming messages are being processed.

A better understanding of the low-level performance of VIA is
achieved through a LogP analysis. The results of the LogP bench-
marks for AMVIA and AM on the NOW are presented in Fig-
ure 6-2 and summarized in Table 6-�������� ����	
�������������
per message increases rapidly to approximately 15 µsec. This time
reflects the mean interval a process must wait for the VI NIC to
service a particular doorbell register given a fixed number of VIs
and network load.  Above a burst size of 64 messages, the flow-
control scheme takes effect and the time per message increases to
�����������������	��
�������� ����	�
����������������������������
between messages to prevent waiting for the doorbell register and
the initial time per message increase is caused by  the servicing of
incoming replies. It is tempting to label  the 15 µsec plateau as
send overhead (os), but this would result in a negative receive
overhead (or). This is because the VI NIC continuously processes
network traffic in between servicing doorbells. Thus, the waiting
period actually overlaps with the transport latency (L).  With our
VI implementation, this overlap cannot be hidden by useful com-
putation.  An additional latency component is incurred by the
polling routine. The request/reply marshalling and send descriptor
recycling add an additional factor that is not directly part of a send
or receive stream.

Parameter Value (µsec)

Latency (L) 45

Send Overhead (os) 3

Receive Overhead (or) 5

Gap (g) 50

Table 6-1: AMVIA LogP microbenchmark summary

The performance of AMVIA is somewhat bipolar. On one side,
the implementation is robust and works for all of the benchmarks
and Split-C applications we tested. Yet, its raw performance pa-
rameters (i.e. bandwidth, RTT) are somewhat substandard. This
paper has examined the major sources of these degradations in
AMVIA. However, root causes of the poor performance can be
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traced back to VIA. For one, VIA is principally a bulk data trans-
port and does not perform well for small messages [Buo98]. In
contrast, in AM small message performance is paramount. An-
other lesson of AMVIA’s performance is that both VIA and AM
benefit from direct hardware support of their architectures. For
VIA, this principally includes doorbell management [Buo98] and
virtual address translation support [Buo99]. AM benefits from
support for small messages and hardware separation of requests
and replies. Although not absolute, the benefits of hardware assist
make porting AM over a generalized transport such as VIA more
difficult.

6.2 Split-C Microbenchmarks
To test the performance of the Split-C primitive operations – read,

write, get, put and store – on basic types, we use a simple micro-
benchmark that repeats each operation 10,000 times and reports
the average time per iteration. We run these benchmarks twice,
once with one process sending to an idle one (one-way), and an-
other where both processes are simultaneously sending to each
other (two-way). The results are presented in Figure 6-3. These
results include timings on Split-C over AM on the NOW for refer-
ence. The times for Split-C over shared memory are so small (less
than 400 ns) that they are practically invisible. We see that the
NOW is much faster than all of the VIA-based implementations,
which is consistent with the results above. We also see that the
stores are twice as fast as get and put operations in the Split-C
over both reliable and unreliable VIA due to the reply-free re-
quests. The two-way message benchmarks shows that reads and
writes take essentially the same about on time as with one-way
messages, but the gets, puts and stores are twice as slow. Reads
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Figure 6-4: Performance of selected Split-C bulk operations (smaller is better).
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and writes do not slow down because they can process incoming
requests in the time they are waiting for their replies. Gets, puts
and stores slow down because the processor and the NIC must
process incoming messages when they would otherwise be send-
ing the next request.

Next, we measure the performance of the Split-C bulk operations
with message sizes from 4 bytes to 4 kilobytes in the one-way and
two-way cases. In Figure 6-4, we present representative results for
one-way bulk gets, two-way bulk reads, gets, and stores. For small
messages, two-way gets are twice as slow as one-way gets for the
same reasons stated above. For large messages, the performance
difference between the two is smaller because message processing
overlaps with message transfer. One interesting feature to notice is
the slope of the shared memory performance between one-way
and two-way messages. This is due to true-sharing cache misses in
our simple-minded benchmark.

6.3 Split-C Applications
We benchmark five applications (Figure 6-5):

• 3D FFT: we compute a 128x128x128 3D Fast Fourier Trans-
form.

• Conjugate gradient solver: solving on a 4096x4096 sparse
matrix.

• Cholesky decomposition: Cholesky decomposition of a
1536x1536 matrix (decomposed in (12x8) x (8x12) x (16x16)
blocks).

• EM3D: An electro-magnetic particle simulation in three di-
mensions. This benchmark uses scaled scaling with 500 par-
ticles per node with an average of 30% remote nodes.

• pico-Ray parallel ray tracer [Mar95]: ray trace a teapot.We
show their performance on the five Split-C implementations
on 1 through 16 processors.  The shared memory implemen-
tation is still incomplete and only has results for 3D FFT, and
1 and 2 processors on Raytrace and Cholesky.

On 3D FFT, we see that the NOW fails to scale past 8 processors.
This may be due to a lack of bisection bandwidth needed for the
all-to-all communication pattern of the parallel transpose step of
3D FFT. The shared memory version is slower than the non-
shared memory versions because two processors on a host are
competing for access to the single network card.

Conjugate gradient scales very poorly. It uses stores extensively,
hence the improved performance of Split-C over reliable or unreli-
able VIA as compared to Split-C over AMVIA. We do not know
the reason for the terrible performance of Split-C on the NOW for
more than 2 nodes.

The raytracer shows the best speedup of all the applications. The
results include an oddity: the raytracer compiled with Split-C over
AMVIA is 54% faster on one processor than the raytracer com-

piled with Split-C over reliable or unreliable VIA. This perform-
ance anomaly disappears from 2 processors onwards.

The scaling of EM3D is poor (and abysmal when compared to the
single processor time which we did not include in the graph). As
with conjugate gradient, we see an advantage to Split-C over reli-
able or unreliable VIA due to EM3D’s use of store operations.

On Cholesky, the scaling is reasonable past two processors. This is
also the only application where the NOW performs better than the
Millennium for large numbers of processors. Shared memory
Split-C does well, scaling linearly with two processes.

Looking at the applications as a whole, we see that Split-C over
unreliable VIA has the best overall performance, slightly ahead of
Split-C over reliable VIA.1 Both of these implementations of
Split-C have reduced processor overhead on both send and re-
ceive. This reduced overhead comes from the reply-free requests
used for stores and from specialization of the request/reply
mechanism for Split-C. This confirm results presented in [Mar99]
which show that application performance is most sensitive to
processor overhead and tolerant of latency. Thus, our simple mi-
crobenchmarks showing sustained message rate and round-trip
times are not directly indicative of application performance.

7 Discussion

7.1 Design Tradeoffs and Evaluation.
The development and analysis of AMVIA and its integration into
Split-C yield several insights into both AMVIA and VIA. In this
section we present an evaluation of the design tradeoffs in AM-
VIA and how these are impacted by subtle differences in VIA and
AM.

7.2 Logical Channels
The use of a single VI and independent buffers as a logical chan-
nel for a particular AM message provides an interesting balance of
resource scaling and reliability. By using a separate VI and queue
for short, medium and bulk messages a finer grained credit scheme
can be used that reduces the amount of buffering necessary. The
amount of buffering required for a VIQ in the AMVIA imple-
mentation is given by the equation:

[4 * k + 1] * M
(k = Credit Allotment, M = Message Size)

                                                                

1 It is not clear why unreliable VIA should be faster than reliable
VIA, as the reliability mechanism should only add overhead and
the reliable VIA implementation is actually using an unreliable VI.
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If a single VI were used for all messages sizes, assuming a credit
allotment of 32 and a network MTU of 80KB, the buffering re-
quirement exceeds 10 MBytes. In the three VI scheme, different
credit allotments can be assigned to each message size. For AM-
VIA, performance tests suggest that a credit allotment of  64, 8
and 1 for shorts, mediums and longs respectively is adequate for
many applications.  The resulting buffering requirement for this
allotment is approximately 540KB. One drawback of this design is
that it requires the programmer provide advance knowledge of an
expected reply message size for a given request.  If the imple-

mentation were more general, then the communication layer
would necessarily be required to have sufficient buffering to han-
dle any size of reply.  This defeats the original purpose of the de-
sign. Presently the AM API does not provide the means to notify
the communication layer of the expected reply size. Thus, AMVIA
assumes and enforces symmetric request/reply message sizes.
Another drawback is the need to marshal request/reply messages
on the host.  The alternative to this is to implement separate chan-
nels for requests and replies by creating separate VIs for each.
This would double the number of VI resources needed by the an
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AM virtual network. We believe the 3 VI design represents the
best balance of performance and resource scalability possible.

7.3 Data Management
The data management schemes in AMVIA are constrained by the
AM API and the development time that was available. For send
operations, copying data into the communication buffer permitted
us to quickly and robustly implement AMVIA without having to
create sophisticated memory management schemes. While this
defeats the mechanisms of the VI Architecture designed for zero-
copy sends, it is required for short and medium messages since
AM semantics allow modification of source data once the sending
function returns. Blocking  until the send operation completes
would negatively impact performance. Receive operations in
AMVIA implement zero-copy only for the medium message pay-
load. Handler arguments are implicitly copied via the stack for all
message sizes. Bulk receives require data copies since destination
buffers are identified by an offset into a VM segment and not an
actual address, thus forcing a level of interpretation not available
in the VI layer. The zero copy of medium payload and implicit
copy of arguments require an extra receive slot for the reasons
discussed previously.

7.4 Completion Queues
A third area of design tradeoffs is evident in the use of completion
queues as the AM bundle abstraction. The completion queue is
perhaps the most natural projection of the AM bundle into the VI
architecture and presents a simpler management model than using
completion queues at the endpoint level. However, like VIs, com-
pletion queues are a limited  resource of the VI provider and may
not scale (i.e. they may overflow) in the face of a large number of
VIs and heavy communication.  Additionally, using the comple-
tion queues at the bundle level prevents migration of endpoints
between bundle objects. Completion queues also expose a short-
coming of VIA in that there is no mechanism in the specification
to map a user context with a particular VI. This makes it difficult
to implement protocols on top of VIA since special data-structures
may need to be bound to VIs. In AMVIA, this problem is resolved
through the use of a separate hash table that uses the VI handle
value as an index to a user-defined pointer.

8 Future Work

There are several avenues for improvements to AMVIA. The first
is to improve performance. If the AM API semantics are modified
to forbid modification of message contents during transit then
AMVIA could provide zero-copy medium messages by first reg-
istering the user’s memory as a VIA buffer and then sending the
message directly from the user’s memory. Bulk transfers could be
implemented with VIA remote DMA write operations. This would
not only reduce communication overhead, but would also greatly
reduce the amount of communications buffering needed.

It would be a good idea for AMVIA to support a multi-protocol
capability similar to that of Lumetta’s Multi-Protocol AM
[Lum98].  Another alternative would be to add a similar multi-
protocol capability to VIA. Here, the primary challenge is a nam-
ing scheme that would enable VIA to distinguish loopback con-
nections from connections between local processes.  VIA connec-
tions are based on a discriminator value which is matched between
two VI's to establish the connection. The VI provider cannot di-
rectly determine if a connection request sent to its own node is for
the originating process or for another one. One way to fix this is to
create a logical host address for each VI consumer on the system.

Two VIA features would be useful for implementing Split-C over
reliable VIA, however we could not use them since our VIA does
not support them:

• The VIA remote DMA read and write operations allow reads
and writes directly into a target process's address space.
These operations could be used to implement the Split-C get
and put operations without requiring the intervention of the
target process. Remote DMA writes could also be used to
implement store, though a message signaling the arrival of
the data would also have to be sent to the target process. Us-
ing remote DMA reads and writes in this fashion would pro-
vide 0-copy bulk gets, puts and stores.

• VIA supports a gather operation on the sending side. The
messages representing bulk gets, puts and stores have two
parts, a header followed by data. Using the gather facility, we
could send such messages without the need to copy the data
and header into a contiguous area of memory. This is analo-
gous to the optimization for AMVIA discussed at the begin-
ning of this section.

The use of remote DMA reads and writes is not applicable to an
implementation of Split-C over unreliable VIA because remote
DMA reads are not available, and the completion of remote DMA
writes cannot be detected. However the gather facility could be
used.

9 Conclusion

Implementing Split-C over AMVIA was relatively simple because
AMVIA presents essentially the same interface to Split-C as AMII
on the NOW. This implementation of AMVIA was also a good
base for producing our specialized versions of Split-C on reliable
and unreliable VIA. AMVIA’s lack of support for local processor
communication pushed us to explore providing shared memory
communication in the Split-C layer.

Results from application benchmarks show that the best Split-C
implementation, Split-C over unreliable VIA, is the one with the
lowest processor send and receive overheads.
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